Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Nanomedicine (Lond) ; : 1-16, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382009

RESUMO

Aim: Fluorescence detection of breast and prostate cancer cells expressing Tn-antigen, a tumor marker, with Vicia villosa lectin (VVL)-labeled nanoparticles.Materials & methods: Breast and prostate cancer cells engineered to express high levels of Tn-antigen and non-engineered controls were incubated with VVL-labeled or unlabeled red dye-doped silica-coated polystyrene nanoparticles. The binding to cells was studied with flow cytometry, confocal microscopy, and electron microscopy.Results: Flow cytometry showed that the binding of VVL-labeled nanoparticles was significantly higher to Tn-antigen-expressing cancer cells than controls. Confocal microscopy demonstrated that particles bound to the cell surface. According to the correlative light and electron microscopy the particles bound mostly as aggregates.Conclusion: VVL-labeled nanoparticles could provide a new tool for the detection of Tn-antigen-expressing breast and prostate cancer cells.


[Box: see text].

2.
Glycobiology ; 34(10)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216105

RESUMO

Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galß1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.


Assuntos
Hepatócitos , Polissacarídeos , Animais , Camundongos , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Glicosilação , Hepatócitos/metabolismo , Camundongos Knockout , Chaperonas Moleculares , Polissacarídeos/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética
3.
Methods Mol Biol ; 2836: 67-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995536

RESUMO

Recently, HexNAcQuest was developed to help distinguish peptides modified by HexNAc isomers, more specifically O-linked ß-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc, Tn antigen). To facilitate its usage (particularly for datasets from glycoproteomics studies), herein we present a detailed protocol. It describes example cases and procedures for which users might need to use HexNAcQuest to distinguish these two modifications.


Assuntos
Proteômica , Software , Proteômica/métodos , Isomerismo , Humanos , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Glicopeptídeos/química , Glicopeptídeos/análise , Glicoproteínas/química , Acetilgalactosamina/química , Análise de Dados , Peptídeos/química , Glicosilação
4.
Protein Sci ; 33(8): e5128, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39074261

RESUMO

Extracellular proteolysis critically regulates cellular and tissue responses and is often dysregulated in human diseases. The crosstalk between proteolytic processing and other major post-translational modifications (PTMs) is emerging as an important regulatory mechanism to modulate protease activity and maintain cellular and tissue homeostasis. Here, we focus on matrix metalloproteinase (MMP)-mediated cleavages and N-acetylgalactosamine (GalNAc)-type of O-glycosylation, two major PTMs of proteins in the extracellular space. We investigated the influence of truncated O-glycan trees, also referred to as Tn antigen, following the inactivation of C1GALT1-specific chaperone 1 (COSMC) on the general and MMP9-specific proteolytic processing in MDA-MB-231 breast cancer cells. Quantitative assessment of the proteome and N-terminome using terminal amine isotopic labelling of substrates (TAILS) technology revealed enhanced proteolysis by MMP9 within the extracellular proteomes of MDA-MB-231 cells expressing Tn antigen. In addition, we detected substantial modifications in the proteome and discovered novel ectodomain shedding events regulated by the truncation of O-glycans. These results highlight the critical role of mature O-glycosylation in fine-tuning proteolytic processing and proteome homeostasis by modulating protein susceptibility to proteolytic degradation. These data suggest a complex interplay between proteolysis and O-GalNAc glycosylation, possibly affecting cancer phenotypes.


Assuntos
Proteólise , Humanos , Glicosilação , Linhagem Celular Tumoral , Metaloproteinase 9 da Matriz/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteoma/análise , Chaperonas Moleculares
5.
J Biochem ; 176(1): 23-34, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382634

RESUMO

Cancer antigen 125 (CA125) is a serum marker associated with ovarian cancer. Despite its widespread use, CA125 levels can also be elevated in benign conditions. Recent reports suggest that detecting serum CA125 that carries the Tn antigen, a truncated O-glycan containing only N-acetylgalactosamine on serine or threonine residues, can improve the specificity of ovarian cancer diagnosis. In this study, we engineered cells to express CA125 with a Tn antigen. To achieve this, we knocked out C1GALT1 and SLC35A1, genes encoding Core1 synthase and a transporter for cytidine-5'-monophospho-sialic acid respectively, in human embryonic kidney 293 (HEK293) cells. In ClGALT1-SLC35A1-knockout (KO) cells, the expression of the Tn antigen showed a significant increase, whereas the expression of the T antigen (galactose-ß1,3-N-acetylgalactosamine on serine or threonine residues) was decreased. Due to the inefficient secretion of soluble CA125, we employed a glycosylphosphatidylinositol (GPI) anchoring system. This allowed for the expression of GPI-anchored CA125 on the cell surface of ClGALT1-SLC35A1-KO cells. Cells expressing high levels of GPI-anchored CA125 were then enriched through cell sorting. By knocking out the PGAP2 gene, the GPI-anchored form of CA125 was converted to a secretory form. Through the engineering of O-glycans and the use of a GPI-anchoring system, we successfully produced CA125 with Tn antigen modification.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Antígeno Ca-125 , Galactosiltransferases , Glicosilfosfatidilinositóis , Humanos , Antígenos Glicosídicos Associados a Tumores/metabolismo , Antígeno Ca-125/metabolismo , Células HEK293 , Glicosilfosfatidilinositóis/metabolismo , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Feminino
6.
Gut Microbes ; 16(1): 2305477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298145

RESUMO

Non-LEE-encoded Effector A (NleA) is a type III secreted effector protein of enterohaemorrhagic and enteropathogenic Escherichia coli as well as the related mouse pathogen Citrobacter rodentium. NleA translocation into host cells is essential for virulence. We previously published several lines of evidence indicating that NleA is modified by host-mediated mucin-type O-linked glycosylation, the first example of a bacterial effector protein modified in this way. In this study, we use lectins to provide direct evidence for the modification of NleA by O-linked glycosylation and determine that the interaction of NleA with the COPII complex is necessary for this modification to occur.


Assuntos
Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Animais , Camundongos , Proteínas de Escherichia coli/metabolismo , Fatores de Virulência/metabolismo , Glicosilação , Proteínas de Bactérias/metabolismo
7.
Cancers (Basel) ; 16(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254730

RESUMO

Differential glycosylation, marked by the presence of truncated O-glycans, is a distinctive feature of epithelial-derived cancers. However, there is a notable gap in research regarding the expression of Tn and STn antigens in esophageal adenocarcinoma (EAC). To address this, we employed commercially available antibodies, previously validated for Tn and STn antigens, to analyze two cohorts of EAC tissues. Initially, large-area tissue sections from formalin-fixed paraffin-embedded (FFPE) EAC and corresponding healthy tissues were subjected to immunohistochemistry (IHC) staining and scoring. Subsequently, we evaluated the RNA expression levels of crucial O-glycosylation related genes-C1GALT1 and C1GALT1C1-using a quantitative real-time polymerase chain reaction (qRT-PCR). In a comprehensive analysis, a substantial cohort of EAC tissues (n = 311 for Tn antigen, n = 351 for STn antigen) was investigated and correlated with clinicopathological data. Our findings revealed that Tn and STn antigens are highly expressed (approximately 71% for both) in EAC, with this expression being tumor-specific. Notably, Tn antigen expression correlates significantly with the depth of tumor cell infiltration (p = 0.026). These antigens emerge as valuable markers and potential therapeutic targets for esophageal adenocarcinoma.

8.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38069400

RESUMO

The cells and numerous macromolecules of living organisms carry an array of simple and complex carbohydrates on their surface, which may be recognized by many types of proteins, including lectins. Human macrophage galactose-type lectin (MGL, also known as hMGL/CLEC10A/CD301) is a C-type lectin receptor expressed on professional antigen-presenting cells (APCs) specific to glycans containing terminal GalNAc residue, such as Tn antigen or LacdiNAc but also sialylated Tn antigens. Macrophage galactose-type lectin (MGL) exhibits immunosuppressive properties, thus facilitating the maintenance of immune homeostasis. Hence, MGL is exploited by tumors and some pathogens to trick the host immune system and induce an immunosuppressive environment to escape immune control. The aims of this article are to discuss the immunological outcomes of human MGL ligand recognition, provide insights into the molecular aspects of these interactions, and review the MGL ligands discovered so far. Lastly, based on the human fetoembryonic defense system (Hu-FEDS) hypothesis, this paper raises the question as to whether MGL-mediated interactions may be relevant in the development of maternal tolerance toward male gametes and the fetus.


Assuntos
Células Apresentadoras de Antígenos , Galactose , Masculino , Humanos , Ligantes , Células Apresentadoras de Antígenos/metabolismo , Macrófagos/metabolismo , Lectinas Tipo C/metabolismo
9.
Glycobiology ; 33(11): 879-887, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37847609

RESUMO

Protein-carbohydrate interactions are essential in maintaining immune homeostasis and orchestrating inflammatory and regulatory immune processes. This review elucidates the immune interactions of macrophage galactose-type lectin (MGL, CD301) and Tn carbohydrate antigen. MGL is a C-type lectin receptor (CLR) primarily expressed by myeloid cells such as macrophages and immature dendritic cells. MGL recognizes terminal O-linked N-acetylgalactosamine (GalNAc) residue on the surface proteins, also known as Tn antigen (Tn). Tn is a truncated form of the elongated cell surface O-glycan. The hypoglycosylation leading to Tn may occur when the enzyme responsible for O-glycan elongation-T-synthase-or its associated chaperone-Cosmc-becomes functionally inhibited. As reviewed here, Tn expression is observed in many different neoplastic and non-neoplastic diseases, and the recognition of Tn by MGL plays an important role in regulating effector T cells, immune suppression, and the recognition of pathogens.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Galactose , Antígenos Glicosídicos Associados a Tumores/química , Macrófagos/metabolismo , Lectinas Tipo C/metabolismo , Imunidade , Polissacarídeos
10.
Acta Biomater ; 170: 142-154, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586448

RESUMO

Gastric cancer (GC) is the fourth leading cause of cancer-related deaths worldwide and, therefore, it is urgent to develop new and more efficient therapeutic approaches. Foretinib (FRT) is an oral multikinase inhibitor targeting MET (hepatocyte growth factor receptor) and RON (recepteur d'origine nantais) receptor tyrosine kinases (RTKs) that has been used in clinical trials for several solid tumors. Targeted uptake of therapeutic polymeric nanoparticles (NPs) represents a powerful approach in cancer cell drug delivery. Previously, a nanodelivery system composed of polymeric NPs functionalized with B72.3 antibody, which targets the tumor-associated antigen Sialyl-Tn (STn), has been developed. Herein, these NPs were loaded with FRT to evaluate its capacity in delivering the drug to multicellular tumors spheroids (MCTS) and mouse models. The data indicated that B72.3 functionalized FRT-loaded PLGA-PEG-COOH NPs (NFB72.3) specifically target gastric MCTS expressing the STn glycan (MKN45 SimpleCell (SC) cells), leading to a decrease in phospho-RTKs activation and reduced cell viability. In vivo evaluation using MKN45 SC xenograft mice revealed that NFB72.3 were able to decrease tumor growth, reduce cell proliferation and tumor necrosis. NFB72.3-treated tumors also showed inactivation of phospho-MET and phospho-RON. This study demonstrates the value of using NPs targeting STn for FRT delivery, highlighting its potential as a therapeutic application in GC. STATEMENT OF SIGNIFICANCE: Despite the advances in gastric cancer therapeutics, it remains one of the diseases with the highest incidence and mortality in the world. Combining targeted therapies with a controlled drug release is an attractive strategy to reduce drug cytotoxic effects and improve specific drug delivery efficiency to the cancer cells. Thus, we developed nanoparticles loaded with a tyrosine kinase inhibitor and targeting a specific tumor glycan exclusive of cancer cells. In in vivo gastric cancer xenograft mice models, these nanoparticles efficiently reduced tumor growth, cell proliferation and tumor necrosis area and inactivated phosphorylation of targeting receptors. This approach represents an innovative therapeutic strategy with high impact in gastric cancer.


Assuntos
Nanopartículas , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Polímeros/uso terapêutico , Polissacarídeos , Necrose , Linhagem Celular Tumoral
11.
Cancers (Basel) ; 15(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37444599

RESUMO

It is well established that genetic information differs amongst the adolescent and young adult population (AYA) and older patients. Although several studies on genetic information have been conducted, no current prognostic biomarker exists to help differentiate survival outcomes amongst AYA patients. The GALNT family of genes have been associated with several cancer etiologies, such as the Tn antigen and epithelial-mesenchymal transition (EMT); however, the clinical significance of GALNT1 expression in breast cancer (BC) remains unclear. We investigated the clinical relevance of GALNT1 expression in BC using two large independent cohorts. We found that, although triple-negative BC (TNBC) had the highest GALNT1 expression compared to ER-positive/HER2-negative BC, GALNT1 levels in BC were not associated with clinical aggressiveness, including histological grade, AJCC stage and N-category, and patient survival, consistently in both the METABRIC and GSE96058 cohorts. There was also no biological difference between low- and high-GALNT1 expression BC, as analyzed by hallmark gene sets via gene set enrichment analysis (GSEA). Further, no significant difference was found in GALNT1 expression levels among AYAs and older patients. However, high GALNT1 expression was associated with significantly worse survival in AYA patients, in both cohorts. Furthermore, high GALNT1 expression was found to be an independent factor among several clinical features, including subtype, histological grade, AJCC T and N-category, in AYA patients. In both cohorts, BC with high GALNT1 expression demonstrated low levels of CD8+ T-cell infiltration, but not other anti-cancerous or pro-cancerous immune cells. Finally, high levels of GALNT1 BC demonstrated increased EMT, angiogenesis, and protein secretion in the AYA population, but not in older patients. In conclusion, our findings demonstrate that GALNT1 expression was found to be associated with angiogenesis and EMT, and may have potential as prognostic biomarker, specifically in AYA patients.

12.
Cell Biol Int ; 47(11): 1854-1867, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37493437

RESUMO

Breast cancer is one of the most serious and deadly cancers in women worldwide, with distant metastases being the leading cause of death. Tn antigen, a tumor-associated carbohydrate antigen, was frequently detected in breast cancer, but its exact role in breast cancer metastasis has not been well elucidated. Here we investigated the impact of Tn antigen expression on breast cancer metastasis and its underlying mechanisms. The expression of Tn antigen was induced in two breast cancer cell lines by deleting T-synthase or Cosmc, both of which are required for normal O-glycosylation. It showed that Tn-expressing cancer cells promoted epithelial-mesenchymal transition (EMT) and metastatic features as compared to Tn(-) control cells both in vitro and in vivo. Mechanistically, we found that cancer susceptibility candidate 4 (CASC4), a heavily O-glycosylated protein, was significantly downregulated in both Tn(+) cells. Overexpression of CASC4 suppressed Tn-induced activation of EMT and cancer metastasis via inhibition of Cdc42 signaling. Furthermore, we confirmed that O-glycosylation is essential for the functional role of CASC4 because defective O-glycosylated CASC4 (mutant CASC4, which lacks nine O-glycosylation sites) exerted marginal metastatic-suppressing effects in comparison with WT CASC4. Collectively, these data suggest that Tn-mediated aberrant O-glycosylation contributes to breast cancer metastasis via impairment of CASC4 expression and function.


Assuntos
Neoplasias da Mama , Chaperonas Moleculares , Feminino , Humanos , Antígenos Glicosídicos Associados a Tumores/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Melanoma Maligno Cutâneo
13.
Cancers (Basel) ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37509200

RESUMO

Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.

14.
Carbohydr Res ; 530: 108875, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348181

RESUMO

Chitotriose (CTS), the hydrolysate of chitosan, is readily soluble in water because of the shorter chain lengths of the oligomers and the free amino groups in the d-glucosamine units. In the current study, we report the synthesis of novel conjugate vaccine Tn-BSA-CTS with chitotriose as built-in adjuvant, along with an evaluation of the effect of adjuvant chitotriose (CTS). Immunological evaluations of the resultant conjugate vaccine revealed that Tn-BSA-CTS could provoke the highest titers of IgG antibodies (102,400). The Tn-BSA-CTS conjugate remarkably enhanced both humoral and cellular immunity. The obtained results demonstrate the potential of CTS as a novel vaccine adjuvant in the development of antitumor vaccine and the covalent linkage of tumor vaccine to CTS might be available strategy to increase the efficacy against cancer.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Vacinas Conjugadas , Adjuvantes Imunológicos/farmacologia , Trissacarídeos
15.
Proc Natl Acad Sci U S A ; 120(22): e2211087120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216524

RESUMO

Mutations in genes encoding molecular chaperones can lead to chaperonopathies, but none have so far been identified causing congenital disorders of glycosylation. Here we identified two maternal half-brothers with a novel chaperonopathy, causing impaired protein O-glycosylation. The patients have a decreased activity of T-synthase (C1GALT1), an enzyme that exclusively synthesizes the T-antigen, a ubiquitous O-glycan core structure and precursor for all extended O-glycans. The T-synthase function is dependent on its specific molecular chaperone Cosmc, which is encoded by X-chromosomal C1GALT1C1. Both patients carry the hemizygous variant c.59C>A (p.Ala20Asp; A20D-Cosmc) in C1GALT1C1. They exhibit developmental delay, immunodeficiency, short stature, thrombocytopenia, and acute kidney injury (AKI) resembling atypical hemolytic uremic syndrome. Their heterozygous mother and maternal grandmother show an attenuated phenotype with skewed X-inactivation in blood. AKI in the male patients proved fully responsive to treatment with the complement inhibitor Eculizumab. This germline variant occurs within the transmembrane domain of Cosmc, resulting in dramatically reduced expression of the Cosmc protein. Although A20D-Cosmc is functional, its decreased expression, though in a cell or tissue-specific manner, causes a large reduction of T-synthase protein and activity, which accordingly leads to expression of varied amounts of pathological Tn-antigen (GalNAcα1-O-Ser/Thr/Tyr) on multiple glycoproteins. Transient transfection of patient lymphoblastoid cells with wild-type C1GALT1C1 partially rescued the T-synthase and glycosylation defect. Interestingly, all four affected individuals have high levels of galactose-deficient IgA1 in sera. These results demonstrate that the A20D-Cosmc mutation defines a novel O-glycan chaperonopathy and causes the altered O-glycosylation status in these patients.


Assuntos
Injúria Renal Aguda , Chaperonas Moleculares , Masculino , Humanos , Chaperonas Moleculares/metabolismo , Mutação , Polissacarídeos/metabolismo , Células Germinativas/metabolismo
16.
Glycobiology ; 33(7): 567-578, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37216646

RESUMO

There is an urgent need to develop new tumor biomarkers for early cancer detection, but the variability of tumor-derived antigens has been a limitation. Here we demonstrate a novel anti-Tn antibody microarray platform to detect Tn+ glycoproteins, a near universal antigen in carcinoma-derived glycoproteins, for broad detection of cancer. The platform uses a specific recombinant IgG1 to the Tn antigen (CD175) as a capture reagent and a recombinant IgM to the Tn antigen as a detecting reagent. These reagents were validated by immunohistochemistry in recognizing the Tn antigen using hundreds of human tumor specimens. Using this approach, we could detect Tn+ glycoproteins at subnanogram levels using cell lines and culture media, serum, and stool samples from mice engineered to express the Tn antigen in intestinal epithelial cells. The development of a general cancer detection platform using recombinant antibodies for detection of altered tumor glycoproteins expressing a unique antigen could have a significant impact on cancer detection and monitoring.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Carcinoma , Humanos , Animais , Camundongos , Glicosilação , Glicoproteínas , Biomarcadores Tumorais , Linhagem Celular
17.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110670

RESUMO

Bladder cancer (BC) is the 10th most common malignancy worldwide, with an estimated 573,000 new cases and 213,000 deaths in 2020. Available therapeutic approaches are still unable to reduce the incidence of BC metastasis and the high mortality rates of BC patients. Therefore, there is a need to deepen our understanding of the molecular mechanisms underlying BC progression to develop new diagnostic and therapeutic tools. One such mechanism is protein glycosylation. Numerous studies reported changes in glycan biosynthesis during neoplastic transformation, resulting in the appearance of the so-called tumor-associated carbohydrate antigens (TACAs) on the cell surface. TACAs affect a wide range of key biological processes, including tumor cell survival and proliferation, invasion and metastasis, induction of chronic inflammation, angiogenesis, immune evasion, and insensitivity to apoptosis. The purpose of this review is to summarize the current information on how altered glycosylation of bladder cancer cells promotes disease progression and to present the potential use of glycans for diagnostic and therapeutic purposes.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Glicosilação , Neoplasias da Bexiga Urinária/patologia , Antígenos Glicosídicos Associados a Tumores , Polissacarídeos/metabolismo , Células Epiteliais/metabolismo
18.
BMC Cancer ; 22(1): 1281, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476111

RESUMO

BACKGROUND: The Tn antigen (CD175) is an O-glycan expressed in various types of human adenocarcinomas, including colorectal cancer (CRC), though prior studies have relied heavily upon poorly characterized in-house generated antibodies and lectins. In this study, we explored Tn expression in CRC using ReBaGs6, a well-characterized recombinant murine antibody with high specificity for clustered Tn antigen. METHODS: Using well-defined monoclonal antibodies, expression patterns of Tn and sialylated Tn (STn) antigens were characterized by immunostaining in CRC, in matched peritumoral [transitional margin (TM)] mucosa, and in normal colonic mucosa distant from the tumor, as well as in adenomas. Vicia villosa agglutinin lectin was used to detect terminal GalNAc expression. Histo-scoring (H scoring) of staining was carried out, and pairwise comparisons of staining levels between tissue types were performed using paired samples Wilcoxon rank sum tests, with statistical significance set at 0.05. RESULTS: While minimal intracellular Tn staining was seen in normal mucosa, significantly higher expression was observed in both TM mucosa (p < 0.001) and adenocarcinoma (p < 0.001). This pattern was reflected to a lesser degree by STn expression in these tissue types. Interestingly, TM mucosa demonstrates a Tn expression level even higher than that of the adenocarcinoma itself (p = 0.019). Colorectal adenomas demonstrated greater Tn and STn expression relative to normal mucosa (p < 0.001 and p = 0.012, respectively). CONCLUSIONS: In summary, CRC is characterized by alterations in Tn/STn antigen expression in neoplastic epithelium as well as peritumoral benign mucosa. Tn/STn antigens are seldom expressed in normal mucosa. This suggests that TM mucosa, in addition to CRC itself, represents a source of glycoproteins rich in Tn that may offer future biomarker targets.


Assuntos
Adenoma , Neoplasias Colorretais , Humanos , Animais , Camundongos , Estatísticas não Paramétricas
19.
Acta Pharm Sin B ; 12(12): 4432-4445, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561989

RESUMO

We present a new strategy for self-adjuvanting vaccine development that has different types of covalently-linked immunostimulants as the carrier molecule. Using Tn antigen as the model, a three-component vaccine (MPLA-Tn-KRN7000) containing the TLR4 ligand MPLA and the iNKT cell agonist KRN7000 was designed and synthesized. This expands fully synthetic self-adjuvanting vaccine studies that use a single carrier to one with two different types of carriers. The corresponding two-component conjugate vaccines Tn-MPLA, Tn-KRN7000 and Tn-CRM197 were also synthesized, as controls. The immunological evaluation found that MPLA-Tn-KRN7000 elicits robust Tn-specific and T cell-dependent immunity. The antibodies specifically recognized, bound to and exhibited complement-dependent cytotoxicity against Tn-positive cancer cells. In addition, MPLA-Tn-KRN7000 increased the survival rate and survival time of tumor-challenged mice, and surviving mice reject further tumor attacks without any additional treatment. Compared to the glycoprotein vaccine Tn-CRM197, the two-component conjugate vaccines, Tn-MPLA and Tn-KRN7000, and the physical mixture of Tn-MPLA and Tn-KRN7000, MPLA-Tn-KRN7000 showed the most effect at combating tumor cells both in vitro and in vivo. The comparison of immunological studies in wild-type and TLR4 knockout mice, along with the test of binding affinity to CD1d protein suggests that the covalently linked MPLA-KRN7000 immunostimulant induces a synergistic activation of TLR4 and iNKT cell that improves the immunogenicity of Tn. This work demonstrates that MPLA-Tn-KRN7000 has the potential to be a vaccine candidate and provides a new direction for fully synthetic vaccine design.

20.
J Ovarian Res ; 15(1): 134, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564848

RESUMO

BACKGROUND: Peritoneal dissemination is the predominant feature of malignant progression in ovarian cancer and is a major cause of poor surgical outcomes and clinical prognoses. Abnormal glycosylation of carbohydrate antigen 125 (CA125) may be involved in peritoneal implantation and metastasis. Here, we evaluated the clinical relevance of CA125-Tn glycoform in the assessment of high-grade serous ovarian cancer (HGSOC). METHODS: A total of 72 patients diagnosed with HGSOC were included. Pre-treatment serum CA125-Tn levels were measured using an antibody-lectin enzyme-linked immunosorbent assay. The association of CA125-Tn with clinical factors was analyzed in all cases, whereas its association with peritoneal dissemination, residual disease, and progression-free survival was analyzed in stage III-IV cases. RESULTS: Pre-treatment serum CA125-Tn levels were significantly higher in advanced-stage HGSOC patients than in early-stage patients (P = 0.029). In advanced-stage patients, the pre-treatment CA125-Tn level increased with an increase in Fagotti's score (P = 0.004) and with the extension of peritoneal dissemination (P = 0.011). The pre-treatment CA125-Tn level increased with the volume of residual disease (P = 0.005). The association between CA125-Tn level and suboptimal surgery remained significant even after adjustment for treatment type and stage. Pre-treatment CA125-Tn levels were also related to disease recurrence. CONCLUSION: Serum CA125-Tn level could be a novel biomarker for peritoneal dissemination and a promising predictor of surgical completeness in ovarian cancer. Patients with lower CA125-Tn levels were more likely to have no residual disease. CA125-Tn could help surgeons to adopt optimized treatment strategies for patients with advanced ovarian cancer as a pre-treatment evaluator.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Humanos , Feminino , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/patologia , Antígeno Ca-125 , Neoplasias Ovarianas/patologia , Prognóstico , Carcinoma Epitelial do Ovário/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA