Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Mol Biol Rep ; 51(1): 934, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180671

RESUMO

INTRODUCTION: This study presents a Mammalian Linear Expression System (MLES), a linear covalently closed (LCC) vector based on pVAX-1. The purpose of this system was to improve gene expression in mammalian cells and to test the efficacy of MLES in transient transfection and transgene expression using in vitro and in vivo models. Additionally, we aimed to evaluate potential inflammatory responses in vivo. MATERIALS AND METHODS: MLES was developed by modifying pVAX-1, and the construct was confirmed by gel electrophoresis. Lipofectamine®2000 was used to assess the transfection efficiency and expression of MLES in various cell lines. In vivo studies were conducted in mice injected with MLES/EGFP, and the resulting transfection efficiency, gene expression, and inflammatory responses were analyzed. RESULTS: MLES exhibited higher transfection efficiency and expression levels compared to pVAX-1 when tested on HEK-293, CHO-K1, and NIH-3T3 cells. When tested in vivo, MLES/EGFP showed elevated expression in the heart, kidney, liver, and spleen compared with pVAX-1/EGFP. Minimal changes are observed in the lungs. Additionally, MLES induced a reduced inflammatory response in mice compared with pVAX-1/EGFP. CONCLUSIONS: MLES offer improved transfection efficiency and reduced inflammation, representing a significant advancement in gene therapy and recombinant protein production. Further research on MLES-mediated gene expression and immune modulation will enhance gene therapy strategies.


Assuntos
Cricetulus , Expressão Gênica , Vetores Genéticos , Transfecção , Transgenes , Animais , Camundongos , Humanos , Vetores Genéticos/genética , Células HEK293 , Transfecção/métodos , Células CHO , Células NIH 3T3 , Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
2.
Methods Mol Biol ; 2829: 289-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951345

RESUMO

Nonviral transfection has been used to express various recombinant proteins, therapeutics, and virus-like particles (VLP) in mammalian and insect cells. Virus-free methods for protein expression require fewer steps for obtaining protein expression by eliminating virus amplification and measuring the infectivity of the virus. The nonviral method uses a nonlytic plasmid to transfect the gene of interest into the insect cells instead of using baculovirus, a lytic system. In this chapter, we describe one of the transfection methods, which uses polyethyleneimine (PEI) as a DNA delivery material into the insect cells to express the recombinant protein in both adherent and suspension cells.


Assuntos
Polietilenoimina , Proteínas Recombinantes , Transfecção , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção/métodos , Polietilenoimina/química , Plasmídeos/genética , Insetos/genética , Células Sf9 , Linhagem Celular , Expressão Gênica , Spodoptera
3.
Front Bioeng Biotechnol ; 12: 1409203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994127

RESUMO

Both cell surface and soluble extracellular glycosaminoglycans have been shown to interfere with the exogenous nucleic acid delivery efficiency of non-viral gene delivery, including lipoplex and polyplex-mediated transfection. Most gene therapy viral vectors used commercially and in clinical trials are currently manufactured using transient transfection-based bioprocesses. The growing demand for viral vector products, coupled with a global shortage in production capability, requires improved transfection technologies and processes to maximise process efficiency and productivity. Soluble extracellular glycosaminoglycans were found to accumulate in the conditioned cell culture medium of suspension adapted HEK293T cell cultures, compromising transfection performance and lentiviral vector production. The enzymatic degradation of specific, chondroitin sulphate-based, glycosaminoglycans with chondroitinase ABC was found to significantly enhance transfection performance. Additionally, we report significant improvements in functional lentiviral vector titre when cultivating cells at higher cell densities than those utilised in a control lentiviral vector bioprocess; an improvement that was further enhanced when cultures were supplemented with chondroitinase ABC prior to transfection. A 71.2% increase in functional lentiviral vector titre was calculated when doubling the cell density prior to transfection compared to the existing process and treatment of the high-density cell cultures with 0.1 U/mL chondroitinase ABC resulted in a further 18.6% increase in titre, presenting a method that can effectively enhance transfection performance.

4.
Pharmaceutics ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38931864

RESUMO

We describe the current Good Manufacturing Practice (cGMP) production and subsequent characterization of eOD-GT8 60mer, a glycosylated self-assembling nanoparticle HIV-1 vaccine candidate and germline targeting priming immunogen. Production was carried out via transient expression in the human embryonic kidney 293 (HEK293) cell line followed by a combination of purification techniques. A large-scale cGMP (200 L) production run yielded 354 mg of the purified eOD-GT8 60mer drug product material, which was formulated at 1 mg/mL in 10% sucrose in phosphate-buffered saline (PBS) at pH 7.2. The clinical trial material was comprehensively characterized for purity, antigenicity, glycan composition, amino acid sequence, and aggregation and by several safety-related tests during cGMP lot release. A comparison of the purified products produced at the 1 L scale and 200 L cGMP scale demonstrated the consistency and robustness of the transient transfection upstream process and the downstream purification strategies. The cGMP clinical trial material was tested in a Phase 1 clinical trial (NCT03547245), is currently being stored at -80 °C, and is on a stability testing program as per regulatory guidelines. The methods described here illustrate the utility of transient transfection for cGMP production of complex products such as glycosylated self-assembling nanoparticles.

5.
Biomed Pharmacother ; 176: 116893, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850653

RESUMO

Polymer-cationic mediated gene delivery is a well-stablished strategy of transient gene expression (TGE) in mammalian cell cultures. Nonetheless, its industrial implementation is hindered by the phenomenon known as cell density effect (CDE) that limits the cell density at which cultures can be efficiently transfected. The rise in personalized medicine and multiple cell and gene therapy approaches based on TGE, make more relevant to understand how to circumvent the CDE. A rational study upon DNA/PEI complex formation, stability and delivery during transfection of HEK293 cell cultures has been conducted, providing insights on the mechanisms for polyplexes uptake at low cell density and disruption at high cell density. DNA/PEI polyplexes were physiochemically characterized by coupling X-ray spectroscopy, confocal microscopy, cryo-transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR). Our results showed that the ionic strength of polyplexes significantly increased upon their addition to exhausted media. This was reverted by depleting extracellular vesicles (EVs) from the media. The increase in ionic strength led to polyplex aggregation and prevented efficient cell transfection which could be counterbalanced by implementing a simple media replacement (MR) step before transfection. Inhibiting and labeling specific cell-surface proteoglycans (PGs) species revealed different roles of PGs in polyplexes uptake. Importantly, the polyplexes uptake process seemed to be triggered by a coalescence phenomenon of HSPG like glypican-4 around polyplex entry points. Ultimately, this study provides new insights into PEI-based cell transfection methodologies, enabling to enhance transient transfection and mitigate the cell density effect (CDE).


Assuntos
DNA , Glipicanas , Transfecção , Humanos , Células HEK293 , Transfecção/métodos , Glipicanas/metabolismo , Glipicanas/genética , DNA/metabolismo , DNA/genética , Polietilenoimina/química , Proteoglicanas de Heparan Sulfato/metabolismo , Concentração Osmolar
6.
Methods Mol Biol ; 2810: 55-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926272

RESUMO

Here, we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium using orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI)-mediated transfection of a three-plasmid system and is specified for production in milliliter-to-liter scales. After PEI and plasmid DNA (pDNA) complex formation, the diluted cell culture is transfected without a prior concentration step or medium exchange. Following a 7-day batch process, cell cultures are further processed using a set of methods for cell lysis and vector recovery. Methods for the purification of viral particles are described, including immunoaffinity and anion-exchange chromatography, ultrafiltration, as well as digital PCR to quantify the concentration of vector particles.


Assuntos
Dependovirus , Vetores Genéticos , Transfecção , Humanos , Dependovirus/genética , Dependovirus/isolamento & purificação , Células HEK293 , Vetores Genéticos/genética , Vetores Genéticos/isolamento & purificação , Transfecção/métodos , Plasmídeos/genética , Plasmídeos/isolamento & purificação , Polietilenoimina/química , Reatores Biológicos , Cromatografia por Troca Iônica/métodos , Vírion/genética , Vírion/isolamento & purificação
7.
Methods Mol Biol ; 2810: 75-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926273

RESUMO

Large culture volumes are often required when expression constructs are particularly low-yielding or when end uses require significant amounts of material. In these cases, a single homogeneous culture is usually more convenient, in terms of both consistency of expression and labor/resource requirements, than multiple parallel cultures. Using a WAVE Bioreactor culture, volumes as high as 500L may be achieved in a single vessel. Here, we describe the transfection of Expi293F cells in a disposable 50L Cellbag on a WAVE Bioreactor platform to produce recombinant protein. The methods described herein may be adapted, with suitable optimizations, for other suspension-adapted mammalian cell lines.


Assuntos
Reatores Biológicos , Proteínas Recombinantes , Transfecção , Transfecção/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Humanos , Animais , Linhagem Celular , Técnicas de Cultura de Células/métodos , Expressão Gênica
8.
Plasmid ; 131-132: 102729, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876373

RESUMO

Gene overexpression by transient transfection of in vitro cultured model cell lines with plasmid DNA is a commonly used method for studying molecular aspects of human biology and pathobiology. However, there is accumulating evidence suggesting that human cells may actively secrete fragments of DNA and the implications of this phenomenon for in vitro cultured cells transiently transfected with foreign nucleic acids has been overlooked. Therefore, in the current study we investigated whether a cell-to-cell transmission of acquired plasmid DNA takes place in a commonly used human cell line model. We transiently transfected HEK293 cells with EGFP encoding plasmids to serve as donor cells and either co-cultured these with stably mCherry expressing recipient cells in different set-ups or transferred their culture medium to the recipient cells. We found that recipient cells produced EGFP after being co-cultured with donor cells but not when they were exposed to their culture medium. The employment of different co-culture set-ups excluded that the observed effect stemmed from technical artefacts and provided evidence that an intercellular plasmid transfer takes place requiring physical proximity between living cells. This phenomenon could represent a significant biological artefact for certain studies such as those addressing protein transmissions in prion diseases.

9.
Colloids Surf B Biointerfaces ; 241: 113985, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38838443

RESUMO

Chemo-photothermal therapy (PTT) is an emerging non-invasive cancer treatment modality. Light-responsive porphysomes (DPP IR Mtx @Lipo NPs) nanosystems ablate breast cancer cells upon oxidative stress and hyperthermia. The unique self-assembled porphysomes were formed spherical shape in the size range of 150 ± 30 nm formed by the co-assembly of porphyrins along with IR 775 and chemotherapeutic drug, Mitoxantrone (Mtx), forming a camouflaged nanosystem (DPP IR Mtx @Lipo NPs, porphysomes). The advent of the prepared porphysomes aids in proper tuning of NIR absorbance improving singlet oxygen species generation among other anticancer drugs. The eminent release of DPP and adjuvant chemo-drug, Mitoxantrone from the self-assembled porphysomes is triggered by IR 775, a NIR photosensitizer upon laser irradiation. These multifunctional DPP IR Mtx @Lipo NPs have an efficient photothermal conversion efficiency of 65.8% as well as bioimaging properties. In-vitro studies in 2D and 3D models showed a significant cell death of 4T1 cells via the apoptotic pathway when irradiated with NIR laser, causing minimal damage to nearby healthy cells. DPP IR Mtx @Lipo NPs exhibited commingled PDT/PTT interdependent via NIR laser exposure, leading to mitochondrial disruption. Interestingly, the transient transfection using p53-GFP in cancer cells followed by DPP IR Mtx @Lipo NPs treatment causes rapid cell death. The activation of p53-dependent apoptosis pathways was vividly expressed, evidenced by the upregulation of Bax and increased pattern of Caspase-3 cleavage. This effect was pronounced upon transfection and induction with DPP IR Mtx @Lipo NPs, particularly in comparison to non-transfected malignant breast cancer 4T1 cells.


Assuntos
Antineoplásicos , Mitoxantrona , Terapia Fototérmica , Porfirinas , Humanos , Mitoxantrona/farmacologia , Mitoxantrona/química , Mitoxantrona/administração & dosagem , Porfirinas/química , Porfirinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Nanopartículas/química , Apoptose/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Tamanho da Partícula , Animais , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Raios Infravermelhos , Propriedades de Superfície , Fotoquimioterapia , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia
10.
Mol Ther Methods Clin Dev ; 32(2): 101260, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38745895

RESUMO

Large-scale transient transfection has advanced significantly over the last 20 years, enabling the effective production of a diverse range of biopharmaceutical products, including viral vectors. However, a number of challenges specifically related to transfection reagent stability and transfection complex preparation times remain. New developments and improved transfection technologies are required to ensure that transient gene expression-based bioprocesses can meet the growing demand for viral vectors. In this paper, we demonstrate that the growth of cationic lipid-based liposomes, an essential step in many cationic lipid-based transfection processes, can be controlled through adoption of low pH (pH 6.40 to pH 6.75) and in low salt concentration (0.2× PBS) formulations, facilitating improved control over the nanoparticle growth kinetics and enhancing particle stability. Such complexes retain the ability to facilitate efficient transfection for prolonged periods compared with standard preparation methodologies. These findings have significant industrial applications for the large-scale manufacture of lentiviral vectors for two principal reasons. First, the alternative preparation strategy enables longer liposome incubation times to be used, facilitating effective control in a good manufacturing practices setting. Second, the improvement in particle stability facilitates the setting of wider process operating ranges, which will significantly improve process robustness and maximise batch-to-batch control and product consistency.

11.
Mol Ther Methods Clin Dev ; 32(1): 101190, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38327808

RESUMO

The hitherto unexplained reduction of cell-specific productivity in transient gene expression (TGE) at high cell density (HCD) is known as the cell density effect (CDE). It currently represents a major challenge in TGE-based bioprocess intensification. This phenomenon has been largely reported, but the molecular principles governing it are still unclear. The CDE is currently understood to be caused by the combination of an unknown inhibitory compound in the extracellular medium and an uncharacterized cellular change at HCD. This study investigates the role of extracellular vesicles (EVs) as extracellular inhibitors for transfection through the production of HIV-1 Gag virus-like particles (VLPs) via transient transfection in HEK293 cells. EV depletion from the extracellular medium restored transfection efficiency in conditions that suffer from the CDE, also enhancing VLP budding and improving production by 60%. Moreover, an alteration in endosomal formation was observed at HCD, sequestering polyplexes and preventing transfection. Overexpression of UDP-glucose ceramide glucosyltransferase (UGCG) enzyme removed intracellular polyplex sequestration, improving transfection efficiency. Combining EV depletion and UGCG overexpression improved transfection efficiency by ∼45% at 12 × 106 cells/mL. These results suggest that the interaction between polyplexes and extracellular and intracellular vesicles plays a crucial role in the CDE, providing insights for the development of strategies to mitigate its impact.

12.
Mol Ther Methods Clin Dev ; 32(1): 101194, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352269

RESUMO

The transfection efficiency and stability of the delivery vehicles of plasmid DNA (pDNA) are critical metrics to ensure high-quality and high-yield production of viral vectors. We previously identified that the optimal size of pDNA/poly(ethylenimine) (PEI) transfection particles is 400-500 nm and developed a bottom-up assembly method to construct stable 400-nm pDNA/PEI particles and benchmarked their transfection efficiency in producing lentiviral vectors (LVVs). Here, we report scale-up production protocols for such transfection particles. Using a two-inlet confined impinging jet (CIJ) mixer with a dual syringe pump set-up, we produced a 1-L batch at a flow rate of 100 mL/min, and further scaled up this process with a larger CIJ mixer and a dual peristaltic pump array, allowing for continuous production at a flow rate of 1 L/min without a lot size limit. We demonstrated the scalability of this process with a 5-L lot and validated the quality of these 400-nm transfection particles against the target product profile, including physical properties, shelf and on-bench stability, transfection efficiency, and LVV production yield in both 15-mL bench culture and 2-L bioreactor runs. These results confirm the potential of this particle assembly process as a scalable manufacturing platform for viral vector production.

13.
Methods Mol Biol ; 2762: 183-190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315366

RESUMO

Antibodies are versatile biological molecules with widespread applications in research and medicine. This protocol outlines the generation of monoclonal IgG antibodies from Chinese hamster ovary cells. It includes steps for cell maintenance, transient transfection, and antibody purification via protein A affinity chromatography. The methods described are intended for the production of milligram amounts of protein but can be adapted for most small- to mid-scale applications.


Assuntos
Anticorpos Monoclonais , Cricetinae , Animais , Cricetulus , Células CHO , Transfecção , Proteínas Recombinantes , Cromatografia de Afinidade
14.
Biotechnol Prog ; 40(3): e3435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329375

RESUMO

Biopharmaceuticals like therapeutic monoclonal antibodies (mAbs) and other derived proteins are popular for treating various diseases. Transient gene expression (TGE) is typically used as a fast yet efficient method to generate moderate amounts of material. It has been used to support early stage research and discovery processes. Introduction of a robust high yielding and predictive TGE platform in Chinese hamster ovary (CHO) is crucial. It maintains the consistency in cell lines and processes throughout the early drug discovery and downstream manufacturing processes. This helps researchers to identify the issues at an early stage for timely resolution. In this study, we have demonstrated a simple high-titer platform for TGE in CHO based on a dilution process of seeding cells. We achieved titers ranging from 0.8 to 1.9 g/L for eight model mAbs at three scales (1, 30, 100 mL) in 10 days using our new platform. The ability to seed by dilution significantly streamlined the process and dramatically enhanced platform throughput. We observed a modest reduction in titer ranging from 11% to 28% when cells were seeded using dilution compared to when cells were seeded using medium exchange. Further studies revealed that carry over of spent medium into transfection negatively affected the DNA uptake and transcription processes, while the translation and secretion was minimally impacted. In summary, our transient CHO platform using cells prepared by dilution at high densities can achieve high titers of up to 1.9 g/L, which can be further improved by targeting the bottlenecks of transfection and transcription.


Assuntos
Anticorpos Monoclonais , Cricetulus , Células CHO , Animais , Anticorpos Monoclonais/química , Cricetinae , Contagem de Células , Técnicas de Cultura de Células/métodos , Meios de Cultura/química
15.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180473

RESUMO

Nipah virus (NiV) is a deadly zoonotic pathogen with high potential to cause another pandemic. Owing to biosafety concerns, studies on living NiV must be performed in biosafety level 4 (BSL-4) laboratories, which greatly hinders the development of anti-NiV drugs. To overcome this issue, minigenome systems have been developed to study viral replication and screen for antiviral drugs. This study aimed to develop two minigenome systems (transient and stable expression) based on a helper cell line expressing the NiV P, N and L proteins required to initiate NiV RNA replication. Stable minigenome cells were resistant to ribavirin, remdesivir and favipiravir but sensitive to interferons. Cells of the transient replication system were sensitive to ribavirin and favipiravir and suitable for drug screening. Our study demonstrates a feasible and effective platform for studying NiV replication and shows great potential for high-throughput drug screening in a BSL-2 laboratory environment.


Assuntos
Vírus Nipah , Vírus Nipah/genética , Ribavirina , Replicação Viral , Antivirais/farmacologia
16.
J Virol Methods ; 325: 114884, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218417

RESUMO

HIV-1 based lentiviral viruses are considered powerful and versatile gene therapy vectors to deliver therapeutic genes to patients with hereditary or acquired diseases. These vectors can efficiently transduce a variety of cell types when dividing or non-dividing to provide permanent delivery and long-term gene expression. Demand for scalable manufacturing protocols able to generate enough high titre vector for widespread use of this technology is increasing and considerable efforts to improve vector production cost-effectively, is ongoing. Current methods for LV production mainly use transient transfection of producer cell lines. Cells can be grown at scale, either in 2D relying on culturing producer cells in multi-tray flask cell culture factories or in roller bottles or can be adapted to grow in 3D suspensions in large batch fermenters. This suits rapid production and testing of new vector constructs pre-clinically for their efficacy, particle titre and safety. In this study, we sought to improve lentiviral titre over time by testing two alternative commercially available transfection reagents Fugene® 6 and Genejuice® with the commonly used polycation, polyethyleneimine. Our aim was to identify less cytotoxic transfection reagents that could be used to generate LV particles at high titre past the often used 72 h period when vector is usually collected before producer cell death is caused due to post transfection cytotoxicity. We show that LV could be produced in extended culture using Genejuice® and even by transfected cells in glass flasks in suspension. Because this delivery agent is less toxic to 293 T producer cells, following optimisation of transfection we found that LV can be harvested for more than 10 days at high titre. Using our protocol, titres of 109 TU/ml and 108 TU/ml were routinely reached via traditional monolayer conditions or suspension cultures, respectively. We propose, this simple change in vector production enables large volumes of high titre vector to be produced, cost effectively for non-clinical in vivo and in vitro applications or for more stringent downstream clinical grade vector purification.


Assuntos
Vetores Genéticos , Lentivirus , Humanos , Lentivirus/genética , Células HEK293 , Transfecção , Técnicas de Cultura de Células/métodos
17.
Biotechnol J ; 19(1): e2300212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903159

RESUMO

The use of lentiviral vectors (LV) in gene therapy has been growing in recent years. To meet the increasing clinical demand, LV production platforms will benefit from improved productivity and scalability to enable cost-effective manufacture of LV-based therapies. Here we report the adaptation of 293T cells to serum-free suspension cultures and the improvement of LV yields through transfection parameters optimization, process intensification and medium supplementation with nutrient boosters. Cells were sequentially adapted to different serum-free culture media, transfection parameters were optimized and the two best-performing conditions were selected to explore process intensification by increasing cell density at the time of transfection. LV production at higher cell densities increased volumetric titers up to 12-fold and lipid supplementation was the most efficient metabolic optimization strategy further enhancing LV productivity by 3-fold. Furthermore, cell concentration was identified and validated as an important source of transfection variability impairing cellular uptake of DNA polyplexes, impacting transfection efficiency and reducing LV titers down to 6-fold. This work contributes to improving LV-based gene therapy by establishing new scalable manufacturing platforms and providing key metabolic insights, unveiling important bioreaction parameters to improve vector yields.


Assuntos
Técnicas de Cultura de Células , Vetores Genéticos , Humanos , Vetores Genéticos/genética , Reatores Biológicos , Lentivirus/genética , Transfecção , Células HEK293
18.
Biochimie ; 218: 96-104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37716853

RESUMO

Ribosomal protein eL42 (formerly known as L36A), a small protein of the large (60S) subunit of the eukaryotic ribosome, is a component of its exit (E) site. The residue K53 of this protein resides within the motif QSGYGGQTK mainly conserved in eukaryotes, and it is located in the immediate vicinity of the CCA-terminus of the ribosome-bound tRNA in the hybrid P/E state. To examine the role of this eL42 motif in translation, we obtained HEK293T cells producing the wild-type FLAG-tagged protein or its mutant forms with either single substitutions of conserved amino acid residues in the above motif, or simultaneous replacements in positions 45 and 51 or 45 and 53. Examination of the level of exogenous eL42 in fractions of polysome profiles from the target protein-producing cells by the Western blotting revealed that neither single substitution affects the assembly of 60S ribosomal subunits and 80S ribosomes or critically decreases the level of polysomes, but the latter was observed with the double replacements. Analysis of tRNAs bound to 80S ribosomes containing eL42 with double substitutions and examination their peptidyl transferase activity enabled estimation the stage of the elongation cycle, in which amino acid residues of the conserved eL42 motif are involved. We clearly show that cooperative interactions implicating the eL42 residues Q45, Q51, and K53 play a critical role in the ability of the human ribosome to perform properly elongation cycle at the step of deacylated tRNA dissociation from the E site in the human cell.


Assuntos
Proteínas Ribossômicas , Ribossomos , Humanos , Proteínas Ribossômicas/metabolismo , Células HEK293 , Ribossomos/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Aminoácidos/metabolismo
19.
Animals (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38066966

RESUMO

The solute transport protein family 11 A1 (SLC11A1), also recognized as natural resistance-associated macrophage protein 1 (NRAMP1), represents a transmembrane protein encoded by the SLC11A1 gene. A variety of prior investigations have illuminated its involvement in conferring resistance or susceptibility to bacterial agents, positioning it as a promising candidate gene for breeding disease-resistant animals. Yaks (Bos grunniens), renowned inhabitants of the Qinghai-Tibet Plateau in China, stand as robust ruminants distinguished by their adaptability and formidable disease resistance. Notwithstanding these unique traits, there is scant literature on the SLC11A1 gene in the yak population. Our inquiry commences with the cloning of the 5' regulatory region sequence of the Zhongdian yak SLC11A1 gene. We employ bioinformatics tools to identify transcription factor binding sites, delineating pivotal elements like enhancers and cis-acting elements. To ascertain the promoter activity of this region, we amplify four distinct promoter fragments within the 5' regulatory region of the yak SLC11A1 gene. Subsequently, we design a luciferase reporter gene vector containing four site-specific deletion mutations and perform transient transfection experiments. Through these experiments, we measure and compare the activity of disparate gene fragments located within the 5' regulatory region, revealing regions bearing promoter functionality and discerning key regulatory elements. Our findings validate the promoter functionality of the 5' regulatory region, offering preliminary insights into the core and principal regulatory segments of this promoter. Notably, we identified single nucleotide polymorphisms (SNPs) that may be associated with important regulatory elements such as NF-1 and NF-1/L. This study provides a theoretical framework for in-depth research on the function and expression regulation mechanism of the yak SLC11A1 gene.

20.
Bio Protoc ; 13(18): e4821, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37753466

RESUMO

The study of translation is important to the understanding of gene expression. While genome-wide measurements of translation efficiency (TE) rely upon ribosome profiling, classical approaches to address translation of individual genes of interest rely on biochemical methods, such as polysome fractionation and immunoprecipitation (IP) of ribosomal components, or on reporter constructs, such as luciferase reporters. Methods to investigate translation have been developed that, however, require considerable research effort, including addition of numerous features to mRNA regions, genomic integration of reporters, and complex data analysis. Here, we describe a simple biochemical reporter assay to study TE of mRNAs expressed from a transiently transfected plasmid, which we term Nascent Chain Immunoprecipitation (NC IP). The assay is based on a plasmid expressing an N-terminally Flag-tagged protein and relies on the IP of Flag-tagged nascent chains from elongating ribosomes, followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) quantification of eluted mRNA. We report that elution of mRNA following IP can be achieved by treatment with puromycin, which releases ribosome-mRNA complexes, or with purified Flag peptide, which instead releases nascent chain-ribosome-mRNA complexes. In the example described in this protocol, untranslated regions (UTRs) of a gene of interest were used to flank a FlagVenus coding sequence, with the method allowing to infer UTR-dependent regulation of TE. Importantly, our method enables discrimination of translating from non-translating mRNAs. Additionally, it requires simple procedures and standard laboratory equipment. Our method can be used to test the effect of regulators, such as microRNAs or therapeutic drugs or of various genetic backgrounds, on translation of any user-selected mRNA. Key features • The novel NC IP protocol builds upon a previously published method for detection of mRNA-binding proteins (Williams et al., 2022). • The NC IP protocol is adapted for detecting mRNA actively undergoing translation. • The method uses mammalian cell culture but could be adapted to multiple organisms, including budding yeast (S. cerevisiae).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA