Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 215: 109022, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137680

RESUMO

Tonoplast intrinsic proteins (TIPs) are crucial in facilitating the transportation of water and various small solutes across biological membranes. The evolutionary path and functional roles of TIPs is poorly understood in plants. In the present study, a total of 976 TIPs were identified in 104 diverse species and subsequently studied to trace their lineage-specific evolutionary path and tissue-specific function. Interestingly, TIPs were found to be absent in lower forms such as algae and fungi and they evolved later in primitive plants like bryophytes. Bryophytes possess a distant class of TIPs, denoted as TIP6, which is not found in higher plants. The aromatic/arginine (ar/R) selectivity filter found in TIP6 of certain liverworts share similarity with hybrid intrinsic protein (HIP), suggesting an evolutionary kinship. As plants evolved to more advanced forms, TIPs diversified into five different sub-groups (TIP1 to TIP5). Notably, TIP5 is a sub-group unique to angiosperms. The evolutionary history of the TIP subfamily reveals an interesting observation that the TIP3 subgroup has evolved within seed-bearing Spermatophyta. Further, TIPs exhibit tissue-specific expression that is conserved within various plant species. Specifically, the TIP3s were found to be exclusively expressed in seeds. Quantitative PCR analysis of TIP3s showed gradually increasing expression in soybean seed developmental stages. The expression of TIP3s in different plant species was also found to be gradually increasing during seed maturation. The results presented here address the knowledge gap concerning the evolutionary background of TIPs, specifically TIP3 in plants, and provide valuable insights for a deeper comprehension of the functions of TIPs in plants.


Assuntos
Evolução Molecular , Proteínas de Plantas , Sementes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
2.
BMC Plant Biol ; 24(1): 298, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632542

RESUMO

BACKGROUND: Tonoplast intrinsic proteins (TIPs), which typically mediate water transport across vacuolar membranes, play an essential role in plant growth, development, and stress responses. However, their characterization in tigernut (Cyperus esculentus L.), an oil-bearing tuber plant of the Cyperaceae family, is still in the infancy. RESULTS: In this study, a first genome-wide characterization of the TIP subfamily was conducted in tigernut, resulting in ten members representing five previously defined phylogenetic groups, i.e., TIP1-5. Although the gene amounts are equal to that present in two model plants Arabidopsis and rice, the group composition and/or evolution pattern were shown to be different. Except for CeTIP1;3 that has no counterpart in both Arabidopsis and rice, complex orthologous relationships of 1:1, 1:2, 1:3, 2:1, and 2:2 were observed. Expansion of the CeTIP subfamily was contributed by whole-genome duplication (WGD), transposed, and dispersed duplications. In contrast to the recent WGD-derivation of CeTIP3;1/-3;2, synteny analyses indicated that TIP4 and - 5 are old WGD repeats of TIP2, appearing sometime before monocot-eudicot divergence. Expression analysis revealed that CeTIP genes exhibit diverse expression profiles and are subjected to developmental and diurnal fluctuation regulation. Moreover, when transiently overexpressed in tobacco leaves, CeTIP1;1 was shown to locate in the vacuolar membrane and function in homo/heteromultimer, whereas CeTIP2;1 is located in the cell membrane and only function in heteromultimer. Interestingly, CeTIP1;1 could mediate the tonoplast-localization of CeTIP2;1 via protein interaction, implying complex regulatory patterns. CONCLUSIONS: Our findings provide a global view of CeTIP genes, which provide valuable information for further functional analysis and genetic improvement through manipulating key members in tigernut.


Assuntos
Aquaporinas , Arabidopsis , Cyperus , Cyperus/genética , Arabidopsis/genética , Filogenia , Genoma , Plantas/genética , Aquaporinas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
3.
Front Plant Sci ; 13: 1009487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275524

RESUMO

Genetic modification is one possible strategy to generate bananas (Musa spp.) with resistance to the soil-borne pathogen causing Fusarium wilt. The availability of banana root-specific promoters to target transgene expression to the sites of infection would be beneficial. We have assessed 18 promoter sequences derived from a range of plant species for their expression profiles in banana tissues to identify those with root-specific activity. Promoter sequences were isolated and fused to the ß-glucuronidase (GUS) gene to assess their expression levels and tissue specificity in both banana and the model plant tobacco. Two heterologous promoters conferring high root expression levels in banana were identified, including a ß-glucosidase 1 (GLU1) promoter from maize and the RB7-type tonoplast intrinsic protein (TIP)-2 promoter from strawberry. Further, a novel Musa TIP2-2 promoter sequence was isolated and characterized which, when fused to the GUS gene, conferred very high GUS expression levels in banana roots. These promoters will expand the options for the control of gene expression in genetically modified bananas, providing a tool to develop plants with resistance not only to soil-borne diseases such as Fusarium wilt, but also for the improvement of other traits, such as nematode resistance, nutrition or abiotic stress resistance.

4.
Ecotoxicol Environ Saf ; 233: 113333, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203006

RESUMO

Zinc (Zn) is an essential micronutrient for plants. However, excess Zn is toxic to non-accumulating plants like Arabidopsis thaliana. To cope with Zn toxicity, non-accumulating plants need to keep excess Zn in the less sensitive root tissues and restrict its translocation to the vulnerable shoot tissues, a process referred to as Zn immobilization in the root. However, the mechanism underlying Zn immobilization is not fully understood. In Arabidopsis, sequestration of excess Zn to the vacuole of root cells is crucial for Zn immobilization, facilitated by distinct tonoplast-localized transporters. As some members of the aquaporin superfamily have been implicated in transporting metal ions besides polar but non-charged small molecules, we tested whether Arabidopsis thaliana tonoplast intrinsic proteins (AtTIPs) could be involved in Zn immobilization and resistance. We found that AtTIP2;2 is involved in retaining excess Zn in the root, limiting its translocation to the shoot, and facilitating its accumulation in the leaf trichome. Furthermore, when expressed in yeast, the tonoplast-localized AtTIP2;2 renders glutathione (GSH)-dependent Zn resistance to yeast cells, suggesting that AtTIP2;2 facilitates the across-tonoplast transport of GSH-Zn complexes. Our findings provide new insights into aquaporins' roles in heavy metal resistance and detoxification in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Vacúolos/metabolismo , Zinco/metabolismo , Zinco/toxicidade
5.
Front Plant Sci ; 13: 831916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154233

RESUMO

Water uptake facilitates the initiation of seed germination. It is presumed that aquaporin (AQP)-mediated water inflow contributes to seed germination, but the genetic evidence is still lacking. This study aimed at genome-wide identification of ZmAQPs and further determined the physiological functions. Following a comprehensive search, a total of 41 ZmAQPs were identified according to the latest genome database. Through bioinformatic approaches, the physicochemical characteristics, phylogenetic relationships, and structural features of ZmAQPs were analyzed. The gene expression analysis of 20 high-resolution and multi-tissues samples showed that ZmAQPs had distinct spatiotemporal and tissue-specific expression profiles during seed germination and early seedling development. We then focused on the aquaporin of maize tonoplast intrinsic protein 3 (ZmTIP3), which is specifically expressed in germinating seed. A mutant zmtip3-1 with disruption of the ZmTIP3-1 gene showed shorter shoot and root length, and decreased seedling dry weight compared with the control (W22). The result revealed that ZmTIP3-1 improved the absolute content of seed protein and promoted storage reserves mobilization, suggesting that ZmTIP3 may be a positive regulator of seed vigor. This work provides valuable clues for understanding the function and possible regulatory mechanism of ZmAQPs in seed germination and seedling growth.

6.
Gene ; 761: 145043, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32777530

RESUMO

Tonoplast Intrinsic Proteins (TIPs) constitute a significant class of the aquaporins. The TIPs control water trade among cytosolic and vacuolar compartments and can also transport glycerol, ammonia, urea, hydrogen peroxide, metals/metalloids, and so forth. Additionally, TIPs are engaged with different abiotic stress responses and developmental processes like leaf expansion, root elongation and seed germination. In this study, ten TIP genes in the rice genome were identified from Oryza sativa ssp indica. Among these, representative groups of TIP genes were cloned and sequenced whilst some TIP sequences showed stop codons in the coding region. The secondary structure analysis represented six conserved transmembrane helices along with the inter-helical regions having conserved motifs. The representative three-dimensional tetrameric design of protein sequence of TIP1;1 displayed key features like NPA motifs, aromatic/arginine (ar/R) selectivity filters, and Froger's residues. The vacuolar localization, transmembrane topological properties, and conserved motif analysis of the cloned genes altogether supported their identity as TIPs. An unrooted phylogenetic tree delineated the relatedness of TIPs from Oryza with different species and bunched them into five clades. The promoter analysis uncovered key regulons associated with administering abiotic stress responses. Gene expression studies showed thatTIPsare differentially regulated under salt and drought stress at various time points in shoots and roots of rice. Also, the pattern of expression was found to be significantly variable in five different rice tissues. The heat-map based tissue and stress- specific expression analysis supported the experimental findings. In conclusion, the identification and transcript-level expression studies of TIPs significantly contribute towards the comprehension of their utilitarian significance in the abiotic stress response.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Clonagem Molecular/métodos , Secas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Oryza/metabolismo , Filogenia , Folhas de Planta/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Vacúolos/genética , Água/metabolismo
7.
Front Plant Sci ; 11: 705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636852

RESUMO

Hydraulics of plants that have different strategies of stomatal regulation under water stress are relatively poorly understood. We explore how root and shoot hydraulics, stomatal conductance (g s), leaf and root aquaporin (AQP) expression, and abscisic acid (ABA) concentration in leaf xylem sap ([ABA]xylemsap) may be coordinated under mild water stress and exogenous ABA applications in two Vitis vinifera L. cultivars traditionally classified as near-isohydric (Grenache) and near-anisohydric (Syrah). Under water stress, Grenache exhibited stronger adjustments of plant and root hydraulic conductances and greater stomatal sensitivity to [ABA]xylemsap than Syrah resulting in greater conservation of soil moisture but not necessarily more isohydric behavior. Correlations between leaf (Ψleaf) and predawn (ΨPD) water potentials between cultivars suggested a "hydrodynamic" behavior rather than a particular iso-anisohydric classification. A significant decrease of Ψleaf in well-watered ABA-fed vines supported a role of ABA in the soil-leaf hydraulic pathway to regulate g s. Correlations between leaf and root AQPs expression levels under water deficit could explain the response of leaf (K leaf) and root (Lp r) hydraulic conductances in both cultivars. Additional studies under a wider range of soil water deficits are required to explore the possible differential regulation of g s and plant hydraulics in different cultivars and experimental conditions.

8.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545623

RESUMO

The vacuole is indispensable for cells to maintain their water potential and to respond to environmental changes. Nevertheless, investigations of vacuole morphology and its functions have been limited to Arabidopsis thaliana with few studies in the model crop rice (Oryza sativa). Here, we report the establishment of bright rice vacuole fluorescent reporter systems using OsTIP1;1, a tonoplast water channel protein, fused to either an enhanced green fluorescent protein or an mCherry red fluorescent protein. We used the corresponding transgenic rice lines to trace the vacuole morphology in roots, leaves, anthers, and pollen grains. Notably, we observed dynamic changes in vacuole morphologies in pollen and root epidermis that corresponded to their developmental states as well as vacuole shape alterations in response to abiotic stresses. Our results indicate that the application of our vacuole markers may aid in understanding rice vacuole function and structure across different tissues and environmental conditions in rice.


Assuntos
Aciltransferases/genética , Proteínas Luminescentes/genética , Oryza/crescimento & desenvolvimento , Vacúolos/ultraestrutura , Aciltransferases/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Oryza/genética , Oryza/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico , Vacúolos/metabolismo , Proteína Vermelha Fluorescente
9.
J Plant Physiol ; 251: 153186, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32502917

RESUMO

The coalescence of protein storage vacuoles (PSVs) is one of the most prominent cellular changes occurring in cereal aleurone cells during germination. This structural change is highly coupled with the functional transition of this organelle from a storage compartment to a lytic section. Gibberellic acid (GA) promotes this process, whereas abscisic acid (ABA) prevents it. Previously, we demonstrated that ABA-inducible HvTIP3;1 plays a decisive role in ABA-mediated prevention of PSV fusion. In this follow-up study, we examined whether the aquaporin activity of tonoplast intrinsic protein (TIP) is related to its preventive effect on PSV fusion using various functional mutants. The defective forms of aquaporin (HvTIP3;1m and HvTIP3;1ΔNPA-GFPs for HvTIP3;1, and HvTIP1;2m for HvTIP1;2) were found to be less effective than the usual form in delaying the PSV fusion process occurring in GA-treated cells. In contrast, overexpression of HvTIP3;1m reduced the preventive effect of ABA on PSV fusion. Upon inhibition of aquaporin activity using mercury, PSV fusion occurred to a greater extent in ABA-treated barley protoplasts. These data suggest that the aquaporin activity of TIP is involved in the deterrent effect of TIP on PSV coalescence. TIP3-GFP barley transgenic seeds showed prolonged expression of the TIP3;1 transcript. Moreover, PSV fusion progressed at a much slower rate compared to wild type. Additionally, the degradation of storage proteins was not as efficient, suggesting that a metamorphic transition of PSVs to lytic organelles is closely correlated with the disappearance of HvTIPs and the PSV fusion process.


Assuntos
Aquaporinas/metabolismo , Hordeum/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Transporte Proteico , Vacúolos/metabolismo
10.
Plant Physiol Biochem ; 148: 63-69, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31945668

RESUMO

Proper storage prolongs peony market supply. Here, we determined the changes in fresh weight and expression of four aquaporin genes under dry storage (DS) and wet storage (WS). It has showed that after harvesting, the fresh weight change was accompanied with flower opening. After both short- and long-term of storage, the water uptake efficiency in DS group was greater during the first few vase days, providing a direct material basis of DS improved vase quality. The gene expression results showed that PlPIP1;3 and PlTIP2;1 were mainly expressed in petals, whereas PlNIP1;2-like and PlSIP2;1 were mainly expressed in the green tissues. In addition, the expression of PlTIP2;1 in the petals was consistent with the flower opening process, indicating that it may play a major role in facilitating water uptake. During cold storage, the expression of PlPIP1;3 and PlTIP2;1 was higher or more rapidly induced in the DS group, and thus we deduced that they play important roles in improving the vase quality of DS. Furthermore, the expression of PlNIP1;2-like in the early stage of the DS group was more stable than in WS, which may also be partially responsible for the vase quality improvement. In contrast, PlSIP2;1 may not be involved, since no significant change was observed between the DS and WS group. In short, the expression of PlPIP1;3 and PlTIP2;1 in the DS group during storage may improve water uptake efficiency during the vase period and then improving the vase quality of cut peony.


Assuntos
Agricultura/métodos , Aquaporinas , Flores , Paeonia , Água , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Paeonia/metabolismo , Água/metabolismo
11.
Plant Physiol Biochem ; 145: 95-106, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31675527

RESUMO

In order to improve the understanding of plant water relations under drought stress, the water use behavior of two Fragaria x ananassa Duch. cultivars, contrasting in their drought stress phenotype, is identified. Under drought, stomatal closure is gradual in Figaro. Based on this, we associate Figaro with conservative water use behavior. Contrarily, drought stress causes a sudden and steep decrease in stomatal conductance in Flair, leading to the identification of Flair as a prodigal water use behavior cultivar. Responses to progressive drought on the one hand and an osmotic shock on the other hand are compared between these two cultivars. Tonoplast intrinsic protein mRNA levels are shown to be upregulated under progressive drought in the roots of Figaro only. Otherwise, aquaporin expression upon drought or osmotic stress is similar between both cultivars, i.e. plasma membrane intrinsic proteins are downregulated under progressive drought in leaves and under short term osmotic shock in roots. In response to osmotic shock, root hydraulic conductivity did not change significantly and stomatal closure is equal in both cultivars. De novo abscisic acid biosynthesis is upregulated in the roots of both cultivars under progressive drought.


Assuntos
Aquaporinas , Secas , Fragaria , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Estresse Fisiológico , Aquaporinas/genética , Fragaria/genética , Fragaria/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas , Estresse Fisiológico/genética , Água
12.
Plant Cell Environ ; 42(8): 2325-2339, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30986891

RESUMO

Aquaporins influence water flow in plants, yet little is known of their involvement in the water-driven process of seed germination. We therefore investigated their role in seeds in the laboratory and under field and global warming conditions. We mapped the expression of tonoplast intrinsic proteins (TIPs) during dormancy cycling and during germination under normal and water stress conditions. We found that the two key tonoplast aquaporins, TIP3;1 and TIP3;2, which have previously been implicated in water or solute transport, respectively, act antagonistically to modulate the response to abscisic acid, with TIP3;1 being a positive and TIP3;2 a negative regulator. A third isoform, TIP4;1, which is normally expressed upon completion of germination, was found to play an earlier role during water stress. Seed TIPs also contribute to the regulation of depth of primary dormancy and differences in the induction of secondary dormancy during dormancy cycling. Protein and gene expression during annual cycling under field conditions and a global warming scenario further illustrate this role. We propose that the different responses of the seed TIP contribute to mechanisms that influence dormancy status and the timing of germination under variable soil conditions.


Assuntos
Aquaporinas/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Estresse Fisiológico , Ácido Abscísico/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meio Ambiente , Regulação da Expressão Gênica no Desenvolvimento , Germinação , Aquecimento Global , Proteínas de Membrana/metabolismo , Dormência de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/fisiologia , Temperatura , Água/metabolismo
13.
Curr Protein Pept Sci ; 20(4): 368-395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30387391

RESUMO

The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.


Assuntos
Aquaporinas , Proteínas de Plantas , Plantas/química , Aquaporinas/genética , Aquaporinas/metabolismo , Biotecnologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Plant Cell Environ ; 41(12): 2844-2857, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103284

RESUMO

Beta vulgaris (sugar beet) is one of the most important industrial crops. Screening of a cDNA library for sugar beet genes able to confer cold tolerance upon overexpression in yeast identified a novel aquaporin, which we named BvCOLD1. The amino acid sequence of BvCOLD1 indicated that an acidic protein (pI 5.18) is similar to tonoplast intrinsic protein aquaporins. RNA expression analysis indicated that BvCOLD1 is expressed in all sugar beet organs. Confocal microscopy of a green fluorescent protein-tagged version localized BvCOLD1 in the endoplasmic reticulum in yeast and in plant cells. Experiments in yeast showed that BvCOLD1 has an important role in transporting several molecules, among them is boron, one of the most limiting micronutrients for sugar beet cultivation. Transgenic Arabidopsis thaliana plants overexpressing BvCOLD1 showed enhanced tolerance to cold, to different abiotic stresses, and to boron deficiency at different developmental stages. Searches in databases only retrieved BvCOLD1 orthologues in genomes from the Chenopodioideae, a subfamily of the Amaranthaceae family that includes the closely related crop Spinacea oleracea and halotolerant plants such as Salicornia herbacea or Suaeda glauca. Orthologues share a conserved sequence in the carboxy terminus, not present in other aquaporins, which is required for the functionality of the protein.


Assuntos
Aquaporinas/metabolismo , Beta vulgaris/metabolismo , Boro/metabolismo , Proteínas de Plantas/metabolismo , Aquaporinas/genética , Aquaporinas/fisiologia , Arabidopsis , Beta vulgaris/genética , Beta vulgaris/fisiologia , Northern Blotting , Temperatura Baixa , Retículo Endoplasmático/metabolismo , Homeostase , Microscopia Confocal , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico , Nicotiana
15.
Front Plant Sci ; 7: 1810, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965702

RESUMO

Plant aquaporins are water channels implicated in various physiological processes, including growth, development and adaptation to stress. In this study, the Tonoplast Intrinsic Protein (TIP) gene subfamily of Eucalyptus, an economically important woody species, was investigated and characterized. A genome-wide survey of the Eucalyptus grandis genome revealed the presence of eleven putative TIP genes (referred as EgTIP), which were individually assigned by phylogeny to each of the classical TIP1-5 groups. Homology modeling confirmed the presence of the two highly conserved NPA (Asn-Pro-Ala) motifs in the identified EgTIPs. Residue variations in the corresponding selectivity filters, that might reflect differences in EgTIP substrate specificity, were observed. All EgTIP genes, except EgTIP5.1, were transcribed and the majority of them showed organ/tissue-enriched expression. Inspection of the EgTIP promoters revealed the presence of common cis-regulatory elements implicated in abiotic stress and hormone responses pointing to an involvement of the identified genes in abiotic stress responses. In line with these observations, additional gene expression profiling demonstrated increased expression under polyethylene glycol-imposed osmotic stress. Overall, the results obtained suggest that these novel EgTIPs might be functionally implicated in eucalyptus adaptation to stress.

16.
Plant Sci ; 234: 74-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25804811

RESUMO

Water movement across cellular membranes is mostly regulated by aquaporins. A tonoplast intrinsic protein PgTIP1 from Panax ginseng has been found to play an important role in plant growth and development, and also in the response of plants to abiotic stress. However, the regulation of its function and activity remains unknown. To answer this question, mutated forms of PgTIP1 were made by replacing Ser(128) with Ala (named S128A) or Asp (named S128D), and also by replacing Thr(54) with Ala (named T54A) or Asp (named T54D). Then, wild type or mutated PgTIP1 was expressed in yeast and water transport was monitored in protoplasts. The substitution of Ser(128) abolished the water channel activity of PgTIP1, while the substitution of Thr(54) did not inhibit its activity. Moreover, the overexpression of PgTIP1 but not S128A or S128D in Arabidopsis significantly increased plant growth as determined by biomass production, it also had a beneficial effect on salt stress tolerance. Importantly, the overexpression of PgTIP1 led to the altered expression of stress-related genes, which made the plants more tolerant to salt stress. Our results demonstrated that PgTIP1 conferred faster growth and enhanced tolerance to salt in Arabidopsis, and that its biological activity related to Ser(128) residue.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo , Panax/genética , Proteínas de Plantas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Secas , Expressão Gênica , Proteínas de Membrana/genética , Mutação , Fenótipo , Fosforilação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Tolerância ao Sal , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Serina/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico
17.
J Exp Bot ; 66(5): 1191-203, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25477530

RESUMO

Tonoplast intrinsic proteins (TIPs) are integral membrane proteins that are known to function in plants as aquaporins. Here, we propose another role for TIPs during the fusion of protein storage vacuoles (PSVs) in aleurone cells, a process that is promoted by gibberellic acid (GA) and prevented by abscisic acid (ABA). Studies of the expression of barley (Hordeum vulgare) TIP genes (HvTIP) showed that GA specifically decreased the abundance of HvTIP1;2 and HvTIP3;1 transcripts, while ABA strongly increased expression of HvTIP3;1. Increased or decreased expression of HvTIP3;1 interfered with the hormonal effects on vacuolation in aleurone protoplasts. HvTIP3;1 gain-of-function experiments delayed GA-induced vacuolation, whereas HvTIP3;1 loss-of-function experiments promoted vacuolation in ABA-treated aleurone cells. These results indicate that TIP plays a key role in preventing the coalescence of small PSVs in aleurone cells. Hormonal regulation of the HvTIP3;1 promoter is similar to the regulation of the endogenous gene, indicating that induction of the transcription of HvTIP3;1 by ABA is a critical factor in the prevention of PSV coalescence in response to ABA. Promoter analysis using deletions and site-directed mutagenesis of sequences identified three cis-acting elements that are responsible for ABA responsiveness in the HvTIP3;1 promoter. Promoter analysis also showed that ABA responsiveness of the HvTIP3;1 promoter is likely to occur via a unique regulatory system distinct from that involving the ABA-response promoter complexes.


Assuntos
Ácido Abscísico/metabolismo , Hordeum/metabolismo , Proteínas de Membrana/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação para Cima , Vacúolos/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Protoplastos/metabolismo , Vacúolos/genética
18.
J Proteomics ; 93: 179-206, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23628855

RESUMO

Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0µM H3BO3) or -sufficient (10µM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. BIOLOGICAL SIGNIFICANCE: In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics.


Assuntos
Boro/deficiência , Citrus sinensis/genética , Raízes de Plantas/metabolismo , Proteômica/métodos , Boro/metabolismo , Citrus sinensis/metabolismo , Regulação para Baixo , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA