Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Funct Genomics ; 23(2): 83-94, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37225889

RESUMO

Following the central dogma of molecular biology, gene expression heterogeneity can aid in predicting and explaining the wide variety of protein products, functions and, ultimately, heterogeneity in phenotypes. There is currently overlapping terminology used to describe the types of diversity in gene expression profiles, and overlooking these nuances can misrepresent important biological information. Here, we describe transcriptome diversity as a measure of the heterogeneity in (1) the expression of all genes within a sample or a single gene across samples in a population (gene-level diversity) or (2) the isoform-specific expression of a given gene (isoform-level diversity). We first overview modulators and quantification of transcriptome diversity at the gene level. Then, we discuss the role alternative splicing plays in driving transcript isoform-level diversity and how it can be quantified. Additionally, we overview computational resources for calculating gene-level and isoform-level diversity for high-throughput sequencing data. Finally, we discuss future applications of transcriptome diversity. This review provides a comprehensive overview of how gene expression diversity arises, and how measuring it determines a more complete picture of heterogeneity across proteins, cells, tissues, organisms and species.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Transcriptoma/genética , Isoformas de Proteínas/genética , Processamento Alternativo/genética , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala
2.
Front Vet Sci ; 10: 1128570, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896291

RESUMO

Introduction: For reference genomes and gene annotations are key materials that can determine the limits of the molecular biology research of a species; however, systematic research on their quality assessment remains insufficient. Methods: We collected reference assemblies, gene annotations, and 3,420 RNA-sequencing (RNA-seq) data from 114 species and selected effective indicators to simultaneously evaluate the reference genome quality of various species, including statistics that can be obtained empirically during the mapping process of short reads. Furthermore, we newly presented and applied transcript diversity and quantification success rates that can relatively evaluate the quality of gene annotations of various species. Finally, we proposed a next-generation sequencing (NGS) applicability index by integrating a total of 10 effective indicators that can evaluate the genome and gene annotation of a specific species. Results and discussion: Based on these effective evaluation indicators, we successfully evaluated and demonstrated the relative accessibility of NGS applications in all species, which will directly contribute to determining the technological boundaries in each species. Simultaneously, we expect that it will be a key indicator to examine the direction of future development through relative quality evaluation of genomes and gene annotations in each species, including countless organisms whose genomes and gene annotations will be constructed in the future.

3.
BMC Plant Biol ; 19(1): 160, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023213

RESUMO

BACKGROUND: Sugarcane accumulates very high levels of sucrose in the culm. Elucidation of the molecular mechanisms that allows such high sucrose synthesis and accumulation (up to 650 mM) is made difficult by the complexity of the highly polyploid genome. Here we report the use of RNA Seq data to characterize the sucrose synthase (SuSy) genes expressed in the transcriptome of the mature sugarcane plant. RESULTS: Four SuSy gene families were identified in the sugarcane Iso-Seq long read transcriptome (SUGIT) through gene annotation of transcripts that mapped to reference SuSy genes from sorghum and maize. In total, 38, 19, 14, and 2 transcripts were identified for the four corresponding SuSy genes 1, 2, 4 and 7, respectively. Comparative studies using available SuSy genes from sorghum (1, 2, 4, 6, 7) and maize (1-7) revealed that the sugarcane SuSy genes were interrupted by multiple introns and that they share a highly conserved gene structure. Spatial expression of the four SuSy genes in sugarcane genotypes and in the progenitor species, Saccharum spontaneum and Saccharum officinarum, was studied in the leaf and root tissues and also in three regions of the culm tissue; top, middle and bottom internodes. Expression profiles indicated that all SuSy transcripts were differentially expressed between the top and bottom tissues, with high expression in the top tissues, lower expression in the bottom and moderate expression in the middle, indicating a gradient of SuSy activity in the sugarcane culm. Further, the root tissue had similar expression levels to that of the top internodes while leaf tissues showed lower expression. In the progenitors, SuSy7 was found to be highly expressed in S. officinarum while the other three SuSy genes had moderate expression in both the progenitors. CONCLUSIONS: The high expression of the SuSy genes in sink tissues, the top internodes and the roots suggests functional roles in sucrose utilization to support growth. The SuSy7 gene has not been previously reported in sugarcane. As sugarcane is unique in storing such high amounts of sucrose, it is possible that there are more SuSy genes/isoforms with specific expression patterns to be discovered in this complex system.


Assuntos
Genes de Plantas , Variação Genética , Glucosiltransferases/genética , Especificidade de Órgãos/genética , Saccharum/genética , Transcriptoma/genética , Éxons/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Fases de Leitura Aberta/genética , Oryza/genética , Filogenia , Sorghum/genética , Zea mays/genética
4.
Planta ; 250(3): 839-855, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30627890

RESUMO

MAIN CONCLUSION: This study highlights dehydration-mediated temporal changes in physicochemical, transcriptome and metabolome profiles indicating altered gene expression and metabolic shifts, underlying endurance and adaptation to stress tolerance in the marginalized crop, grasspea. Grasspea, often regarded as an orphan legume, is recognized to be fairly tolerant to water-deficit stress. In the present study, 3-week-old grasspea seedlings were subjected to dehydration by withholding water over a period of 144 h. While there were no detectable phenotypic changes in the seedlings till 48 h, the symptoms appeared during 72 h and aggravated upon prolonged dehydration. The physiological responses to water-deficit stress during 72-96 h displayed a decrease in pigments, disruption in membrane integrity and osmotic imbalance. We evaluated the temporal effects of dehydration at the transcriptome and metabolome levels. In total, 5201 genes of various functional classes including transcription factors, cytoplasmic enzymes and structural cell wall proteins, among others, were found to be dehydration-responsive. Further, metabolome profiling revealed 59 dehydration-responsive metabolites including sugar alcohols and amino acids. Despite the lack of genome information of grasspea, the time course of physicochemical and molecular responses suggest a synchronized dehydration response. The cross-species comparison of the transcriptomes and metabolomes with other legumes provides evidence for marked molecular diversity. We propose a hypothetical model that highlights novel biomarkers and explain their relevance in dehydration-response, which would facilitate targeted breeding and aid in commencing crop improvement efforts.


Assuntos
Lathyrus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Desidratação , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Lathyrus/genética , Lathyrus/metabolismo , Lathyrus/fisiologia , Peroxidação de Lipídeos , Prolina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/metabolismo , Plântula/fisiologia , Transcriptoma , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA