Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.448
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822872

RESUMO

Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cobre/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento
2.
Food Res Int ; 188: 114512, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823883

RESUMO

Several studies have linked the intake of lycopene and/or tomato products with improved metabolic health under obesogenic regime. The aim was to evaluate the differential impact of supplementations with several tomato genotypes differing in carotenoid content and subjected to different irrigation levels on obesity-associated disorders in mice. In this study, 80 male C57BL/6JRj mice were assigned into 8 groups to receive: control diet, high fat diet, high fat diet supplemented at 5 % w/w with 4 tomato powders originating from different tomato genotypes cultivated under control irrigation: H1311, M82, IL6-2, IL12-4. Among the 4 genotypes, 2 were also cultivated under deficit irrigation, reducing the irrigation water supply by 50 % from anthesis to fruit harvest. In controlled irrigation treatment, all genotypes significantly improved fasting glycemia and three of them significantly lowered liver lipids content after 12 weeks of supplementation. In addition, IL6-2 genotype, rich in ß-carotene, significantly limited animal adiposity, body weight gain and improved glucose homeostasis as highlighted in glucose and insulin tolerance tests. No consistent beneficial or detrimental impact of deficit irrigation to tomato promoting health benefits was found. These findings imply that the choice of tomato genotype can significantly alter the composition of fruit carotenoids and phytochemicals, thereby influencing the anti-obesogenic effects of the fruit. In contrast, deficit irrigation appears to have an overall insignificant impact on enhancing the health benefits of tomato powder in this context, particularly when compared to the genotype-related variations in carotenoid content.


Assuntos
Dieta Hiperlipídica , Genótipo , Camundongos Endogâmicos C57BL , Obesidade , Solanum lycopersicum , Solanum lycopersicum/genética , Animais , Masculino , Obesidade/genética , Obesidade/metabolismo , Camundongos , Carotenoides/metabolismo , Frutas , Água , Irrigação Agrícola/métodos , Glicemia/metabolismo , Adiposidade
3.
Plant Cell Rep ; 43(6): 152, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806834

RESUMO

KEY MESSAGE: Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.


Assuntos
Secas , Peróxido de Hidrogênio , Óxido Nítrico , Nitroprussiato , Solanum lycopersicum , Nitroprussiato/farmacologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Glutationa/metabolismo , Antioxidantes/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Nitrosação/efeitos dos fármacos , Clorofila/metabolismo
4.
Food Chem ; 454: 139811, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820631

RESUMO

Autophagy (AU) and programmed cell death (PCD) are dynamically regulated during tomato fruit defense against Botrytis cinerea, which are also manipulated by pathogenic effectors to promote colonization. Present study demonstrated that the enhanced defense induced by transient inhibition on AU by hydroxychloroquine (HCQ) facilitated the restriction of B. cinerea lesion on postharvest tomato. Pre-treatment of 2 mM (16.08 ± 3.42 cm at 7 d) and 6 mM (7.80 ± 2.39 cm at 7 d) HCQ inhibited the lesion development of B. cinerea compared with Mock treatment (50.02 ± 7.69 cm at 7 d). Transient inhibition of AU induced expression of fungal defense and transcriptional regulation related genes, but attenuated reactive oxygen species (ROS) burst gene expression. The ROS-induced PCD was compromised by HCQ with promoted ROS scavenging. The transient pre-treatment of HCQ slightly inhibited AU which triggered the feedback loop that enhanced the autophagic activity defensing against B. cinerea infection.

5.
Front Plant Sci ; 15: 1373352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721333

RESUMO

Tomato leaf curl New Delhi virus (TolCNDV) causes yellow mosaic disease, which poses a significant biotic constraint for sponge gourd cultivation, potentially resulting in crop loss of up to 100%. In the present investigation, 50 diverse genotypes were screened for 3 years under natural epiphytotic conditions. A subset of 20 genotypes was further evaluated across four different environments. The combined analysis of variance revealed a significant genotype × environment interaction. Eight genotypes consistently exhibited high and stable resistance in the preliminary screening and multi-environment testing. Furthermore, genotype plus genotype × environment interaction biplot analysis identified DSG-29 (G-3), DSG-7 (G-2), DSG-6 (G-1), and DSGVRL-18 (G-6) as the desirable genotypes, which have stable resistance and better yield potential even under diseased conditions. The genotype by yield × trait biplot analysis and multi-trait genotype-ideotype distance index analysis further validated the potential of these genotypes for combining higher yield and other desirable traits with higher resistance levels. Additionally, resistant genotypes exhibited higher activities of defense-related enzymes as compared to susceptible genotypes. Thus, genotypes identified in our study will serve as a valuable genetic resource for carrying out future resistance breeding programs in sponge gourd against ToLCNDV.

6.
J Chem Ecol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722476

RESUMO

The zoophytophagous mirid predator Nesidiocoris tenuis and the ectoparasitoid Stenomesius japonicus are important biological control agents for several agricultural pests including the invasive leafminer, Phthorimaea absoluta, a destructive pest of Solanaceous crops especially tomato in sub-Saharan Africa. However, little is known about how feeding by N. tenuis can influence the tritrophic interactions in the tomato plant. Here, we tested the hypothesis that N. tenuis phytophagy would influence the tritrophic olfactory interactions between the host plant tomato and pest, predator, and parasitoid. In olfactometer assays, P. absoluta females and N. tenuis adults were both attracted to constitutive volatiles released by the tomato plant. Whereas females of P. absoluta avoided volatiles released by N. tenuis-infested plants, S. japonicus females and N. tenuis adults were attracted to the induced volatiles. In coupled gas chromatography-electroantennographic detection (GC-EAD) recordings of intact and N. tenuis-infested plant volatiles, antennae of P. absoluta and S. japonicus females both detected eight components, whereas N. tenuis adults detected seven components which were identified by GC-mass spectrometry (GC-MS) as terpenes and green leaf volatiles (GLVs). Dose-response olfactometer bioassays revealed that the responses of P. absoluta, N. tenuis, and S. japonicus varied with the composition and concentration of blends and individual compounds tested from N tenuis-induced volatiles. Females of P. absoluta showed no preference for an eight-component blend formulated from the individual repellents including hexanal, (Z)-3-hexenyl butanoate, and δ-elemene identified in the volatiles. On the other hand, S. japonicus females were attracted to an eight-component blend including the attractants (E)-2-hexenal, (Z)-3-hexenol, methyl salicylate, ß-phellandrene, and (E)-caryophyllene. Likewise, N. tenuis adults were attracted to a seven-component blend including the attractants ß-phellandrene, δ-elemene, and (E)-caryophyllene identified in the volatiles. Our findings suggest that there is potential for the use of terpenes and GLVs to manage the insects in the tritrophic interaction.

7.
J Exp Bot ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726891

RESUMO

The REQUIRED FOR ARBUSCULAR MYCORRHIZATION1 (RAM1) transcription factor from the GRAS family is well-known by its role as a master regulator of the arbuscular mycorrhizal (AM) symbiosis in dicot and monocot species, being essential in the transcriptional reprograming for the development and functionality of the arbuscules. In tomato, SlGRAS27 is the putative ortholog of RAM1 (here named SlRAM1), but has not yet been characterized. A reduced colonization of the root and an impaired arbuscule formation were observed in the SlRAM1 silenced plants, confirming the functional conservation of the RAM1 ortholog in tomato . However, unexpectedly, SlRAM1 overexpressing (UBIL:SlRAM1) plants also showed a decreased mycorrhizal colonization. Analysis of non-mycorrhizal UBIL:SlRAM1 roots revealed an overall regulation of AM-related genes and a reduction of strigolactone biosynthesis. Moreover, the external application of the strigolactone analogue GR244DO almost completely reversed the negative effects of SlRAM1 overexpression on the frequency of mycorrhization. However, it only partially recovered the pattern of arbuscule distribution observed in control plants. Our results strongly suggest that SlRAM1 has a dual regulatory role during mycorrhization and, apart from its recognized action as a positive regulator of arbuscule development, SlRAM1 is also involved in different mechanisms for the negative regulation of mycorrhization, including the repression of strigolactone biosynthesis.

8.
Plant Foods Hum Nutr ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710923

RESUMO

The present work carries out a quantitative analysis of the major bioactive compounds found in the native Mexican purple tomatoes. Total phenolic content ranged from 7.54 to 57.79 mg TPC/g DM, total flavonoid content ranged from 1.89 to 16.93 mg TFC/g DM, total anthocyanin content ranged from 0.29 to 2.56 mg TAC/g DM, and total carotenoid content ranged from 0.11 to 0.75 mg TCC/ g DM. In addition, 14 phenolic acids were identified, among which caffeoylquinic acid derivatives were the most abundant compounds with chlorogenic acid concentration up to 9.680 mg/g DM, together with flavonoids, such as rutin and quercetin-hexoxide. The qualitative analysis also showed the presence of 9 acylated anthocyanins and 2 carotenoids with significant functional features. As for anthocyanins, their chemical structures disclosed special structural features: glycosylated anthocyanins exhibited cis-trans hydroxycinnamic moieties and petunidin-3-(trans-p-coumaroyl)-rutinoside-5-glucoside was reported to be the main anthocyanin, whitin the range of concentrations between 0.160 and 1.143 mg/g DM.

9.
Cell Mol Life Sci ; 81(1): 222, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767725

RESUMO

BACKGROUND: Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE: Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS: Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION: Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenoma , Genoma de Planta , Solanum lycopersicum , Solanum lycopersicum/genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
10.
FEMS Microbes ; 5: xtae012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770063

RESUMO

To meet the food and feed demands of the growing population, global food production needs to double by 2050. Climate change-induced challenges to food crops, especially soil salinization, remain a major threat to food production. We hypothesize that endophytic fungi isolated from salt-adapted host plants can confer salinity stress tolerance to salt-sensitive crops. Therefore, we isolated fungal endophytes from shrubs along the shores of saline alkaline Lake Magadi and evaluated their ability to induce salinity stress tolerance in tomato seeds and seedlings. Of 60 endophytic fungal isolates, 95% and 5% were from Ascomycetes and Basidiomycetes phyla, respectively. The highest number of isolates (48.3%) were from the roots. Amylase, protease and cellulase were produced by 25, 30 and 27 isolates, respectively; and 32 isolates solubilized phosphate. Only eight isolates grew at 1.5 M NaCl. Four fungal endophytes (Cephalotrichum cylindricum, Fusarium equiseti, Fusarium falciforme and Aspergilus puniceus) were tested under greenhouse conditions for their ability to induce salinity tolerance in tomato seedlings. All four endophytes successfully colonized tomato seedlings and grew in 1.5 M NaCl. The germination of endophyte-inoculated seeds was enhanced by 23%, whereas seedlings showed increased chlorophyll and biomass content and decreased hydrogen peroxide content under salinity stress, compared with controls. The results suggest that the the four isolates can potentially be used to mitigate salinity stress in tomato plants in salt-affected soils.

11.
Food Chem ; 453: 139612, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772306

RESUMO

Fusarium oxysporum and Botrytis cinerea are the main pathogens that cause fruit decay and reduce the postharvest shelf life of cherry tomatoes. Boosting the potency of natural products requires implementing structural modification to combat postharvest pathogens. Herein, we developed a novel Vanillin-Deep Eutectic Agent (V-DEA) from natural compounds and evaluated its effectiveness against tomato fruit rot pathogens. The results demonstrated that V-DEA suppressed mycelium growth and spore germination of F. oxysporum and B. cinerea by enhancing cell membrane permeability, increasing lipid peroxidation, and inhibiting enzyme activities. Importantly, using 8-mM V-DEA successfully prevented postharvest decay in cherry tomatoes, while 4-mM significantly extended their shelf life by reducing weight loss and shriveling, and enhancing key fruit qualities such as total soluble solids, ascorbic acid, tartaric acid, and lycopene. In conclusion, V-DEA exhibits dual properties as a potent pathogen inhibitor and antioxidant activity, thus prolonging the shelf life of cherry tomatoes.

12.
Foods ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731786

RESUMO

This study primarily aimed to enhance the extraction of cutin from industrial tomato peel residues. Initially, the conventional extraction process was optimized using response surface methodology (RSM). Subsequently, high-pressure homogenization (HPH) was introduced to improve extraction efficiency and sustainability. The optimization process focused on determining the optimal conditions for conventional extraction via chemical hydrolysis, including temperature (100-130 °C), time (15-120 min), and NaOH concentration (1-3%). The optimized conditions, determined as 130 °C, 120 min, and 3% NaOH solution, yielded a maximum cutin extraction of 32.5%. Furthermore, the results indicated that applying HPH pre-treatment to tomato peels before alkaline hydrolysis significantly increased the cutin extraction yield, reaching 46.1%. This represents an approximately 42% increase compared to the conventional process. Importantly, HPH pre-treatment enabled cutin extraction under milder conditions using a 2% NaOH solution, reducing NaOH usage by 33%, while still achieving a substantial cutin yield of 45.6%. FT-IR analysis confirmed that cutin obtained via both conventional and HPH-assisted extraction exhibited similar chemical structures, indicating that the main chemical groups and structure of cutin remained unaltered by HPH treatment. Furthermore, cutin extracts from both conventional and HPH-assisted extraction demonstrated thermal stability up to approximately 200 °C, with less than 5% weight loss according to TGA analysis. These findings underscore the potential of HPH technology to significantly enhance cutin extraction yield from tomato peel residues while utilizing milder chemical hydrolysis conditions, thereby promoting a more sustainable and efficient cutin extraction process.

13.
Plants (Basel) ; 13(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732492

RESUMO

Tomato yellow leaf curl virus (TYLCV) is a prominent viral pathogen that adversely affects tomato plants. Effective strategies for mitigating the impact of TYLCV include isolating tomato plants from the whitefly, which is the vector of the virus, and utilizing transgenic lines that are resistant to the virus. In our preliminary investigations, we observed that the use of growth retardants increased the rate of TYLCV infection and intensified the damage to the tomato plants, suggesting a potential involvement of gibberellic acid (GA) in the conferring of resistance to TYLCV. In this study, we employed an infectious clone of TYLCV to inoculate tomato plants, which resulted in leaf curling and growth inhibition. Remarkably, this inoculation also led to the accumulation of GA3 and several other phytohormones. Subsequent treatment with GA3 effectively alleviated the TYLCV-induced leaf curling and growth inhibition, reduced TYLCV abundance in the leaves, enhanced the activity of antioxidant enzymes, and lowered the reactive oxygen species (ROS) levels in the leaves. Conversely, the treatment with PP333 exacerbated TYLCV-induced leaf curling and growth suppression, increased TYLCV abundance, decreased antioxidant enzyme activity, and elevated ROS levels in the leaves. The analysis of the gene expression profiles revealed that GA3 up-regulated the genes associated with disease resistance, such as WRKYs, NACs, MYBs, Cyt P450s, and ERFs, while it down-regulated the DELLA protein, a key agent in GA signaling. In contrast, PP333 induced gene expression changes that were the opposite of those caused by the GA3 treatment. These findings suggest that GA plays an essential role in the tomato's defense response against TYLCV and acts as a positive regulator of ROS scavenging and the expression of resistance-related genes.

14.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771255

RESUMO

Invasive species may occupy quite different environments in their invaded areas to native ones, which may intensively interfere with predicting potential distribution through ecological niche modeling (ENM). Here, we take the tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), a tomato pest, as an example to investigate this topic. We analyzed niche expansion, stability, unfilling, and Schoener's D by principal component analysis (PCA) ordination method to examine its realized niche shifts and to explore how ENM approaches are affected by niche shifts. We used 5 datasets: Asian, African, European, South American, and global occurrence records in this study. Results showed that high niche unfilling for the species' invaded areas in Asia (20%), Africa (12%), and Europe (37%), possibly due to T. absoluta being in the early stages of invasion. High niche expansion was observed in Asia (38%) and Europe (19%), implying that some European and Asian populations had reached new climatic areas. African niche had the most niche stability (94%) and was equivalent to the native one in climate space (PCA ordination method), but the n-dimensional climate space framework showed that they were different. When projecting the native model to Asia and Europe, the native model performed poorly, implying that the niche shifts affected the transferability of the native model. ENM based on global data outperformed than other models, and our results suggested that T. absoluta has a large potential distribution in Asia, Mexico, South Europe, the United States, and Australia. Meanwhile, we recommend updating ENMs based on the species' invasion stage.


Assuntos
Distribuição Animal , Ecossistema , Espécies Introduzidas , Mariposas , Animais , Mariposas/fisiologia , Europa (Continente) , Ásia
15.
Plant Methods ; 20(1): 61, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725014

RESUMO

Tomatoes possess significant nutritional and economic value. However, frequent diseases can detrimentally impact their quality and yield. Images of tomato diseases captured amidst intricate backgrounds are susceptible to environmental disturbances, presenting challenges in achieving precise detection and identification outcomes. This study focuses on tomato disease images within intricate settings, particularly emphasizing four prevalent diseases (late blight, gray leaf spot, brown rot, and leaf mold), alongside healthy tomatoes. It addresses challenges such as excessive interference, imprecise lesion localization for small targets, and heightened false-positive and false-negative rates in real-world tomato cultivation settings. To address these challenges, we introduce a novel method for tomato disease detection named TomatoDet. Initially, we devise a feature extraction module integrating Swin-DDETR's self-attention mechanism to craft a backbone feature extraction network, enhancing the model's capacity to capture details regarding small target diseases through self-attention. Subsequently, we incorporate the dynamic activation function Meta-ACON within the backbone network to further amplify the network's ability to depict disease-related features. Finally, we propose an enhanced bidirectional weighted feature pyramid network (IBiFPN) for merging multi-scale features and feeding the feature maps extracted by the backbone network into the multi-scale feature fusion module. This enhancement elevates detection accuracy and effectively mitigates false positives and false negatives arising from overlapping and occluded disease targets within intricate backgrounds. Our approach demonstrates remarkable efficacy, achieving a mean Average Precision (mAP) of 92.3% on a curated dataset, marking an 8.7% point improvement over the baseline method. Additionally, it attains a detection speed of 46.6 frames per second (FPS), adeptly meeting the demands of agricultural scenarios.

16.
Plant Physiol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728423

RESUMO

Cysteine desulfhydrase (LCD) catalyzes the generation of the signaling molecule hydrogen sulfide (H2S) in plants. In this study, we found that H2S can inhibit tomato (Solanum lycopersicum) fruit ripening and SlWRKY6 undergoes differential protein persulfidation in SlLCD1-overexpressing leaves. Then, further study indicated that SlWRKY6 could be persulfidated by H2S at Cys396. By construction of slwrky6 mutants and SlWRKY6-OE lines, we found that SlWRKY6 positively regulates leaf senescence and fruit ripening by activating the transcription of ripening-related genes STAYGREEN 1 (SlSGR1) and Senescence-Associated Gene 12 (SlSAG12). In addition, SlWRKY6 interacted with kinase SlMAPK4 and was phosphorylated at Ser33. Dual luciferase transient expression assays and electrophoretic mobility shift assays indicated that SlWRKY6 persulfidation attenuated its transcriptional regulation of target genes SlSGR1 and SlSAG12, whereas SlWRKY6 phosphorylation by SlMAPK4 activated the transcription of target genes to promote fruit ripening. Moreover, we provided evidence that SlWRKY6 persulfidation attenuated its SlMAPK4-mediated phosphorylation to inhibit tomato fruit ripening. By transient expression of SlWRKY6, SlWRKY6C396A, SlWRKY6S33A and SlWRKY6S33D in slwrky6 fruits, we found that SlWRKY6 persulfidation attenuated the expression of SlSGR1 and SlSAG12 thereby delaying tomato fruit ripening, while SlWRKY6 phosphorylation increased the expression of target genes. As tomato fruits ripened, endogenous H2S production decreased, while SlMAPK4 expression increased. Therefore, our findings reveal a model in which SlWRKY6 persulfidation due to higher endogenous H2S levels in un-ripened fruit inhibits its ability to activate SlSGR1 and SlSAG12 expression, while SlWRKY6 phosphorylation by SlMAPK4 activates its transcriptional activity, thereby promoting tomato fruit ripening.

17.
Front Plant Sci ; 15: 1397765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711609

RESUMO

Calreticulin (CRT) is a calcium-binding endoplasmic reticulum (ER) protein that has been identified for multiple cellular processes, including protein folding, regulation of gene expression, calcium (Ca2+) storage and signaling, regeneration, and stress responses. However, the lack of information about this protein family in tomato species highlights the importance of functional characterization. In the current study, 21 CRTs were identified in four tomato species using the most recent genomic data and performed comprehensive bioinformatics and SlCRT expression in various tissues and treatments. In the bioinformatics analysis, we described the physiochemical properties, phylogeny, subcellular positions, chromosomal location, promoter analysis, gene structure, motif distribution, protein structure and protein interaction. The phylogenetic analysis classified the CRTs into three groups, consensus with the gene architecture and conserved motif analyses. Protein structure analysis revealed that the calreticulin domain is highly conserved among different tomato species and phylogenetic groups. The cis-acting elements and protein interaction analysis indicate that CRTs are involved in various developmental and stress response mechanisms. The cultivated and wild tomato species exhibited similar gene mapping on chromosomes, and synteny analysis proposed that segmental duplication plays an important role in the evolution of the CRTs family with negative selection pressure. RNA-seq data analysis showed that SlCRTs were differentially expressed in different tissues, signifying the role of calreticulin genes in tomato growth and development. qRT-PCR expression profiling showed that all SlCRTs except SlCRT5 were upregulated under PEG (polyethylene glycol) induced drought stress and abscisic acid (ABA) treatment and SlCRT2 and SlCRT3 were upregulated under salt stress. Overall, the results of the study provide information for further investigation of the functional characterization of the CRT genes in tomato.

18.
Plant Methods ; 20(1): 60, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698422

RESUMO

BACKGROUND: Despite major efforts over the last decades, the rising demands of the growing global population makes it of paramount importance to increase crop yields and reduce losses caused by plant pathogens. One way to tackle this is to screen novel resistant genotypes and immunity-inducing agents, which must be conducted in a high-throughput manner. RESULTS: Colour-analyzer is a free web-based tool that can be used to rapidly measure the formation of lesions on leaves. Pixel colour values are often used to distinguish infected from healthy tissues. Some programs employ colour models, such as RGB, HSV or L*a*b*. Colour-analyzer uses two colour models, utilizing both HSV (Hue, Saturation, Value) and L*a*b* values. We found that the a* b* values of the L*a*b* colour model provided the clearest distinction between infected and healthy tissue, while the H and S channels were best to distinguish the leaf area from the background. CONCLUSION: By combining the a* and b* channels to determine the lesion area, while using the H and S channels to determine the leaf area, Colour-analyzer provides highly accurate information on the size of the lesion as well as the percentage of infected tissue in a high throughput manner and can accelerate the plant immunity research field.

19.
Cell ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38781969

RESUMO

Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.

20.
Food Chem ; 454: 139685, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38795629

RESUMO

In this study, a new composite with combination of chitosan oligosaccharide (COS) and zinc oxide nanoparticles (ZnO NPs), termed Chitosan Oligosaccharide-Zinc Oxide Nanocomposites (COS-ZnO NC), was designed to enhance the quality of tomato fruits during postharvest storage. SEM analysis showed a uniform distribution of COS-ZnO NC films on tomato surfaces, indicating high biocompatibility, while the FTIR spectrum confirmed the interaction of COS and ZnO NPs via hydrogen bonds. The COS-ZnO NC exerts positive effects on post-harvest quality of tomato fruits, including significantly reduced water loss, fewer skin wrinkles, increased sugar-acid ratio, and enhanced vitamin C and carotenoids accumulation. Furthermore, COS-ZnO NC induces transcription of carotenoid biosynthesis genes and promotes carotenoids storage in the chromoplast. These results suggest that the COS-ZnO NC film can significantly improve the quality traits of tomato fruits, and therefore is potential in post-harvest storage of tomato fruits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...