Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.811
Filtrar
1.
J Environ Sci (China) ; 147: 561-570, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003071

RESUMO

In the present study, we investigated the influence of surface fluorine (F) on TiO2 for the photocatalytic oxidation (PCO) of toluene. TiO2 modified with different F content was prepared and tested. It was found that with the increasing of F content, the toluene conversion rate first increased and then decreased. However, CO2 mineralization efficiency showed the opposite trend. Based on the characterizations, we revealed that F substitutes the surface hydroxyl of TiO2 to form the structure of Ti-F. The presence of the appropriate amount of surface Ti-F on TiO2 greatly enhanced the separation of photogenerated carriers, which facilitated the generation of ·OH and promoted the activity for the PCO of toluene. It was further revealed that the increase of only ·OH promoted the conversion of toluene to ring-containing intermediates, causing the accumulation of intermediates and then conversely inhibited the ·OH generation, which led to the decrease of the CO2 mineralization efficiency. The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.


Assuntos
Fluoretos , Oxirredução , Titânio , Tolueno , Tolueno/química , Titânio/química , Catálise , Fluoretos/química , Processos Fotoquímicos , Modelos Químicos
2.
J Environ Sci (China) ; 148: 476-488, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095182

RESUMO

In this study, non-thermal plasma (NTP) was employed to modify the Cu/TiO2 adsorbent to efficiently purify H2S in low-temperature and micro-oxygen environments. The effects of Cu loading amounts and atmospheres of NTP treatment on the adsorption-oxidation performance of the adsorbents were investigated. The NTP modification successfully boosted the H2S removal capacity to varying degrees, and the optimized adsorbent treated by air plasma (Cu/TiO2-Air) attained the best H2S breakthrough capacity of 113.29 mg H2S/gadsorbent, which was almost 5 times higher than that of the adsorbent without NTP modification. Further studies demonstrated that the superior performance of Cu/TiO2-Air was attributed to increased mesoporous volume, more exposure of active sites (CuO) and functional groups (amino groups and hydroxyl groups), enhanced Ti-O-Cu interaction, and the favorable ratio of active oxygen species. Additionally, the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated the main reason for the deactivation was the consumption of the active components (CuO) and the agglomeration of reaction products (CuS and SO42-) occupying the active sites on the surface and the inner pores of the adsorbents.


Assuntos
Cobre , Sulfeto de Hidrogênio , Oxirredução , Titânio , Titânio/química , Adsorção , Cobre/química , Sulfeto de Hidrogênio/química , Poluentes Atmosféricos/química , Gases em Plasma/química , Modelos Químicos
3.
Chemosphere ; 363: 142996, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097105

RESUMO

Photocatalytic degradation of pollutants coupled with hydrogen (H2) evolution has emerged as a promising solution for environmental and energy crises. However, the fast recombination of photoexcited electrons and holes limits photocatalytic activities. Herein, an S-scheme heterojunction carbon doped-TiO2/ZnIn2S4 (C-TiO2/ZnIn2S4) was designed by substituting oxygen sites within C-TiO2 by ZnIn2S4. Under visible light irradiation, the optimal C-TiO2/ZnIn2S4 exhibits a higher degradation efficiency (88.6%) of microcystin-LR (MC-LR), compared to pristine C-TiO2 (72.9%) and ZnIn2S4 (66.8%). Furthermore, the H2 yield of the C-TiO2/ZnIn2S4 reaches 1526.9 µmol g-1 h-1, which is 3.83 times and 2.87 times that of the C-TiO2 and ZnIn2S4, respectively. Experimental and theoretical investigations reveal that an internal electric field (IEF) informed in the C-TiO2/ZnIn2S4 heterojunction, accelerates the separation of photogenerated charge pairs, thereby enhancing photocatalytic efficiency of MC-LR degradation and H2 production. This work highlights a new perspective on the development of high-performance photocatalysts for wastewater treatment and H2 generation.

4.
J Appl Crystallogr ; 57(Pt 4): 1171-1183, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39108814

RESUMO

Structural modelling of operando pair distribution function (PDF) data of complex functional materials can be highly challenging. To aid the understanding of complex operando PDF data, this article demonstrates a toolbox for PDF analysis. The tools include denoising using principal component analysis together with the structureMining, similarityMapping and nmfMapping apps available through the online service 'PDF in the cloud' (PDFitc, https://pdfitc.org/). The toolbox is used for both ex situ and operando PDF data for 3 nm TiO2-bronze nanocrystals, which function as the active electrode material in a Li-ion battery. The tools enable structural modelling of the ex situ and operando PDF data, revealing two pristine TiO2 phases (bronze and anatase) and two lithiated Li x TiO2 phases (lithiated versions of bronze and anatase), and the phase evolution during galvanostatic cycling is characterized.

5.
Heliyon ; 10(14): e33562, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108916

RESUMO

Post-antibiotic era requires the use of alternative pesticides against bacterial infections. One potential application field is agriculture, where pesticides are routinely applied in combinations. In this study we tested the interference of antibacterial effects of two alternative antimicrobials with basically different mode of actions if applied together in vitro by using the Enterohemorrhagic E. coli strain Sakai as a modelorganism, one strain of a pathotype that is frequently associated with meat and plant derived infections. TiO2 is a photocatalytically active nanomaterial, which can generate reactive oxygen species (ROS), exerting destructive effects on macromolecules, while the vb_EcoS_bov25_1D bacteriophage has a specific lytic action. Both, bacteriophages and Sakai were sensitive against ROS if tested separately, during that PFUs of bacteriophages dropped from 5 × 105 to 0 in 4 h, while in case of Sakai CFUs decreased with 5 and 2 logs of magnitude in the presence of 0,05 % and 0,025 % of TiO2 respectively. In Sakai by the sixth minute of ROS exposition the expressions of superoxide dismutases and catalases were boosted, as revealed by whole transcriptomic analyses, but the elevated levels rclC and bshA support some roles of these genes under this stress situation. Combined application of phages and TiO2 under UV-A exposure have revealed that beside the inner enzymatic defence mechanisms presenting phage particles served as shields and spoiled the antimicrobial effect of TiO2 (0,0125 %). As a consequence, phages became sacrificed as during exposition a 3-log drop (5 × 105→5 × 102) in their PFUs was revealed. Survived bacteriophages however in the system remained active and under the subsequent dark phase the 3-log drop in the PFU was compensated in 24 h. Our results show that joint application of the two alternative antimicrobial agents TiO2 and a bacteriophage can have two consequences depending on the circumstances they were used. From one side they complement each other's effects in that TiO2 can exert its effect on UV-A or sunlight exposed areas, whereas the bacteriophage on non-exposed surfaces. On the other hand, they also can spoil each others effect as phages can bind generated ROS and by that protect target bacteria, but bacteria themselves can serve as shields and by that protect phages from the destroying effect of ROS, phages however can exert their antibacterial effects on bacteria.

6.
Cell Biol Toxicol ; 40(1): 67, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110362

RESUMO

BACKGROUND: Titanium dioxide nanoparticles (TiO2NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular. METHODS: Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO2NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively. RESULTS: Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO2NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO2NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO2NP treatment, which were crucial in TiO2NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO2NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT. CONCLUSIONS: Together, our study provides evidence for an ignored health risk caused by TiO2NPs, specifically TiO2NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.


Assuntos
Plaquetas , Ativação Plaquetária , Agregação Plaquetária , Trombose , Titânio , Titânio/toxicidade , Animais , Humanos , Agregação Plaquetária/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Masculino , Trombose/induzido quimicamente , Camundongos , Ativação Plaquetária/efeitos dos fármacos , Adulto , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Selectina-P/metabolismo , Cálcio/metabolismo , Cálcio/sangue , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade
7.
J Food Sci Technol ; 61(3): 596-606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39119618

RESUMO

The aim of the present work is to use the latest achievements of nanotechnology (atomic layer deposition, ALD) in the field of food packaging to prevent biofilm formation by food-associated bacteria. Some potential applications of nanotechnology in the food packaging industry are studied in the manuscript, in the field of antibacterial materials for food packaging. The ALD technique was used to synthesize vanadium (V)-doped TiO2 thin nanofilm on commercially available polypropylene (PP) food container to enhance an antibacterial activity for potential use in food packaging, to reduce spoilage, thereby, prolonging the food shelf- life. To better understand the ability and effectiveness of the antimicrobial packaging material of V-doped TiO2, to prevent the biofilm formation by dairy-associated pathogenic bacteria, the coated and uncoated PP containers with a fresh raw cow's milk were tested. We have illustrated the effectiveness of ALD Al2O3 + TiVOx nanocoating against populations of milk-borne pathogenic bacteria.

8.
Int J Biol Macromol ; 277(Pt 3): 134511, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111470

RESUMO

Titanium dioxide (TiO2) is a common pigment used in food packaging to provide a transparent appearance to plastic packaging materials. In the present study, poly(butylene adipate-co-terephthalate) (PBAT) incorporated with lignin-TiO2 nanoparticles (L-TiO2) eco-friendly composite films was prepared by employing an inexpensive melting and hot-pressing technique. The P-L-TiO2 composite films have been studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Thermogravimetric analysis (TGA), and Differential scanning calorimetry (DSC) analysis. The FTIR results and homogeneous, dense SEM images confirm the interaction of L-TiO2 with the PBAT matrix. It has also been found that the addition of L-TiO2 nanoparticles can increase the crystallinity, tensile strength, and thermal stability of PBAT. The addition of L-TiO2 increased the tensile strength and decreased the elongation at break of films. The maximum tensile strength of the film, achieved with 5 wt% L-TiO2, was 47.0 MPa, compared with 24.3 MPa for pure PBAT film. The composite film with 5 wt% L-TiO2 has outstanding oxygen and water vapor barrier properties. As the content of lignin-TiO2 increases, the antimicrobial activity of the composite films also increases; the percentage of growth of all the tested bacteria Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli) is significantly reduced. Strawberries were packed to evaluate the suitability of produced composite films as packaging materials, as they effectively preserved pigments from accumulation and extended the shelf-life as compared to commercial polyethylene packaging film.

9.
ChemistryOpen ; : e202400128, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086029

RESUMO

This study presents the synthesis of TiO2-graphene nanocomposites with varying mass ratios of graphene (2.5, 5, 10, 20 wt. %) using a facile and cost-effective hydrothermal approach. By integrating TiO2 nanoparticles with graphene, a nanomaterial characterized by a two-dimensional structure, unique electrical conductivity and high specific surface area, the resulting hybrid material shows promise for application in supercapacitors. The nanocomposite specimens were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman microscopy, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Additionally, supercapacitive properties were investigated using a three-electrode setup by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests. Notably, the TiO2-20 wt. % rGO nanocomposite exhibited the highest specific capacitance of 624 F/g at 2 A/g, showcasing superior electrochemical performance. This specimen indicated a high rate capability and cyclic stability (93 % retention after 2000 cycles). Its remarkable energy density and power density of this sample designate it as a strong contender for practical supercapacitor applications.

10.
Front Toxicol ; 6: 1333746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100893

RESUMO

Titanium dioxide (TiO2), also known as E171, is commonly used as a white colorant in food, pharmaceuticals, cosmetics, and toothpaste. However, in May 2021, the European Food Safety Authority (EFSA) expert panel, in evaluating the safety of titanium dioxide (E171) as a food additive, concluded that a concern for genotoxicity could not be ruled out. This occurred several years after EFSA had previously considered titanium dioxide to be safe as a food additive. EFSA based this new interpretation on the results of genotoxicity tests of TiO2 nanomaterials. EFSA noted that available data are insufficient to define threshold doses/concentrations of TiO2 particles below which genotoxicity will not occur in tissues containing these particles. Here, it is argued that EFSA made a manifest error regarding the safety of titanium dioxide (E171) particles as a food additive for humans. First, the notion of particle size distribution of TiO2 particles is explained. Second, the changing opinions from the various EFSA evaluations in 2016, 2018, 2019 vs. 2021 are discussed. Third, the low toxicity of TiO2 particles is described in rats exposed by oral gavage and feeding studies in rats and mice. Fourth, the importance of low absorption rates from the gastrointestinal tract vs. circulation in rats and humans but not in mice is identified. Fifth, other international health scientists have weighed in on the EFSA (EFSA J, 2021, 19 (5), 6585) decision and generally disagreed with EFSA's opinion on the safety of E171 TiO2. A common theme voiced by the United Kingdom, Canada, Australia, and New Zealand agencies is that it is inappropriate to compare nanoparticle toxicity studies of dispersed/sonicated nanoparticles with the content of E171 TiO2 in foods because the test materials used in key studies considered by EFSA (EFSA J, 2021, 19 (5), 6585) are not representative of E171 TiO2 particles. Finally, a group of experts recently considered the genotoxicity of TiO2 and could not find support for a direct DNA damaging mechanism of TiO2 (nano and other forms). For these reasons, it is suggested that EFSA made a manifest error on the safety of E171 as a food additive.

11.
Talanta ; 279: 126664, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098238

RESUMO

In this study, titanium dioxide (TiO2) nanofilms with nanoparticle structure were grown in situ on metallic aluminum (Al) sheets using a simple sol-hydrothermal method. Al sheets were chosen because they can form Schottky junctions with TiO2 during the calcination process, thus achieving a tight bonding between the nanoparticles and the solid substrate, which cannot be achieved with conventional glass substrates. The substrates synthesized with different contents of titanium butoxide [Ti(OBu)4] were investigated using 4-mercaptobenzoic acid as a probe molecule, and the results showed that the substrate with 9 % of the total volume of Ti(OBu)4 had the highest surface-enhanced Raman scattering (SERS) performance. As a low-cost SERS substrate that is simple to synthesize, it has excellent signal reproducibility, with a relative standard deviation of 4.51 % for the same substrate and 6.43 % for different batches of synthesized substrates. Meanwhile, the same batch of substrate can be stored at room temperature for at least 20 weeks and still maintain stable SERS signals. In addition, the synthetic substrate was used to quantitatively detect urea with a detection limit of 4.23 × 10-3 mol/L, which is comparable to the application of noble metal substrates. The feasibility of this method was verified in human urine, and the results were consistent with the clinical results, indicating that this method has great potential for clinical application.

12.
Int J Biol Macromol ; : 134155, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098462

RESUMO

N-doped TiO2/carbon composites (N-TiPC) have shown excellent photodegradation performances to the organic contaminants but are limited by the multistage preparation (i.e., preparation of porous carbon, preparation of N-doped TiO2, and loading of N-doped TiO2 on porous carbon). Here, we develop a handy way by combining the Pickering emulsion-gel template route and chelation reaction of polysaccharides. The N-TiPC is obtained by calcinating pectin/Dl-serine hydrazide hydrochloride (SHH)-Ti4+ chelate and is further described by modern characterization techniques. The results show that the N atom is successfully doped into the TiO2 lattice, and the bandgap value of N-TiPC is reduced to 2.3 eV. Moreover, the particle size of N-TiPC remains about 10 nm. The configurations of the composites are simulated using DFT calculation. The photocatalytic experiments show that N-TiPC has a high removal efficiency for methylene blue (MB) and oxytetracycline hydrochloride (OTC-HCL). The removal ratios of MB (20 mg/L, 50 mL) and OTC-HCL (30 mg/L, 50 mL) are 99.41 % and 78.29 %, respectively. The cyclic experiments show that the photocatalyst has good stability. Overall, this study provides a handy way to form N-TiPC with enhanced photodegradation performances. It can also be promoted to other macromolecules such as cellulose and its derivatives, sodium alginate, chitosan, lignin, etc.

13.
Water Res ; 263: 122178, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096806

RESUMO

Membrane-contamination during electrodialysis (ED) process is still a non-negligible challenge, while irreversible consumption and unsustainability have become the main bottlenecks limiting the improvement of anion exchange membranes (AEMs) anti-contamination activity. Here, we introduce a novel approach to design AEMs by chemically assembling 4-pyndinepropanol with bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) in an electrochromic-inspired process. Subsequently, the co-mingled TiO2@Ag nanosheet with the casting-solution were sprayed onto the surface of the substrate membrane to create a micrometer-thick interfacial layer. The addition of Ag nanoparticles (NPs) enhances the active sites of TiO2, resulting in stronger local surface plasmon resonance (LSPR) effects and reducing its energy band gap limitation (From 3.11 to 2.63 eV). Post-electrodialysis electrochromic AEMs incorporating TiO2@Ag exhibit synergistic enhancement of sunlight absorption, effectively suppressing photogenerated carrier binding and promoting migration. These resultant-membranes demonstrate significantly improved bacterial inhibition properties (42.0-fold increase for E. coli) and degradation activity (7.59-fold increase for rhodamine B) compared to pure TiO2 membranes. Importantly, they maintain photocatalytic activity without compromising salt-separation performance or stability, as the spraying process utilizes the same substrate materials. This approach to rational design and regulation of anti-contamination AEMs offers new insights into the collaborative synergy of color-changing and photocatalytic materials.

14.
Nanotechnology ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146956

RESUMO

TiO2 is one of the most studied semiconductor materials for the photoelectrochemical water splitting to hydrogen production, but it only responds to ultraviolet light. The introduction of organic compound is one of the common means to expand the visible light response of TiO2. In this work, rutile TiO2 nanowire arrays (NWs) were grown on conductive glass by a modified solvothermal method using oleic acid as the key additive. The obtained TiO2 NWs are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, infrared spectroscopy and electrochemical characterization. The results show that the carboxyl groups arising from oleic acid are chemically bonded with the TiO2 NWs in the form of chelating bidentate, which increases the visible light absorption range and active sites of TiO2, and reduces the transfer resistance between the photoelectrode and the electrolyte. The photocurrent density is doubled to 0.17 mA cm-2 at 1.23 V vs. RHE. This work provides a novel idea for the design of metal oxide semiconductor photoanodes by adsorbing organic compounds.

15.
Sci Total Environ ; : 175481, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147059

RESUMO

The detrimental impacts of titanium dioxide nanoparticles (TiO2NPs) on the ecosystem and organisms have aroused great public concerns. However, the information on their concentration in the real aquatic environment is still limited, hindering the rational evaluation of their potential hazards. In this study, water samples from Taihu Lake were collected in June and November 2023, to investigate the spatial distribution and temporal variations of TiO2NPs. Using phosphorylated Fe3O4 particles based magnetic solid phase extraction and ICP-MS determination, high concentrations of TiO2NPs were detected in the western and northern regions of Taihu Lake. These areas contribute to 83 % of the total runoff into the lake. Total Ti levels were typically higher in November than in June, but no marked seasonal difference was observed for TiO2NPs. Different shapes of TiO2NPs with both smooth and rough surfaces were observed in the surface water. To further distinguish whether these TiO2NPs were sourced from the natural background or anthropogenic sources, the ratios of Ti to other rare elements including Nb were calculated. In November, the Ti/Nb ratios at most sampling sites were significantly higher than those in June, indicating that a large amount of engineered TiO2NPs are discharged into Taihu Lake during the summer and autumn seasons. Our study contributes to the understanding of contamination levels, spatial distribution, and temporal variation of TiO2NPs in lake systems, and provides valuable data for their further risk assessment.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39141901

RESUMO

The electron transport layer (ETL) plays a critical role in efficient and stable perovskite solar cells (PSCs). The current effective method for the large-scale preparation of metal oxide ETLs is mainly based on expensive sputtering processes. Here, a screen-assisted self-spreading method is proposed as a novel approach to prepare uniformly thin and conformal TiO2 films on a rough fluorine-doped tin oxide (FTO) substrate as an ETL in planar PSCs. The TiO2 ETL deposited by this method exhibited good coverage and homogeneity on the rough FTO substrate, thereby minimizing interfacial recombination. The photovoltaic performance of the PSCs fabricated by this method is superior to that of the cells fabricated by spin coating, especially in terms of the fill factor. The performance enhancement can be attributed to the complete coverage of the FTO substrate by the conformal TiO2 film, confirming the effectiveness and reliability of the proposed method for the preparation of the TiO2 ETL. The advantages of this method lie in its scalability to prepare oxide films with a large area, eliminating the requirement of complex equipment, such as spinners, sputters, or physical vapor deposition equipment.

17.
Aquat Toxicol ; 274: 107045, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39142141

RESUMO

Nano-TiO2 is inevitably released into aquatic environment with increasing of nanotechnology industries. Study pointed that different individuality showed divergent behavioral and physiological response when facing environmental stress. However, the effects of nano-TiO2 on tolerance of bivalves with different individualities remain unknown. In the study, clams were divided into two types of individuality - proactive and reactive by post-stress recovery method. It turned out that proactive individuals had quicker shell opening level, stronger burrowing behavior, faster feeding recovery, higher standard metabolic rate and more rapid ammonia excretion ability than reactive individuals after exposed to air. Then, the survival rate, hemocytes response and oxidase activity of classified clams were evaluated after nano-TiO2 exposure. Results showed that after 30 d exposure, proactive individuals accelerated burrowing behavior with higher survival rate. Moreover, proactive clams had better adaptability and less hemocytes response and oxidative damage than reactive clams. The study highlights the individualities of marine shell fish determine individual capacity to adapt to environmental changes, play important roles in aquaculture and coastal ecosystem health.

18.
Food Chem ; 460(Pt 3): 140629, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39142198

RESUMO

This work utilizes a handheld electrospinning device to prepare a novel nanofibrous composite membrane in situ for packaging freshness. It can realize pick-and-pack and is easy to operate. The nanofibrous membrane is based on PVB as the matrix material, adding Camellia oil (CO) and ZnO-TiO2 composite nanoparticles (ZT) as the active material. The antimicrobial property of the CO and the photocatalytic activity of the nanoparticles give the material good antimicrobial and ethylene degradation functions. Meanwhile, this nanofibrous membrane has good mechanical properties, suitable moisture permeability and good optical properties. The nanofibrous membrane are suitable for both climacteric and non- climacteric fruits. Its use as a cling film extends the shelf life of strawberries by 4 days and significantly slows the ripening of small tomatoes. Therefore, this nanofibrous membrane has great potential for application in the field of fruit preservation.

19.
Food Chem Toxicol ; 192: 114931, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142555

RESUMO

Oral exposure to nanoparticles (NPs) may affect intestinal microbiota, and this effect may be further changed by co-contaminates. In the present study, we investigated the combined effects of TiO2 NPs and fipronil (FPN) on microbiota in mouse intestines. Mice were intragastric exposed to 5.74 mg/kg TiO2 NPs, 2.5 mg/kg FPN, or both of them, once a day, for 30 days. The results showed that individual exposure to TiO2 NPs or FPN decreased body weight and induced pathological changes in intestines. The exposure was also associated with increased cleaved caspase-3 protein, oxidative stress and decreased tight junction protein expression. Furthermore, the levels of diamine oxidase (DAO), lipopolysaccharide (LPS) and inflammatory cytokines in serum were also elevated, indicating increased intestinal barrier permeability. As expected, both TiO2 NPs and FPN decreased the diversity and altered the composition of microbiota. However, the observed effects were not further enhanced after the co-exposure to TiO2 NPs and FPN, except that Romboutsia was only significantly increased after the co-exposure to TiO2 NPs + FPN. We concluded that oral exposure to TiO2 NPs and FPN showed minimal synergistic effects on microbiota in mouse intestine.

20.
J Environ Manage ; 367: 121970, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39106792

RESUMO

Photocatalysis has been proven to be an excellent technology for treating antibiotic wastewater, but the impact of each active species involved in the process on antibiotic degradation is still unclear. Therefore, the S-scheme heterojunction photocatalyst Ti3C2/g-C3N4/TiO2 was successfully synthesized using melamine and Ti3C2 as precursors by a one-step calcination method using mechanical stirring and ultrasound assistance. Its formation mechanism was studied in detail through multiple characterizations and work function calculations. The heterojunction photocatalyst not only enabled it to retain active species with strong oxidation and reduction abilities, but also significantly promoted the separation and transfer of photo-generated carriers, exhibiting an excellent degradation efficiency of 94.19 % for tetracycline (TC) within 120 min. Importantly, the priority attack sites, degradation pathways, degradation intermediates and their ecological toxicity of TC under the action of each single active species (·O2-, h+, ·OH) were first positively explored and evaluated through design experiments, Fukui function theory calculations, HPLC-MS, Escherichia coli toxicity experiments, and ECOSAR program. The results indicated that the preferred attack sites of ·O2- on TC were O20, C7, C11, O21, and N25 atoms with high f+ value. The toxicity of intermediates produced by ·O2- was also lower than those produced by h+ and ·OH.


Assuntos
Tetraciclina , Tetraciclina/química , Tetraciclina/toxicidade , Catálise , Titânio/química , Oxirredução , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Águas Residuárias/química , Escherichia coli/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA