Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 4(11): 100544, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36267872

RESUMO

Background & Aims: The safety, tolerability, and efficacy of the non-bile acid farnesoid X receptor agonist tropifexor were evaluated in a phase II, double-blind, placebo-controlled study as potential second-line therapy for patients with primary biliary cholangitis (PBC) with an inadequate ursodeoxycholic acid response. Methods: Patients were randomised (2:1) to receive tropifexor (30, 60, 90, or 150 µg) or matched placebo orally once daily for 28 days, with follow-up on Days 56 and 84. Primary endpoints were safety and tolerability of tropifexor and reduction in levels of γ-glutamyl transferase (GGT) and other liver biomarkers. Other objectives included patient-reported outcome measures using the PBC-40 quality-of-life (QoL) and visual analogue scale scores and tropifexor pharmacokinetics. Results: Of 61 enrolled patients, 11, 9, 12, and 8 received 30-, 60-, 90-, and 150-µg tropifexor, respectively, and 21 received placebo; 3 patients discontinued treatment because of adverse events (AEs) in the 150-µg tropifexor group. Pruritus was the most frequent AE in the study (52.5% [tropifexor] vs. 28.6% [placebo]), with most events of mild to moderate severity. Decreases seen in LDL-, HDL-, and total-cholesterol levels at 60-, 90-, and 150 µg doses stabilised after treatment discontinuation. By Day 28, tropifexor caused 26-72% reduction in GGT from baseline at 30- to 150-µg doses (p <0.001 at 60-, 90-, and 150-µg tropifexor vs. placebo). Day 28 QoL scores were comparable between the placebo and tropifexor groups. A dose-dependent increase in plasma tropifexor concentration was observed, with 5- to 5.55-fold increases in AUC0-8h and Cmax between 30- and 150-µg doses. Conclusions: Tropifexor showed improvement in cholestatic markers relative to placebo, predictable pharmacokinetics, and an acceptable safety-tolerability profile, thereby supporting its potential further clinical development for PBC. Lay summary: The bile acid ursodeoxycholic acid (UDCA) is the standard-of-care therapy for primary biliary cholangitis (PBC), but approximately 40% of patients have an inadequate response to this therapy. Tropifexor is a highly potent non-bile acid agonist of the farnesoid X receptor that is under clinical development for various chronic liver diseases. In the current study, in patients with an inadequate response to UDCA, tropifexor was found to be safe and well tolerated, with improved levels of markers of bile duct injury at very low (microgram) doses. Itch of mild to moderate severity was observed in all groups including placebo but was more frequent at the highest tropifexor dose. Clinical Trials Registration: This study is registered at ClinicalTrials.gov (NCT02516605).

2.
Mol Genet Metab Rep ; 29: 100799, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34522617

RESUMO

Urea cycle disorders (UCDs), inborn errors of hepatocyte metabolism, cause hyperammonemia and lead to neurocognitive deficits, coma, and even death. Sodium 4-phenylbutyrate (NaPB), a standard adjunctive therapy for UCDs, generates an alternative pathway of nitrogen deposition through glutamine consumption. Administration during or immediately after a meal is the approved usage of NaPB. However, we previously found that preprandial oral administration enhanced its potency in healthy adults and pediatric patients with intrahepatic cholestasis. The present study evaluated the effect of food on the pharmacokinetics and pharmacodynamics of NaPB in five patients with UCDs. Following an overnight fast, NaPB was administered orally at 75 mg/kg/dose (high dose, HD) or 25 mg/kg/dose (low dose, LD) either 15 min before or immediately after breakfast. Each patient was treated with these four treatment regimens with NaPB. With either dose, pre-breakfast administration rather than post-breakfast administration significantly increased plasma PB levels and decreased plasma glutamine availability. Pre-breakfast LD administration resulted in a greater attenuation in plasma glutamine availability than post-breakfast HD administration. Plasma levels of branched-chain amino acids decreased to the same extent in all tested regimens. No severe adverse events occurred during this study. In conclusion, preprandial oral administration of NaPB maximized systemic exposure of PB and thereby its efficacy on glutamine consumption in patients with UCDs.

3.
Toxicol Rep ; 4: 507-520, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959681

RESUMO

A toxicological evaluation of N-(1-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiadiazin-5-yl)oxy)-2-methylpropan-2-yl)-2,6-dimethylisonicotinamide (S2218; CAS 1622458-34-7), a flavour with modifying properties, was completed for the purpose of assessing its safety for use in food and beverage applications. S2218 exhibited minimal oxidative metabolism in vitro, and in rat pharmacokinetic studies, the compound was poorly orally bioavailable and rapidly eliminated. S2218 was not found to be mutagenic in an in vitro bacterial reverse mutation assay, and was found to be neither clastogenic nor aneugenic in an in vitro mammalian cell micronucleus assay. In subchronic oral toxicity studies in male and female rats, the NOAEL was 140 mg/kg bw/day (highest dose tested) for S2218 sulfate salt (S8069) when administered as a food ad-mix for 13 consecutive weeks. Furthermore, S2218 sulfate salt demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg bw/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

4.
Toxicol Rep ; 3: 310-327, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28959552

RESUMO

A toxicological evaluation of two novel bitter modifying flavour compounds, 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)imidazolidine-2,4-dione (S6821, CAS 1119831-25-2) and 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)-5,5-dimethylimidazolidine-2,4-dione (S7958, CAS 1217341-48-4), were completed for the purpose of assessing their safety for use in food and beverage applications. S6821 undergoes oxidative metabolism in vitro, and in rat pharmacokinetic studies both S6821 and S7958 are rapidly converted to the corresponding O-sulfate and O-glucuronide conjugates. S6821 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in bone marrow polychromatic erythrocytes in vivo. S7958, a close structural analog of S6821, was also found to be non-mutagenic in vitro. In short term and subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for both S7958 and S6821 was 100 mg/kg bw/day (highest dose tested) when administered as a food ad-mix for either 28 or 90 consecutive days, respectively. Furthermore, S6821 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg bw/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

5.
Toxicol Rep ; 3: 501-512, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28959573

RESUMO

A toxicological evaluation of a umami flavour compound, 2-(((3-(2,3-dimethoxyphenyl)-1H-1,2,4-triazol-5-yl)thio)methyl)pyridine (S3643; CAS 902136-79-2), was completed for the purpose of assessing its safety for use in food and beverage applications. S3643 undergoes extensive oxidative metabolism in vitro with rat microsomes producing the S3643-sulfoxide and 4'-hydroxy-S3643 as the major metabolites. In incubations with human microsomes, the O-demethyl-S3643 and S3643-sulfoxide were produced as the major metabolites. In pharmacokinetic studies in rats, the S3643-sulfoxide represents the dominant biotransformation product. S3643 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in CHO-WBL cells. In subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for S3643 was 100 mg/kg bw/day (highest dose tested) when administered in the diet for 90 consecutive days.

6.
Toxicol Rep ; 3: 841-860, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28959612

RESUMO

Toxicological evaluations of two N-alkyl benzamide umami flavour compounds, N-(heptan-4-yl)benzo[d][1,3]dioxole-5-carboxamide (S807, CAS 745047-51-2) and (R)-N-(1-methoxy-4-methylpentan-2-yl)-3,4-dimethylbenzamide (S9229, CAS 851669-60-8), were completed for the purpose of assessing their safety for use in food and beverage applications. Both S807 and S9229 undergo rapid oxidative metabolism by both rat and human liver microsomes in vitro. In pharmacokinetic studies in rats, the systemic exposure to S9229 on oral administration is very low at all doses (% F < 1%), while that of S807 demonstrated a non-linear dose dependence. In metabolism studies in rats, hydroxylation of the C-4 aryl methyl group was found to be the dominant metabolic pathway for S9229. The dominant metabolic pathway for S807 in the rat involved oxidative scission of the methylenedioxy moiety to produce the corresponding 3,4-dihydroxybenamide which is further converted by Phase II metabolic enzymes to the 3- and 4-O-methyl ethers as well as their corresponding glucuronides. Both S807 and S9229 were not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in polychromatic erythrocytes in vivo. In a subchronic oral toxicity study in rats, the no-observed-effect-level (NOEL) for S807 was 20 mg/kg bw/day when administered in the diet for 13 weeks. The no-observed-adverse-effect-level (NOAEL) for S9229 in rats was 100 mg/kg bw/day (highest dose tested) when administered in the diet for 28 consecutive days.

7.
Toxicol Rep ; 2: 1255-1264, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28962468

RESUMO

A toxicological evaluation of 4-amino-5-(3-(isopropylamino)-2,2-dimethyl-3-oxopropoxy)-2-methylquinoline-3-carboxylic acid(S9632; CAS 1359963-68-0), a flavour with modifying properties,was completed for the purpose of assessing its safety for use in food and beverage applications. No Phase I biotransformations of S9632 were observed in rat or human microsomes in vitro, and in rat pharmacokinetic studies, the compound was poorly orally bioavailable and rapidly eliminated. S9632 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei or indicate interactions with the mitotic spindle in an in vivo mouse micronucleus assay at oral doses up to 2000 mg/kg. In subchronic oral toxicity studies in rats, the NOEL was 100 mg/kg/day (highest dose tested) for S9632 when administered as a food ad-mix for 90 consecutive days. Furthermore, S9632 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOEL of 1000 mg/kg/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

8.
Toxicol Rep ; 2: 1291-1309, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28962472

RESUMO

A toxicological evaluation of a novel cooling agent, 2-(4-methylphenoxy)-N-(1H-pyrazol-3-yl)-N-(2-thienylmethyl) acetamide (S2227; CAS 1374760-95-8), was completed for the purpose of assessing its safety for use in food and beverage applications. S2227 undergoes rapid oxidative metabolism in vitro, and in rat and dog pharmacokinetic studies is rapidly converted to its component carboxylic acid and secondary amine. S2227 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in polychromatic erythrocytes in vivo. The secondary amine hydrolysis product, N-(2-thienylmethyl)-1H-pyrazol-3-amine (M179), was also evaluated for genotoxicity. In subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for S2227 was 100 mg/kg/day (highest dose tested) when administered by oral gavage for 90 consecutive days. Furthermore, S2227 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA