Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 719
Filtrar
1.
Biomater Adv ; 164: 213993, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39151271

RESUMO

Regarding its structural and mechanical adaptability to bone defects, 3D printed (3DP) Ti6Al4V scaffolds are widely used in orthopedics now, purposed to restore the function and mechanical stability of impaired bone. In scaffold fabrication, surface modification is acknowledged as a reliable strategy to enhance the interface interaction between 3DP Ti6Al4V scaffold and bone. Despite its advantage in bone-Ti6Al4V bonding improvement, surface modification lacks the ability to induce bone in-growth efficiently as expected. As an attempt to overcome this challenge, in the current work the inner voids of 3DP Ti6Al4V scaffold were occupied by a gelatin/chitosan porous matrix, purposed to act as a platform for guiding bone ingrowth. Firstly, the gelatin/chitosan matrix was prepared via freeze-drying using genipin as a crosslinker, resulting in a trabecular bone-like interconnected porous network characterized with a gelatin/chitosan ratio dependent swelling capability, degradation and model anti-bacterial drug release behavior. Besides of that, gelatin in the matrix was witnessed to accelerate biomineralization in simulated body fluid. Secondly, a formulated gelatin/chitosan matrix was embedded into 3DP Ti6Al4V scaffold to generate a composite scaffold capable of inducing bone in-growth. The followed studies showed gelatin/chitosan matrix can endow the scaffold with good biological and sustained drug release properties, along with minimal change to the compressive strength of the scaffold. The in vivo experiment results revealed that after 4 weeks of implantation, more new bone formation was witnessed in the inner structure of the composite scaffold than the 3DP Ti6Al4V scaffold, with the average bone volume fraction (BV/TV) value increased from 24.09 % to 46.08 %, the average trabecular bone thickness (Tb. Th) value increased from 0.118 mm to 0.278 mm. Therefore, it was confirmed an inner matrix in 3DP Ti6Al4V scaffold played an essential role in guiding bone in-growth.

2.
Materials (Basel) ; 17(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203307

RESUMO

In this paper, the morphological, micromechanical and tribological characteristics of the Ti-6Al-4V ELI alloy after thermal oxidation (TO) were identified. TO was carried out at temperatures of 848 K, 898 K and 948 K over a period of 50 h. Microscopic examination revealed that an increase in temperature resulted in an improved uniformity of coverage and an increased oxide grain size. Micromechanical tests showed that TO of the Ti-6Al-4V ELI alloy led to an increase in hardness and deformation resistance. Following oxidation, a decrease (by approximately 10-22%) was observed in the total mechanical work of indentation, Wtotal, compared to the as-received material. The formation of protective oxide films on the Ti-6Al-4V ELI alloy also led to the improvement of tribological characteristics, both when tested under dry friction conditions and in Ringer's solution. The sliding wear resistance increased with an increase in the oxidation temperature. However, a greater degree of wear reduction (by approximately 30-50%) was found for the lubricated contact in comparison with the dry friction tests. Surface roughness also increased with the increase in temperature.

3.
Materials (Basel) ; 17(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124458

RESUMO

In this paper, hip implants made of Ti-6Al-4V titanium alloy are analyzed numerically using Extended Finite Element Method XFEM. The combined effect of corrosion and fatigue was considered here since this is a common cause of failure of hip implants. Experimental testing of Ti-6Al-4V alloy was performed to determine its mechanical properties under different working environments, including normal, salty, and humid conditions. The integrity and life of the hip implant were assessed using the Linear Elastic Fracture Mechanics (LEFM) approach. For this purpose, the conditional fracture toughness Kq using CT specimens from all three groups (normal, humid, salty conditions) were determined. This provided insight into how different aggressive environments affect the behavior of Ti-6Al-4V alloy; i.e., how much its resistance to crack growth would degrade depending on conditions corresponding to the real exploitation of hip implants. Next, analytical and XFEM analyses of fatigue behavior in terms of the number of cycles were performed for all three groups, and the obtained results showed good agreement, confirming the validity of the integrity assessment approach shown in this work, which also represented a novel approach since fatigue and corrosion effects were investigated simultaneously.

4.
Materials (Basel) ; 17(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124489

RESUMO

Binder jetting 3D printing is an additive manufacturing technique based on the creation of a part through the selective bonding of powder with an adhesive, followed by a sintering process at high temperature to densify the material and produce parts with acceptable properties. Due to the high initial porosity in the material after sintering, which is typically around 5%, post-sintering treatments are often required to increase the material density and enhance the mechanical and fatigue properties of the final component. This paper focuses on the study of the benefits of hot isostatic pressing (HIP) after sintering on the mechanical and fatigue properties of a binder jetting Ti-6Al-4V alloy. Two different HIP processes were considered in this study: one at 920 °C/100 MPa for 4 h, and a second at a higher pressure but lower temperature (HIP-HPLT) at 850 °C/200 MPa for 2 h. The effects of the HIP on the densification, microstructure, mechanical behavior, and fatigue properties were investigated. The results show that the HIP-HPLT process produced a significant increase in the mechanical and fatigue properties of the material compared with the as-sintered parts and even with the conventional HIP process. However, the fatigue and fracture micromechanisms suggest that the oxygen content, which resulted from the decomposition of the binder during the sintering process, played a critical role in the final mechanical properties. Oxygen could reduce the ductility and fatigue life, which deviated from the behavior observed in other additive manufacturing techniques, such as powder bed fusion (PBF).

5.
J Arthroplasty ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053666

RESUMO

BACKGROUND: Previous studies identified corrosion between the modular tibial components of total knee arthroplasty devices. However, gaps persist. Compared to the hip, damage modes that occur within taper junctions in the knee remain poorly understood. In this study, we investigated corrosion on total knee arthroplasty components with titanium-titanium junctions. We asked the following question: under typical in vivo cyclic loading conditions, will the same alloy damage modes from total knee arthroplasty devices resemble those documented in the hip? METHODS: A total of 50 paired titanium alloy tibial baseplates and stems were collected and semiquantitatively analyzed using Goldberg corrosion scoring. To characterize damage, a subsection of moderately and severely corroded components was sectioned and imaged using scanning electron and digital optical microscopy. RESULTS: Of the 100 device components, 95% showed visual evidence of corrosion. The initial contact area between the stem and bore generally occurred 3 mm from the stem taper base. Scanning electron microscopy revealed 4 damage modes, including oxide film formation, crevice corrosion, selective dissolution, and pitting. CONCLUSIONS: Each of the damage modes identified in modular titanium-titanium tibial junctions was previously reported by total hip arthroplasty retrieval studies. Cumulatively, our results suggest that mechanically assisted crevice corrosion promoted this damage in vivo.

6.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998333

RESUMO

In this article, an attempt was made to join DP600 steel and Ti6Al4V titanium alloy sheets by resistance spot-welding (RSW) using an interlayer in the form of Cu and Au layers fabricated through the cold-spraying process. The welded joints obtained by RSW without an interlayer were also considered. The influence of Cu and Au as an interlayer on the resulting microstructure as well as mechanical properties (shear force and microhardness) of the joints were determined. A typical type of failure of Ti6Al4V/DP600 joints produced without the use of an interlayer is brittle fracture. The microstructure of the resulting joint consisted mainly of the intermetallic phases FeTi and Fe2Ti. The microstructure of the Ti6Al4V/Au/DP600 joint contained the intermetallic phases Ti3Au, TiAu, and TiAu4. The intermetallic phases TiCu and FeCu were found in the microstructure of the Ti6Al4V/Cu/DP600 joint. The maximum tensile/shear stress was 109.46 MPa, which is more than three times higher than for a welded joint fabricated without the use of Cu or Au interlayers. It has been observed that some alloying elements, such as Fe, can lower the martensitic transformation temperature, and some, such as Au, can increase the martensitic transformation temperature.

7.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998387

RESUMO

Laser hot wire directed energy deposition (LHW-DED) is a layer-by-layer additive manufacturing technique that permits the fabrication of large-scale Ti-6Al-4V (Ti64) components with a high deposition rate and has gained traction in the aerospace sector in recent years. However, one of the major challenges in LHW-DED Ti64 is heat accumulation, which affects the part quality, microstructure, and properties of as-built specimens. These issues require a comprehensive understanding of the layerwise heat-accumulation-driven process-structure-property relationship in as-deposited samples. In this study, a systematic investigation was performed by fabricating three Ti-6Al-4V single-wall specimens with distinct interlayer delays, i.e., 0, 120, and 300 s. The real-time acquisition of high-fidelity thermal data and high-resolution melt pool images were utilized to demonstrate a direct correlation between layerwise heat accumulation and melt pool dimensions. The results revealed that the maximum heat buildup temperature of the topmost layer decreased from 660 °C to 263 °C with an increase to a 300 s interlayer delay, allowing for better control of the melt pool dimensions, which then resulted in improved part accuracy. Furthermore, the investigation of the location-specific composition, microstructure, and mechanical properties demonstrated that heat buildup resulted in the coarsening of microstructures and, consequently, the reduction of micro-hardness with increasing height. Extending the delay by 120 s resulted in a 5% improvement in the mechanical properties, including an increase in the yield strength from 817 MPa to 859 MPa and the ultimate tensile strength from 914 MPa to 959 MPa. Cooling rates estimated at 900 °C using a one-dimensional thermal model based on a numerical method allowed us to establish the process-structure-property relationship for the wall specimens. The study provides deeper insight into the effect of heat buildup in LHW-DED and serves as a guide for tailoring the properties of as-deposited specimens by regulating interlayer delay.

8.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998403

RESUMO

The non-equilibrium solidification process in the additive manufacturing of titanium alloy leads to special microstructures, and the resulting changes in corrosion behavior are worthy of attention. In this paper, the microstructure and electrochemical corrosion behavior of Ti6Al4V alloys prepared using laser powder bed melting (LPBF) and casting are systematically compared. The results show that the LPBF-processed Ti6Al4V alloy is composed of dominant acicular α' martensite within columnar prior ß phase, and less ß disperses have also been discovered, which is significantly different from the α + ß dual-phase structure of cast Ti6Al4V alloy. Compared to the as-cast Ti6Al4V alloy, LPBF-processed Ti6Al4V alloy has a thinner and unstable passive film, and exhibits slightly poorer corrosion resistance, which is mainly related to its higher porosity, a large amount of acicular α' martensite and less ß phase compared to as-cast Ti6Al4V alloy. This result proves that suitable methods should be taken to control the relative density and phase composition of LPBF-processed Ti6Al4V alloys before application.

9.
Microsc Res Tech ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988128

RESUMO

In this experimental study, the initial phase involved preparing composite structures with various mix ratios using the Ti-6Al-4V alloy, widely used in clinical applications, in conjunction with ZrO2 and hydroxyapatite (HA) synthesized via the precipitation method, employing powder metallurgy techniques. Subsequently, the microstructures of the resultant hybrid composite materials were imaged, and x-ray diffraction (XRD) phase analyses were conducted. In the final phase of the experimental work, tests were performed to determine the biocompatibility properties of the hybrid composites. For this purpose, cytotoxicity and genotoxicity assays were carried out. The tests and examinations revealed that structures compatible both morphologically and elementally were obtained with no phase transformations that could disrupt the structure. The incorporation of ZrO2 into the Ti-6Al-4V alloy was observed to enhance cell viability values. The value of 98.25 ± 0.42 obtained by adding 20% ZrO2 gave the highest cell viability result. The addition of HA into the hybrid structures further increased the cell viability values by approximately 10%. All viability values for both HA-added and HA-free groups were obtained above the 70% viability level defined in the standard. According to the genotoxicity test results, the highest cytokinesis-block proliferation index values were obtained as 1.666 and 0.620 in structures containing 20% ZrO2 and 10% ZrO2 + 10% HA, respectively. Remarkably, all fabricated composite and hybrid composite materials surpassed established biocompatibility standards and exhibited nontoxic and nongenotoxic properties. This comprehensive study contributes vital insights for future biomechanical and other in vitro and in vivo experiments, as it meticulously addresses fundamental characterization parameters crucial for medical device development. RESEARCH HIGHLIGHTS: Support of optimum doping rates ions on hybrid composites and concentrations. Development of uniform surface appearance and distributions/orientations of microcrystals on ceramic compounds Improvement of cell viability and desired increase in biocompatibility with the doping of HA.

10.
Front Bioeng Biotechnol ; 12: 1371693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978718

RESUMO

Introduction: Titanium-based implants can be used to fill voids in bone reconstruction surgery. Through additive manufacturing (AM), it is possible to produce titanium implants with osteoconductive properties such as high porosity and low stiffness. AM facilitates a level of design flexibility and personalization that is not feasible with traditional techniques. Methods: In this study, osseointegration into titanium alloy (Ti-6Al-4V) lattices was investigated for 12 weeks post-implantation using a novel bicortical load-bearing ovine model. The objective was to assess the safety and efficacy of AM-fabricated implants using two lattice structures of contrasting stiffness spanning the full width of the femoral condyle. Results: This was achieved by evaluating implant osseointegration and bone-implant contact properties by histomorphometry, scoring local implant tissue responses via histopathology, and micro-computed tomography reconstruction. Discussion: We found that Ti-6Al-4V implants facilitated widespread and extensive osseointegration, with bone maturation ongoing at the conclusion of the trial period. Following the implantation period, no adverse clinical indications that could be directly ascribed to the presence of the implanted device were identified, as determined by macroscopic and microscopic observation.

11.
Nanomaterials (Basel) ; 14(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057858

RESUMO

The high rate of rejection and failure of orthopedic implants is primarily attributed to incomplete osseointegration and stress at the implant-to-bone interface due to significant differences in the mechanical properties of the implant and the surrounding bone. Various surface treatments have been developed to enhance the osteoconductive properties of implants. The aim of this work was the in vitro characterization of titanium alloy modified with a nanocrystalline hydroxyapatite surface layer in relative comparison to unmodified controls. This investigation focused on the behavior of the surface treatment in relation to the physiological environment. Moreover, the osteogenic response of human osteoblasts and adipose stem cells was assessed. Qualitative characterization of cellular interaction was performed via confocal laser scanning microscopy focusing on the cell nuclei and cytoskeletons. Filipodia were assessed using scanning electron microscopy. The results highlight that the HA treatment promotes protein adhesion as well as gene expression of osteoblasts and stem cells, which is relevant for the inorganic and organic components of the extracellular matrix and bone. In particular, cells grown onto HA-modified titanium alloy are able to promote ECM production, leading to a high expression of collagen I and non-collagenous proteins, which are crucial for regulating mineral matrix formation. Moreover, they present an impressive amount of filipodia having long extensions all over the test surface. These findings suggest that the HA surface treatment under investigation effectively enhances the osteoconductive properties of Ti6Al4V ELI.

12.
Adv Healthc Mater ; : e2400550, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031096

RESUMO

An interbody fusion cage (Cage) is crucial in spinal decompression and fusion procedures for restoring normal vertebral curvature and rebuilding spinal stability. Currently, these Cages suffer from issues related to mismatched elastic modulus and insufficient bone integration capability. Therefore, a gel-casting technique is utilized to fabricate a biomimetic porous titanium alloy material from Ti6Al4V powder. The biomimetic porous Ti6Al4V is compared with polyetheretherketone (PEEK) and 3D-printed Ti6Al4V materials and their respective Cages. Systematic validation is performed through mechanical testing, in vitro cell, in vivo rabbit bone defect implantation, and ovine anterior cervical discectomy and fusion experiments to evaluate the mechanical and biological performance of the materials. Although all three materials demonstrate good biocompatibility and osseointegration properties, the biomimetic porous Ti6Al4V, with its excellent mechanical properties and a structure closely resembling bone trabecular tissue, exhibited superior bone ingrowth and osseointegration performance. Compared to the PEEK and 3D-printed Ti6Al4V Cages, the biomimetic porous Ti6Al4V Cage outperforms in terms of intervertebral fusion performance, achieving excellent intervertebral fusion without the need for bone grafting, thereby enhancing cervical vertebra stability. This biomimetic porous Ti6Al4V Cage offers cost-effectiveness, presenting significant potential for clinical applications in spinal surgery.

13.
ACS Biomater Sci Eng ; 10(8): 5381-5389, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39041183

RESUMO

In this research, we investigate the impact of varying machining parameters [depth of cutting (mm) and spindle rotation speed (rpm)] on the microstructure and electrochemical behavior of Ti6Al4V-ELI dental implants. This comprehensive study employs an approach, leveraging potentiodynamic methods and electrochemical impedance spectroscopy, to analyze corrosion behavior in a phosphate-buffered saline solution. To further deepen our understanding of corrosion kinetics, we used an alternating current circuit model, based on a simple Randles equivalent circuit. This model elucidates the corrosion interface interactions of the Ti6Al4-V-ELI alloy implant within the PBS solution. In addition, our research delves into the microstructural implications of different machining parameters, utilizing scanning electron microscopy and X-ray diffraction (XRD) techniques to reveal significant phase changes. The changes in texture were examined qualitatively by comparing the intensities of the peaks of the XRD pattern. A detailed correlation analysis further links the machining parameters with the corrosion properties of dental implants, offering a comprehensive perspective rarely explored in the existing literature. The results obtained for the three samples showed that the corrosion resistance would be higher by increasing the machining depth and the spindle rotation and that the corrosion current would be lower. As a result, a lower corrosion rate was obtained. Finally, experimental results from electrochemical analyses are compared and discussed.


Assuntos
Ligas , Implantes Dentários , Titânio , Corrosão , Titânio/química , Ligas/química , Teste de Materiais , Difração de Raios X , Microscopia Eletrônica de Varredura , Espectroscopia Dielétrica , Planejamento de Prótese Dentária , Propriedades de Superfície
14.
J Dent Sci ; 19(3): 1426-1433, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035290

RESUMO

Background/purpose: Additive manufacturing (AM) technology, such as selective laser melting (SLM), has been used to fabricate medical devices of Ti-6wt.% Al-4wt.%V (Ti6Al4V) alloys in dentistry. Strontium (Sr) has been shown to have the potential to treat osteoporosis. The aim of this study was to investigate the physicochemical and biological properties of strontium-containing coatings on selective laser melted Ti6Al4V (SLM-Ti6Al4V) substrate. Materials and methods: The disk of Ti6Al4V was prepared by SLM method. The strontium-containing coatings were prepared by micro-arc oxidation (MAO) in aqueous electrolytes. The surface topography, chemical composition, and phase of strontium-containing MAO (SrMAO) coatings were performed by scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), and thin film X-ray diffraction (TF-XRD), respectively. The apatite-forming ability of the MAO coatings was conducted in simulating body fluid (SBF), and the cell proliferation was determined by methylthiazoletetrazolium (MTT) assay. Results: The microstructure of SLM-Ti6Al4V displays acicular α-phase organization. The TF-XRD results indicated that the phase of SrMAO coating was anatase, rutile, and titanium. The calcium, phosphorus, and strontium were detected in the coatings by EDS. Using the SEM, the surface morphology of SrMAO coatings exhibited a uniform 3D porous structure. The SrMAO coatings could induce a bone-like apatite layer after immersion in SBF, and presented significantly higher cell proliferation than untreated specimens in in-vitro experiments. Conclusion: All findings in this study indicate that SrMAO coatings formed on SLM-Ti6Al4V surfaces exhibit a benefit on biological responses and thereby are suitable for biomedical applications.

15.
Materials (Basel) ; 17(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930215

RESUMO

The effects of the secondary processes of Hot Isostatic Pressing (HIP) at 920 °C and Heat Treatment (HT) at 1000 °C of Electron Beam-Melted (EBM) Ti-6Al-4V alloy on the microstructure and hydrogen embrittlement (HE) after electrochemical hydrogen charging (EC) were investigated. Comprehensive characterization, including microstructural analysis, X-ray diffraction (XRD), thermal desorption analysis, and mechanical testing, was conducted. After HIP, the ß-phase morphology changed from discontinuous Widmanstätten to a more continuous structure, 10 times and ~1.5 times larger in length and width, respectively. Following HT, the ß-phase morphology changed to a continuous "web-like" structure, ~4.5 times larger in width. Despite similar mechanical behavior in their non-hydrogenated state, the post-treated alloys exhibit increased susceptibility to HE due to enhanced hydrogen penetration into the bulk. It is shown that hydrogen content in the samples' bulk is inversely dependent on surface hydride content. It is therefore concluded that the formed hydride surface layer is crucial for inhibiting further hydrogen penetration and adsorption into the bulk and thus for reducing HE susceptibility. The lack of a hydride surface layer in the samples subject to HIP and HT highlights the importance of choosing secondary treatment process parameters that will not increase the continuous ß-phase morphology of EBM Ti-6Al-4V alloys in applications that involve electrochemical hydrogen environments.

16.
Materials (Basel) ; 17(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930257

RESUMO

This study concerned the in situ investigation of the defect evolution and fracture mechanism of additively manufactured (AM) Ti-6Al-4V under uniaxial tensile tests. In order to achieve this, microstructure characterization was initially carried out in order to identify the defects within the matrix of the candidate material. In situ testing was then performed, focusing on the spherical defect to observe its evolution under tensile loading. It was found that, before the fracture stage, the geometric evolution of the spherical defect towards an ellipse shape was dominated by the load in the tensile direction. In addition, the slip band density was found to be aggravated near the spherical defect due to the geometric discontinuity-induced stress concentration. During the fracture process, the defect geometry evolved as an irregular shape, which was mainly attributed to the micro-void-induced localized multi-axial stress state. The fracture analysis indicated that defects play a key role in crack initiation, leading to the fracture of LPBF materials.

17.
Materials (Basel) ; 17(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38930313

RESUMO

This study investigates the potential benefits of integrating coarser particle size distributions (PSDs) of 45-106 µm into laser-based powder bed fusion of metals (PBF-LB/M), aiming to reduce costs while maintaining quality standards. Despite the considerable advantages of PBF-LB/M for producing intricate geometries with high precision, the high cost of metal powders remains a barrier to its widespread adoption. By exploring the use of coarser PSDs, particularly from electron beam-based powder bed fusion of metals (PBF-EB/M), significant cost-saving opportunities are identified. Through a comprehensive powder characterization, process analysis, and mechanical property evaluation, this study demonstrates that PBF-LB/M can effectively utilize coarser powders while achieving comparable mechanical properties as those produced with a 20-53 µm PSD. Adaptations to the process parameters enable the successful processing of coarser powders, maintaining high relative density components with minimal porosity. Additionally, market surveys reveal substantial cost differentials between PBF-LB/M and PBF-EB/M powders, indicating a 40% cost reduction potential for the feedstock material by integrating coarser PSDs into PBF-LB/M. Overall, this study provides valuable insights into the economic and technical feasibility of printing with coarser powders in PBF-LB/M, offering promising avenues for cost reduction without compromising quality, thus enhancing competitiveness and the adoption of the technology in manufacturing applications.

18.
Micromachines (Basel) ; 15(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38930662

RESUMO

Enhancing the operational efficacy of electrical discharge machining (EDM) is crucial for achieving optimal results in various engineering materials. This study introduces an innovative solution-the use of coated electrodes-representing a significant advancement over current limitations. The choice of coating material is critical for micro-EDM performance, necessitating a thorough investigation of its impact. This research explores the application of different coating materials (AlCrN, TiN, and Carbon) on WC electrodes in micro-EDM processes specifically designed for Ti-6Al-4V. A comprehensive assessment was conducted, focusing on key quality indicators such as depth of cut (Z), tool wear rate (TWR), overcut (OVC), and post-machining surface quality. Through rigorous experimental methods, the study demonstrates substantial improvements in these quality parameters with coated electrodes. The results show significant enhancements, including increased Z, reduced TWR and OVC, and improved surface quality. This evidence underscores the effectiveness of coated electrodes in enhancing micro-EDM performance, marking a notable advancement in the precision and quality of Ti-6Al-4V machining processes. Among the evaluated coatings, AlCrN-coated electrodes exhibited the greatest increase in Z, the most significant reduction in TWR, and the best OVC performance compared to other coatings and the uncoated counterpart.

19.
J Mech Behav Biomed Mater ; 157: 106629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38889531

RESUMO

In this paper, the Ti6Al4V alloy surface was modified via ceramic conversion treatment (CCT) with or without a pre-deposited silver layer. After characterizing the surface morphologies, microstructure and phase constituents of the ceramic oxide layer formed at 620 °C, we investigated the surface hardness and the cross-sectional nano-hardness profile under the oxide layer. The static load-bearing capacity of the oxide layers was examined by applying discrete loads via a Vickers indenter and observing the indentations. A scratch test was used to evaluate the load-bearing capacity and the adhesion/cohesion of the oxide layers. The wettability of the surface changed due to the incorporation of silver and the change of surface morphology. Reciprocating friction and wear test was used to assess the tribological properties. Small and dispersed silver nanoparticles and clusters were found in the oxide layer of the Ag pre-deposited Ti6Al4V samples, and they had much better tribological properties in terms of reduced coefficient of friction and wear volume. With the assistance of silver, the efficiency of the CCT was significantly improved.


Assuntos
Ligas , Cerâmica , Fricção , Teste de Materiais , Fenômenos Mecânicos , Prata , Propriedades de Superfície , Titânio , Ligas/química , Titânio/química , Prata/química , Cerâmica/química , Dureza , Testes Mecânicos
20.
Med Eng Phys ; 129: 104176, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38906569

RESUMO

OBJECTIVE: To evaluate and compare the biomechanical behavior of three-dimensionally (3D) printed patient-specific Ti6Al4V with commercially made titanium mini plates following Lefort-I osteotomy using finite element analysis. METHODS: Le Fort I osteotomy was virtually simulated with a 5 mm maxillary advancement and mediolateral rotation in the coronal plane, resulting in a 3 mm gap on the left side's posterior. Two fixation methods were modeled using software to compare 3D-printed Ti6Al4V and commercial titanium mini plates, both featuring a 4-hole l-shape with thicknesses of 0.5 mm and 0.7 mm at the strategic piriform rim and zygomaticomaxillary buttress locations. Using ANSYS R19.2, finite element models were developed to assess the fixation plates and maxilla's stress, strain, and displacement responses under occlusal forces of 125, 250, and 500 N/mm². RESULTS: This comparative analysis revealed slight variation in stress, strain, and displacement between the two models under varying loading conditions. Stress analysis indicated maximum stress concentrations at the vertical change in the left posterior area between maxillary segments, with the Ti6Al4V model exhibiting slightly higher stress values (187 MPa, 375 MPa, and 750 MPa) compared to the commercial titanium model (175 MPa, 351 MPa, and 702 MPa). Strain analysis showed that the commercial titanium model recorded higher strain values at the bending area of the l-shaped miniplate. Moreover, displacement analysis revealed a maximum of 3 mm in the left posterior maxilla, with the Ti6Al4V model demonstrating slightly lower displacement values under equivalent forces. CONCLUSION: The maximum stress, strain, and segment displacement of both fixation models were predominantly concentrated in the area of the gap between the maxillary segments. Notably, both fixation models exhibited remarkably close values, which can be attributed to the similar design of the fixation plates.


Assuntos
Ligas , Placas Ósseas , Análise de Elementos Finitos , Osteotomia de Le Fort , Impressão Tridimensional , Estresse Mecânico , Titânio , Fenômenos Biomecânicos , Humanos , Osteotomia de Le Fort/instrumentação , Fenômenos Mecânicos , Maxila/cirurgia , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA