Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Appl Crystallogr ; 57(Pt 4): 1001-1010, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39108819

RESUMO

The spatial orientation of α lamellae in a metastable ß-Ti matrix of Timetal LCB (Ti-6.8 Mo-4.5 Fe-1.5 Al in wt%) was examined and the orientation of the hexagonal close-packed α lattice in the α lamella was determined. For this purpose, a combination of methods of small-angle X-ray scattering, scanning electron microscopy and electron backscatter diffraction was used. The habit planes of α laths are close to {111}ß, which corresponds to (1320)α in the hexagonal coordinate system of the α phase. The longest α lamella direction lies approximately along one of the 〈110ã€‰ß directions which are parallel to the specific habit plane. Taking into account the average lattice parameters of the ß and α phases in aged conditions in Timetal LCB, it was possible to index all main axes and faces of an α lath not only in the cubic coordinate system of the parent ß phase but also in the hexagonal system of the α phase.

2.
Materials (Basel) ; 17(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39124404

RESUMO

Three titanium alloys with 0.5, 6, and 9 wt.% iron were investigated, and the samples were pre-annealed in three different regions of the Ti-Fe phase diagram, namely ß, α+ß, and α+FeTi. After annealing, five samples of different phases and structural compositions were studied. They were then subjected to the high-pressure torsion (HPT). The microstructure of the samples before and after HPT treatment was studied using transmission and scanning electron microscopy. The microstructure of the samples obtained during heat treatment before HPT treatment had a fundamental effect on the microstructure after HPT. Grain boundary layers and chains of particles formed during the annealing process made it difficult to mix the material during HPT, which led to the formation of areas with non-uniform mixing of components. Thus, the grain boundary layers of the α-phase formed in the Ti-6wt % Fe alloy after annealing at 670 °C significantly decreased the mixing of the components during HPT. Despite the fact that the microstructure and phase composition of Ti-6wt % Fe alloys pre-annealed in three different regions of the Ti-Fe phase diagram had significant differences, after HPT treatment, the phase compositions of the studied samples were quite similar. Moreover, the measured micro- and nanohardness as well as the Young's modulus of Ti-6wt % Fe alloy had similar values. It was shown that the microhardness of the studied samples increased with the iron content. The values of nanohardness and Young's modulus correlated well with the fractions of ß- and ω-phases in the studied alloys.

3.
Materials (Basel) ; 17(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124541

RESUMO

In recent years, laser cladding technology has been widely used in surface modification of titanium alloys. To improve the wear resistance of titanium alloys, ceramic-reinforced nickel-based composite coatings were prepared on a TC4 alloy substrateusing coaxial powder feeding laser cladding technology. Ti (C, N) ceramic was synthesized in situ by laser cladding by adding different contents (10%, 20%, 30%, and 40%) of TiN, pure Ti powder, graphite, and In625 powder. Thisestudy showed that small TiN particles were decomposed and directly formed the Ti (C, N) phase, while large TiN particles were not completely decomposed. The in situ synthetic TiCxN1-x phase was formed around the large TiN particles. With the increase in the proportion of powder addition, the wear volume of the coating shows a decreasing trend, and the wear resistance of the surface coating is improving. The friction coefficient of the sample with 40% TiN, pure Ti powder, and graphite powder is 0.829 times that of the substrate. The wear volume is 0.145 times that of the substrate. The reason for this is that with the increase in TiN, Ti, and graphite in the powder, there are more ceramic phases in the cladding layer, and the hard phases such as TiC, Ti(C, N) and Ti2Ni play the role in the structure of the "backbone", inhibit the damage caused by micro-cutting, and impede the movement of the tearing point of incision, so that the coating has a higher abrasion resistance.

4.
Materials (Basel) ; 17(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930203

RESUMO

This paper reports the results of our study on electrochemical polishing of titanium and a Ti-based alloy using non-aqueous electrolyte. It was shown that electropolishing ensured the removal of surface defects, thereby providing surface smoothing and decreasing surface roughness. The research was conducted using samples made of titanium and Ti6Al4V alloy, as well as implant system elements: implant analog, multiunit, and healing screw. Electropolishing was carried out under a constant voltage (10-15 V) with a specified current density. The electrolyte used contained methanol and sulfuric acid. The modified surface was subjected to a thorough analysis regarding its surface morphology, chemical composition, and physicochemical properties. Scanning electron microscope images and profilometer tests of roughness confirmed significantly smoother surfaces after electropolishing. The surface profile analysis of processed samples also yielded satisfactory results, showing less imperfections than before modification. The EDX spectra showed that electropolishing does not have significant influence on the chemical composition of the samples.

5.
Materials (Basel) ; 17(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930356

RESUMO

As the reliability and lifespan requirements of modern equipment continues to escalate, the problems with very high cycle fatigue (VHCF) has obtained increasingly widespread attention, becoming a hot topic in fatigue research. Titanium alloys, which are the most extensively used metal materials in the modern aerospace industry, are particularly prone to VHCF issues. The present study systematically reviewed and summarized the latest (since 2010) developments in VHCF research on titanium alloy, with special focus on the (i) experimental methods, (ii) macroscopic and microscopic characteristics of the fatigue fractures, and (iii) construction of fatigue fracture models. More specifically, the review addresses the technological approaches that were used, mechanisms of fatigue crack initiation, features of the S-N curves and Goodman diagrams, and impact of various factors (such as processing, temperature, and corrosion). In addition, it elucidates the damage mechanisms, evolution, and modeling of VHCF in titanium alloys, thereby improving the understanding of VHCF patterns in titanium alloys and highlighting the current challenges in VHCF research.

6.
J Mech Behav Biomed Mater ; 157: 106640, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917558

RESUMO

After total hip arthroplasty, the stress shielding effect can occur due to the difference of stiffness between the metallic alloy of the stems and the host bone, which may cause a proximal bone loss. To overcome this problem, a low-modulus metastable ß Ti-20Zr-3Mo-3Sn alloy composition has recently been designed to be potentially used for the cementless femoral hip stems. After having verified experimentally that the ß alloy has a low modulus of around 50 GPa, a finite element analysis was performed on a Ti-20Zr-3Mo-3Sn alloy hip prosthesis model to evaluate the influence of a reduced modulus on stress shielding and stress fields in both stem and bone compared with the medical grade Ti-6Al-4V alloy whose elastic modulus reached 110 GPa. Our results show that the Ti-20Zr-3Mo-3Sn stem with low elastic modulus can effectively reduce the total stress shielding by 45.5% compared to the common Ti-6Al-4V prosthesis. Moreover, it is highlighted that the material elasticity affects the stress distribution in the implant, especially near the bone-stem interfaces.


Assuntos
Ligas , Análise de Elementos Finitos , Prótese de Quadril , Teste de Materiais , Estresse Mecânico , Titânio , Ligas/química , Titânio/química , Módulo de Elasticidade , Desenho de Prótese , Zircônio/química
7.
J Mech Behav Biomed Mater ; 157: 106633, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943903

RESUMO

Developing new low modulus structures is important for reducing the risk of aseptic loosening during loading of implant materials. However, an alloy that may also confer some advantage at preventing septic loosening could dramatically improve the outcomes for patients. Nevertheless, the predictive power of current models remains limited to common alloying additions. As such, this study considers the mechanical properties of a range of Ti-Nb-Au superelastic alloys to elucidate the composition range for which low modulus structures can be achieved. These modulus values are compared to other critical design parameters such as strain recovery and strength. It was found that Au additions are effective at suppressing the formation of the ω phase and allow alloys with lower moduli to be achieved. It was also shown that low ß phase stability is critical for achieving the lowest modulus, and that this susceptibility to transform to a martensite may enable higher strengths to be achieved. However, this low ß phase stability also limits the strain recovery that may be achieved meaning these two properties are not necessarily independently tuneable. These data provide important context for the design of new systems containing unusual alloying additions such as Au.


Assuntos
Ligas , Ouro , Teste de Materiais , Nióbio , Titânio , Ligas/química , Titânio/química , Nióbio/química , Ouro/química , Materiais Biocompatíveis/química , Fenômenos Mecânicos , Estresse Mecânico , Módulo de Elasticidade
8.
J Funct Biomater ; 15(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921540

RESUMO

With the rising demand for medical implants and the dominance of implant-associated failures including infections, extensive research has been prompted into the development of novel biomaterials that can offer desirable characteristics. This study develops and evaluates new titanium-based alloys containing gallium additions with the aim of offering beneficial antibacterial properties while having a reduced stiffness level to minimise the effect of stress shielding when in contact with bone. The focus is on the microstructure, mechanical properties, antimicrobial activity, and cytocompatibility to inform the suitability of the designed alloys as biometals. Novel Ti-33Nb-xGa alloys (x = 3, 5 wt%) were produced via casting followed by homogenisation treatment, where all results were compared to the currently employed alloy Ti-6Al-4V. Optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) results depicted a single beta (ß) phase microstructure in both Ga-containing alloys, where Ti-33Nb-5Ga was also dominated by dendritic alpha (α) phase grains in a ß-phase matrix. EDS analysis indicated that the α-phase dendrites in Ti-33Nb-5Ga were enriched with titanium, while the ß-phase was richer in niobium and gallium elements. Mechanical properties were measured using nanoindentation and microhardness methods, where the Young's modulus for Ti-33Nb-3Ga and Ti-33Nb-5Ga was found to be 75.4 ± 2.4 and 67.2 ± 1.6 GPa, respectively, a significant reduction of 37% and 44% with respect to Ti-6Al-4V. This reduction helps address the disproportionate Young's modulus between titanium implant components and cortical bone. Importantly, both alloys successfully achieved superior antimicrobial properties against Gram-negative P. aeruginosa and Gram-positive S. aureus bacteria. Antibacterial efficacy was noted at up to 90 ± 5% for the 3 wt% alloy and 95 ± 3% for the 5 wt% alloy. These findings signify a substantial enhancement of the antimicrobial performance when compared to Ti-6Al-4V which exhibited very small rates (up to 6.3 ± 1.5%). No cytotoxicity was observed in hGF cell lines over 24 h. Cell morphology and cytoskeleton distribution appeared to depict typical morphology with a prominent nucleus, elongated fibroblastic spindle-shaped morphology, and F-actin filamentous stress fibres in a well-defined structure of parallel bundles along the cellular axis. The developed alloys in this work have shown very promising results and are suggested to be further examined towards the use of orthopaedic implant components.

9.
Materials (Basel) ; 17(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38591614

RESUMO

Metal binder jetting shows great potential for medical technology. This potential can be exploited by integrating binder jetting into existing process routes known from metal injection molding. The biggest challenge here is the flowability and packing behavior of the powders used, due to their low size distributions. This paper investigates different powder-drying strategies to improve flowability using a statistical experimental design. Because of its relevance for medical applications, spherical Ti-6Al-4V powder with a size distribution under 25 µm is dried under various parameters using vacuum and gas purging. The investigated parameters, time and temperature, are selected in a central-composite-circumscribed test plan with eleven tests and three center points. The target parameters-water content, flowability and impurity levels (oxygen, nitrogen)-of the powder are analyzed. For validation, practical test trials are carried out on an industrial binder jetting system with unconditioned powder and conditioning with optimized parameters, comparing the manufactured parts and the powder bed. An optimized drying cycle with a duration of 6 h at 200 °C was determined for the investigated powder. Significant improvements in the dimensional accuracy (from ±1.5 to 0.3%) of the components and the visual impression of the powder bed are demonstrated.

10.
Materials (Basel) ; 17(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673150

RESUMO

In this paper, a CatBoost model for predicting superelastic strains of alloys was established by utilizing features construction and selection as well as model filtering and evaluation based on 125 existing data points of superelastic titanium alloys. The alloy compositions of a TiNbMoZrSnTa system were optimized and three nickel-free titanium alloys with potentially excellent superelastic properties were designed using the Bayesian optimization algorithm using a superelastic strain as the optimization target. The experimental results indicated that only Ti-12Nb-18Zr-2Sn and Ti-12Nb-16Zr-3Sn exhibited clear superelasticity due to the absence of relevant information about the alloys' ß stability in the machine learning model. Through experimental optimization of the heat treatment regimens, Ti-12Nb-18Zr-2Sn and Ti-12Nb-16Zr-3Sn ultimately achieved recovery strains of 4.65% after being heat treated at 853 K for 10 min and 3.01% after being heat treated at 1073 K for 30 min, respectively. The CatBoost model in this paper possessed a certain ability to design nickel-free superelastic titanium alloys but it was still necessary to combine it with existing knowledge of material theory for effective utilization.

11.
Materials (Basel) ; 17(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611997

RESUMO

Surface residual stresses in welded specimens significantly influence properties such as fatigue resistance, fracture toughness, and the superplasticity of joints. In this study, we employed friction stir welding, a well-established joining method, to weld dissimilar titanium alloys. By combining two distinct titanium alloys, we aimed to harness their unique properties when subjected to cyclic loading, impact, or superplastic forming processes. Utilizing X-ray diffraction, macroscopic surface stresses were assessed in dissimilar titanium alloys (Ti-6242 standard grain (SG) and Ti-54M) welded via friction stir welding, assuming a linear lattice distortion. The study accounted for misalignment, significant distortion, and grain refinement in the stir zone. Macroscopic surface residual stresses were quantified on the weld surface and at a depth of 1.5 mm beneath it within a square cross-section (1 × 1 mm2) by oscillating the specimen in the (X-Y) direction. The sin2φ method, implemented through the LEPTOS® (v7.8) software, was employed for residual stress measurement. The analysis of the results was conducted with respect to different rotation and traverse speeds. It was noted that at the center (CEN) of the weld, commonly referred to as the weld nugget, approximately 50 MPa of tensile stress was observed under the lowest values of both tool rotation speed and traverse speed. Tensile residual stresses were evident at the boundaries and within the stir zone. No discernible pattern was observed at the specified locations. Notably, the resultant values of residual stress, influenced by rotation and traverse speeds, exhibited asymmetry.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38590232

RESUMO

Bruxism can be defined as the process of direct contact with teeth and dental materials with an involuntary jaw-tightening movement. In this process, teeth and dental materials can be exposed to various damage mechanisms. This study aims to realize the mechanism of bruxism with finite element analysis and in vitro rotating chewing movement analysis. Within the scope of the study, cp-Ti, Ti-5Zr, and Ti-5Ta materials were subjected to wear tests in the finite element analysis and in vitro rotating chewing movement method under the determined Bruxism chewing test conditions. Test specimens with cylindrical geometry were exposed to a direct every-contact wear mechanism for 30 s under 150 N bruxism chewing bite force. The bruxism chewing cycle continued for 300 min at a frequency of 2 Hz. Microanalysis of the wear surfaces of the samples after the experimental study was carried out with Scanning Electron Microscopy. The results obtained within the scope of this study showed that the Bruxism wear resistance increased by adding zirconium and tantalum to pure titanium material. This result shows that pure titanium material, which is known to have poor wear resistance, can be improved with Zr and Ta alloys. It is clinically important that the success rate in the treatment process increases with the increase in wear resistance. However, the micro-cracks observed in the microstructure may have occurred in the sub-surface, which is a show of the fatigue wear mechanism.

13.
Materials (Basel) ; 17(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612179

RESUMO

In this study, a series of Ti-5Cr-xNb alloys with varying Nb content (ranging from 1 to 40 wt.%) were investigated to assess their suitability as implant materials. Comprehensive analyses were conducted, including phase analysis, microscopy examination, mechanical testing, and corrosion resistance evaluation. The results revealed significant structural alterations attributed to Nb addition, notably suppressing the formation of the ω phase and transitioning from α' + ß + ω to single ß phase structures. Moreover, the incorporation of Nb markedly improved the alloys' plastic deformation ability and reduced their elastic modulus. In particular, the Ti-5Cr-25Nb alloy demonstrated high values in corrosion potential and polarization resistance, signifying exceptional corrosion resistance. This alloy also displayed high bending strength (approximately 1500 MPa), a low elastic modulus (approximately 80 GPa), and outstanding elastic recovery and plastic deformation capabilities. These aggregate outcomes indicate the promising potential of the ß-phase Ti-5Cr-25Nb alloy for applications in orthopedic and dental implants.

14.
Sci Rep ; 14(1): 6975, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521824

RESUMO

Successful additive manufacturing involves the optimisation of numerous process parameters that significantly influence product quality and manufacturing success. One commonly used criteria based on a collection of parameters is the global energy distribution (GED). This parameter encapsulates the energy input onto the surface of a build, and is a function of the laser power, laser scanning speed and laser spot size. This study uses machine learning to develop a model for predicting manufacturing layer height and grain size based on GED constituent process parameters. For both layer height and grain size, an artificial neural network (ANN) reduced error over the data set compared with multi linear regression. Layer height predictions using ANN achieved an R2 of 0.97 and a root mean square error (RMSE) of 0.03 mm, while grain size predictions resulted in an R2 of 0.85 and an RMSE of 9.68 µm. Grain refinement was observed when reducing laser power and increasing laser scanning speed. This observation was successfully replicated in another α + ß Ti alloy. The findings and developed models show why reproducibility is difficult when solely considering GED, as each of the constituent parameters influence these individual responses to varying magnitudes.

15.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473621

RESUMO

This study aims to investigate the effect of hot deformation on commercially available Ti-6246 alloy below its ß-transus transition temperature at 900 °C, knowing that the α → ß transition temperature of Ti-6246 alloy is about 935 °C. The study systematically applies a thermomechanical processing cycle, including hot rolling at 900 °C and solution and ageing treatments at various temperatures, to investigate microstructural and mechanical alterations. The solution treatments are performed at temperatures of 800 °C, 900 °C and 1000 °C, i.e., below and above the ß-transus transition temperature, for 9 min, followed by oil quenching. The ageing treatment is performed at 600 °C for 6 h, followed by air quenching. Employing various techniques, such as X-ray diffraction, scanning electron microscopy, optical microscopy, tensile strength and microhardness testing, the research identifies crucial changes in the alloy's constituent phases and morphology during thermomechanical processing. In solution treatment conditions, it was found that at temperatures of 800 °C and 900 °C, the α'-Ti martensite phase was generated in the primary α-Ti phase according to Burger's relation, but the recrystallization process was preferred at a temperature of 900 °C, while at a temperature of 1000 °C, the α″-Ti martensite phase was generated in the primary ß-Ti phase according to Burger's relation. The ageing treatment conditions cause the α'-Ti/α″-Ti martensite phases to revert to their α-Ti/ß-Ti primary phases. The mechanical properties, in terms of strength and ductility, underwent an important beneficial evolution when applying solution treatment, followed by ageing treatment, which provided an optimal mixture of strength and ductility. This paper provides engineers with the opportunity to understand the mechanical performance of Ti-6246 alloy under applied stresses and to improve its applications by designing highly efficient components, particularly military engine components, ultimately contributing to advances in technology and materials science.

16.
Bull Tokyo Dent Coll ; 65(1): 1-9, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38355115

RESUMO

The present study investigated the cyclic fatigue properties of titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) as implant materials and compared their properties with those of commercially pure titanium. Ti-6Al-4V and Ti-6Al-7Nb cylinders with diameters of 3.0 mm were examined. The surfaces of the cylinders were roughened by sand blasting with alumina particles and acid etching. Static and cyclic tests were performed according to ISO 14801:2016. The yield force in the static test (YS) was measured in 5 specimens of each alloy using a universal testing machine. The yield force in a cyclic test (YC) was measured in 20 specimens of each alloy using the staircase method, which involved applying a cyclic load at a frequency of 10 Hz for 106 cycles. After the cyclic loading tests, cross-sections of the specimens were examined under an optical microscope. The YS values for Ti-6Al-4V and Ti-6Al-7Nb were 1463 N±93 N and 1405 N±79 N, respectively, and the YC values were 870 N±58 N and 853 N±202 N, respectively. Microscopic observation revealed cracks on the tensile side of some of the specimens, including run outs and failures. The results of this study suggest that the YC values for Ti-6Al-4V and Ti-6Al-7Nb were 40% less than those for YS. The yield force of Grade-4 Cp-Ti significantly decreased after cyclic loading. The YC values for Ti-6Al-4V and Ti-6Al-7Nb were approximately 900 N, which was markedly greater than that for commercially pure, Grade-4 titanium (700 N).


Assuntos
Ligas , Implantes Dentários , Titânio , Materiais Dentários , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Teste de Materiais , Ligas Dentárias
17.
Materials (Basel) ; 17(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399033

RESUMO

The effect of defects and microstructure on the mechanical properties of Ti-6Al-4V welds produced by tungsten inert gas welding; plasma arc welding; electron beam welding; and laser beam welding was studied in the present work. The mechanical properties of different weld types were evaluated with respect to micro hardness; yield strength; ultimate tensile strength; ductility; and fatigue at room temperature and at elevated temperatures (200 °C and 250 °C). Metallographic investigation was carried out to characterize the microstructures of different weld types, and fractographic investigation was conducted to relate the effect of defects on fatigue performance. Electron and laser beam welding produced welds with finer microstructure, higher tensile ductility, and better fatigue performance than tungsten inert gas welding and plasma arc welding. Large pores, and pores located close to the specimen surface, were found to be most detrimental to fatigue life.

18.
Materials (Basel) ; 17(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399037

RESUMO

This work investigated the wear behavior of ultrafine-grained Ti65Nb23.33Zr5Ta1.67Fe5 (at.%, TNZTF) and Ti65Nb23.33Zr5Ta1.67Si5 (at.%, TNZTS) alloys fabricated by high-energy ball milling and spark plasma sintering. Wear tests were conducted in a simulated physiological solution under both reciprocating sliding and fretting wear conditions with different loads, frequencies, and stroke lengths. The microstructures, mechanical properties, and anti-wear properties of the investigated alloys were characterized. The results showed that the TNZTF and TNZTS alloys had much less wear volume than the commonly used Ti-6Al-4V (TC4) alloy and commercially pure titanium (CP-Ti). The TNZTF and TNZTS alloys exhibited much more smooth wear surfaces and shallower wear scars compared with TC4 and CP-Ti. The investigated alloys exhibited different wear mechanisms under the reciprocating sliding wear conditions, while they were similar under the fretting wear conditions. Compared with TC4 and CP-Ti, the fabricated TNZTF and TNZTS alloys showed a substantially higher wear resistance, owing to their ultrafine-grained microstructure and superior hardness. Additionally, the addition of Nb and Zr further enhanced the wear resistance by forming a protective Nb2O5 and ZrO2 oxide film. This work provides guidance for designing new biomedical titanium alloys with excellent wear resistance.

19.
J Funct Biomater ; 15(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38391891

RESUMO

Additive manufacturing (AM) of orthopedic implants has increased in recent years, providing benefits to surgeons, patients, and implant companies. Both traditional and new titanium alloys are under consideration for AM-manufactured implants. However, concerns remain about their wear and corrosion (tribocorrosion) performance. In this study, the effects of fretting corrosion were investigated on AM Ti-29Nb-21Zr (pre-alloyed and admixed) and AM Ti-6Al-4V with 1% nano yttria-stabilized zirconia (nYSZ). Low cycle (100 cycles, 3 Hz, 100 mN) fretting and fretting corrosion (potentiostatic, 0 V vs. Ag/AgCl) methods were used to compare these AM alloys to traditionally manufactured AM Ti-6Al-4V. Alloy and admixture surfaces were subjected to (1) fretting in the air (i.e., small-scale reciprocal sliding) and (2) fretting corrosion in phosphate-buffered saline (PBS) using a single diamond asperity (17 µm radius). Wear track depth measurements, fretting currents and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis of oxide debris revealed that pre-alloyed AM Ti-29Nb-21Zr generally had greater wear depths after 100 cycles (4.67 +/- 0.55 µm dry and 5.78 +/- 0.83 µm in solution) and higher fretting currents (0.58 +/- 0.07 µA). A correlation (R2 = 0.67) was found between wear depth and the average fretting currents with different alloys located in different regions of the relationship. No statistically significant differences were observed in wear depth between in-air and in-PBS tests. However, significantly higher amounts of oxygen (measured by oxygen weight % by EDS analysis of the debris) were embedded within the wear track for tests performed in PBS compared to air for all samples except the ad-mixed Ti-29Nb-21Zr (p = 0.21). For traditional and AM Ti-6Al-4V, the wear track depths (dry fretting: 2.90 +/- 0.32 µm vs. 2.51 +/- 0.51 µm, respectively; fretting corrosion: 2.09 +/- 0.59 µm vs. 1.16 +/- 0.79 µm, respectively) and fretting current measurements (0.37 +/- 0.05 µA vs. 0.34 +/- 0.05 µA, respectively) showed no significant differences. The dominant wear deformation process was plastic deformation followed by cyclic extrusion of plate-like wear debris at the end of the stroke, resulting in ribbon-like extruded material for all alloys. While previous work documented improved corrosion resistance of Ti-29Nb-21Zr in simulated inflammatory solutions over Ti-6Al-4V, this work does not show similar improvements in the relative fretting corrosion resistance of these alloys compared to Ti-6Al-4V.

20.
J Mech Behav Biomed Mater ; 151: 106345, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215658

RESUMO

New Ni-free superelastic ß-titanium alloys from the Ti-Zr-Nb-Sn system have been designed in this study to replace the NiTi alloy currently used for self-expanding endovascular stents. The simulation results, carried out by finite element analysis (FEA) on two ß-type Ti-Zr-Nb-Sn alloys using a commonly used superelastic constitutive model, were in good agreement with the experimental uniaxial tension data. An ad-hoc self-expanding coronary stent was specifically designed for the present study. To assess the mechanical performance of the endovascular stents, a FEA framework of the stent deployed in the arterial system was established, and a simply cyclic bending loading was proposed. Six comparative simulations of three superelastic materials (including NiTi for comparison) and two arterial configurations were successfully conducted. The mechanical behaviours of the stents were analysed through stress localization, the increase in artery diameter, contact results, and distributions of mean and alternating strain. The simulation results show that the Ti-22Zr-11Nb-2Sn (at. %) alloy composition for the stent produces the largest contact area (9.92 mm2) and radial contact force (49.5 mN) on the inner surface of the plaque and a higher increase in the stenotic artery diameter (70 %) after three vascular bending cycles. Furthermore, the Ti-22Zr-11Nb-2Sn stent exhibited sufficient crimping capacity and reliable mechanical performance during deployment and cyclic bending, which could make it a suitable choice for self-expanding coronary stents. In this work, the implementation of finite element analysis has thus made it possible to propose a solid basis for the mechanical evaluation of these stents fabricated in new Ni-free superelastic ß-Ti alloys.


Assuntos
Níquel , Stents , Titânio , Teste de Materiais , Análise de Elementos Finitos , Ligas , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA