Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.518
Filtrar
1.
Heliyon ; 10(14): e34266, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108848

RESUMO

Widespread ecosystem degradation from noxious substances like industrial waste, toxic dyes, pesticides, and herbicides poses serious environmental risks. For remediation of these hazardous problems, present study introduces an innovative Cu-doped Ce2Zr2O7 nano-photocatalyst, fabricated via a simple, eco-friendly hydrothermal method, designed to degrade toxic textile dye methylene blue. Harnessing Cu doping for pyrochlore Ce2Zr2O7, structure engineering carried out through a hydrothermal synthesis method to achieve superior photocatalytic performance, addressing limitations of rapid charge carrier recombination in existing photocatalysts. Photoluminescence analysis showed that doped pyrochlore slows charge carrier recombination, boosting dye degradation efficiency. UV-Visible analysis demonstrated an impressive 96 % degradation of methylene blue by Cu-doped Ce2Zr2O7 within 50 min, far exceeding the performance of pristine materials. Trapping experiments clarified the charge transfer mechanism, deepening our understanding of the photocatalytic process. These findings highlight the potential for developing innovative, highly efficient photocatalysts for environmental remediation, offering sustainable solutions to combat pollution. This study not only addresses the limitations of existing photocatalysts but also opens new avenues for enhancing photocatalytic performance through strategic material design.

2.
Nano Lett ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133749

RESUMO

Nanoparticle manipulation requires careful analysis of the forces at play. Unfortunately, traditional force measurement techniques based on the particle velocity do not provide sufficient resolution, while balancing approaches involving counteracting forces are often cumbersome. Here, we demonstrate that a nanoparticle dielectrophoretic response can be quantitatively studied by a straightforward visual delineation of the dielectrophoretic trapping volume. We reveal this volume by detecting the width of the region depleted of gold nanoparticles by the dielectrophoretic force. Comparison of the measured widths for various nanoparticle sizes with numerical simulations obtained by solving the particle-conservation equation shows excellent agreement, thus providing access to the particle physical properties, such as polarizability and size. These findings can be further extended to investigate various types of nano-objects, including bio- and molecular aggregates, and offer a robust characterization tool that can enhance the control of matter at the nanoscale.

3.
Proc Natl Acad Sci U S A ; 121(34): e2315007121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133861

RESUMO

Kinetic stability is thought to be an attribute of proteins that require a long lifetime, such as the transporter of thyroxine and holo retinol-binding protein or transthyretin (TTR) functioning in the bloodstream, cerebrospinal fluid, and vitreous humor. TTR evolved from ancestral enzymes known as TTR-related proteins (TRPs). Here, we develop a rate-expansion approach that allows unfolding rates to be measured directly at low denaturant concentration, revealing that kinetic stability exists in the Escherichia coli TRP (EcTRP), even though the enzyme structure is more energetically frustrated and has a more mutation-sensitive folding mechanism than human TTR. Thus, the ancient tetrameric enzyme may already have been poised to mutate into a kinetically stable human transporter. An extensive mutational study that exchanges residues at key sites within the TTR and EcTRP dimer-dimer interface shows that tyrosine 111, replaced by a threonine in TTR, is the gatekeeper of frustration in EcTRP because it is critical for function. Frustration, virtually absent in TTR, occurs at multiple sites in EcTRP and even cooperatively for certain pairs of mutations. We present evidence that evolution at the C terminus of TTR was a compensatory event to maintain the preexisting kinetic stability while reducing frustration and sensitivity to mutation. We propose an "overcompensation" pathway from EcTRPs to functional hybrids to modern TTRs that is consistent with the biophysics discussed here. An alternative plausible pathway is also presented.


Assuntos
Pré-Albumina , Pré-Albumina/metabolismo , Pré-Albumina/química , Pré-Albumina/genética , Humanos , Cinética , Desdobramento de Proteína , Escherichia coli/metabolismo , Escherichia coli/genética , Dobramento de Proteína , Modelos Moleculares , Estabilidade Proteica , Mutação , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Desnaturação Proteica
4.
Redox Biol ; 75: 103306, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39133964

RESUMO

In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.

5.
Animals (Basel) ; 14(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39123714

RESUMO

The Medog in southeastern Tibet is home to a diverse range of wild animals. However, research on these mammals' species directories, distribution, and conservation status remains insufficient, despite their crucial role in maintaining ecological balance. The study carried out a camera-trapping survey to assess mammal biodiversity and the significance of mammal protection in their natural habitats in Gedang, Medog. Future directions and application prospects of the study for wildlife conservation in the southeastern Tibetan mountains were also discussed. The survey, spanning from April 2023 to May 2024, with 19,754 camera trap days, revealed 25 mammalian species across five orders and 14 families. Among these, four classified as Endangered, five as Vulnerable, two as Near Threatened on the IUCN Red List, nine were categorized as Critically Endangered or Endangered on the Red List of China's Vertebrates, and seven were China's national first-class key protected wildlife. The order Carnivora exhibited the highest diversity, comprising 12 species. Furthermore, the study filled the knowledge gap regarding the underrepresentation of Gongshan muntjac Muntiacus gongshanensis in IUCN and provided new insights into the recorded coexistence of the Himalayan red panda Ailurus fulgens and Chinese red panda Ailurus styani along the Yarlung Zangbo River for the first time, and also documented new upper elevation limits for four large to medium-sized species. Regarding the relative abundance indices (RAI) captured by camera traps, the most prevalent species identified was the White-cheeked macaque Macaca leucogenys, followed by the Gongshan muntjac and Himalayan serow Capricornis thar. The monitoring also captured a number of domestic dogs and livestock, as well as human disturbances. These findings underscore the importance of conserving these mammals and emphasize the need for conservation efforts to protect their habitats and reduce human activities that threaten their survival, thereby maintaining the ecological balance of the region. Additionally, the research highlighted Gedang's significance to global conservation efforts for mammalian diversity, providing essential data for effective wildlife conservation strategies.

6.
Nano Lett ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133069

RESUMO

Quantum interference is a natural consequence of wave-particle duality in quantum mechanics, and is widely observed at the atomic scale. One interesting manifestation of quantum interference is coherent population trapping (CPT), first proposed in three-level driven atomic systems and observed in quantum optical experiments. Here, we demonstrate CPT in a gate-defined semiconductor double quantum dot (DQD), with some unique twists as compared to the atomic systems. Specifically, we observe CPT in both driven and nondriven situations. We further show that CPT in a driven DQD could be used to generate adiabatic state transfer. Moreover, our experiment reveals a nontrivial modulation to the CPT caused by the longitudinal driving field, yielding an odd-even effect and a tunable CPT. Our results broaden the field of CPT, and open up the possibility of quantum simulation and quantum computation based on adiabatic passage in quantum dot systems.

7.
Nanomaterials (Basel) ; 14(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39120357

RESUMO

This study demonstrates a significant enhancement in the performance of thin-film transistors (TFTs) in terms of stability and mobility by combining indium-tungsten oxide (IWO) and zinc oxide (ZnO). IWO/ZnO heterojunction structures were fabricated with different channel thickness ratios and annealing environments. The IWO (5 nm)/ZnO (45 nm) TFT, annealed in O2 ambient, exhibited a high mobility of 26.28 cm2/V·s and a maximum drain current of 1.54 µA at a drain voltage of 10 V, outperforming the single-channel ZnO TFT, with values of 3.8 cm2/V·s and 28.08 nA. This mobility enhancement is attributed to the formation of potential wells at the IWO/ZnO junction, resulting in charge accumulation and improved percolation conduction. The engineered heterojunction channel demonstrated superior stability under positive and negative gate bias stresses compared to the single ZnO channel. The analysis of O 1s spectra showed OI, OII, and OIII peaks, confirming the theoretical mechanism. A bias temperature stress test revealed superior charge-trapping time characteristics at temperatures of 25, 55, and 85 °C compared with the single ZnO channel. The proposed IWO/ZnO heterojunction channel overcomes the limitations of the single ZnO channel and presents an attractive approach for developing TFT-based devices having excellent stability and enhanced mobility.

8.
Parasit Vectors ; 17(1): 338, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135087

RESUMO

BACKGROUND: Culicoides midges have been well-studied in Spain, particularly over the last 20 years, mainly because of their role as vectors of arboviral diseases that affect livestock. Most studies on Culicoides are conducted using suction light traps in farmed environments, but studies employing alternative trapping techniques or focusing on natural habitats are scarce. METHODS: In the present study, we analyze Culicoides captured in 2023 at 476 sites in western Andalusia (southern Spain) using carbon dioxide-baited Biogents (BG)-sentinel traps across different ecosystems. RESULTS: We collected 3,084 Culicoides midges (3060 females and 24 males) belonging to 23 species, including the new species Culicoides grandifovea sp. nov. and the first record of Culicoides pseudolangeroni for Europe. Both species were described with morphological and molecular methods and detailed data on spatial distribution was also recorded. The new species showed close phylogenetic relations with sequences from an unidentified Culicoides from Morocco (92.6% similarity) and with Culicoides kurensis. Culicoides imicola was the most abundant species (17.4%), followed by Culicoides grandifovea sp. nov. (14.6%) and Culicoides kurensis (11.9%). Interestingly, Culicoides montanus was the only species of the obsoletus and pulicaris species complexes captured, representing the first record of this species in southern Spain. A total of 53 valid Culicoides species have been reported in the area, with 48 already reported in literature records and 5 more added in the present study. Information on the flight period for the most common Culicoides species is also provided. CONCLUSIONS: To the best of our knowledge, our study represents the most comprehensive effort ever done on nonfarmland habitats using carbon-dioxide baited suction traps for collecting Culicoides. Our data suggests that using carbon dioxide traps offers a completely different perspective on Culicoides communities compared with routinely used light traps, including the discovery of previously unrecorded species.


Assuntos
Ceratopogonidae , Filogenia , Ceratopogonidae/classificação , Ceratopogonidae/genética , Animais , Espanha , Feminino , Masculino , Insetos Vetores/classificação , Ecossistema , Distribuição Animal
9.
Sci Rep ; 14(1): 17946, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095410

RESUMO

For fractured gas reservoirs with strong water drive, gas phase trapping affects the gas recovery significantly. The recovery may be less than 50% for some reservoirs while it is only 12% for Beaver River gas field. The gas phase trapping mechanism has been revealed by the results of depletion experimental test. The residual pressure of the trapped gas is as high as 11.75 MPa with a 12.8 cm imbibition layer resulting in gas recovery deceased 49.5% compared with that without imbibition layer. A mathematical model is built to calculate the imbibition thickness based on capillary pressure and relative permeability of the matrix. The gas phase trapping are analyzed by two representative wells in Weiyuan gas field, the intermittent production reinforces the imbibition thickness and result in gas trapped in the matrix block with high residual pressure for the low performace gas wells, the extremely low gas recovery can be explained more rationally. That lays a foundation of improving the gas recovery for fractured reservoirs.

10.
J Biol Chem ; : 107626, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098528

RESUMO

With the increasing use of vaping devices that deliver high levels of nicotine (NIC) to the lungs, sporadic lung injury has been observed. Commercial vaping solutions can contain high NIC concentrations of 150 mM or more. With high NIC levels, its metabolic products may induce toxicity. NIC is primarily metabolized to form NIC iminium (NICI) that is further metabolized by aldehyde oxidase (AOX) to cotinine. We determine that NICI in the presence of AOX is a potent trigger of superoxide generation. NICI stimulated superoxide generation from AOX with Km=2.7 µM and Vmax=794 nmol/min/mg measured by cytochrome-c reduction. EPR spin-trapping confirmed that NICI in the presence of AOX is a potent source of superoxide. AOX is expressed in the lungs and chronic e-cigarette exposure in mice greatly increased AOX expression. NICI or NIC stimulated superoxide production in lungs of control mice with even greater increase after chronic e-cigarette exposure. This superoxide production was quenched by AOX inhibition. Furthermore, e-cigarette-mediated NIC delivery triggered oxidative lung damage that was blocked by AOX inhibition. Thus, NIC metabolism triggers AOX-mediated superoxide generation that can cause lung injury. Therefore, high uncontrolled levels of NIC inhalation, as occur with e-cigarette use, can induce oxidative lung damage.

11.
Sci Rep ; 14(1): 17325, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068282

RESUMO

The present work investigates the water wave interaction with bottom-standing thick porous trapezoidal-shaped structures and shore-side vertical rigid wall in the presence of uniform ocean currents. This study has been done to understand the impact of different physical parameters like friction, porosity, and ocean currents along with different structural parameters (width and height) on different phenomena like wave energy reflection, wave forces, wave energy dissipation, etc. The quadratic boundary element method-based numerical technique has been used to solve the boundary value problem. The structural porosity is modeled using Sollitt and Cross's model of water wave interaction with thick porous structures. Several results associated with the wave energy reflection and energy dissipation have been analyzed. Also, the wave force exerted by the incoming waves has been investigated to check the stability and sustainability of the right vertical rigid wall and porous structure. The Doppler-shift effect is observed in wave transformation characteristics due to the presence of ocean currents. The impact of following and opposing ocean currents can be seen in the graph of wave energy reflection, dissipation, and wave forces. The periodic patterns can be observed clearly in wave characteristics like wave energy reflection, dissipation, and wave forces when plotted against the non-dimensional separation gap between the porous breakwater and shore-side rigid seawall.

12.
Insects ; 15(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39057225

RESUMO

This research is focused on a comparative field-based study of the population dynamics and sampling methods of two mealybug species, Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Coccomorpha, Pseudococcidae) and Heliococcus summervillei (Brookes, 1978) (Hemiptera: Coccomorpha, Pseudococcidae), in sugarcane (Saccharum sp. hybrids) (f. Poaceae) over consecutive growing seasons. The research monitored and compared the above- and belowground populations and seasonal abundance of these two mealybug species in sugarcane fields in Far North Queensland, with non-destructive sampling techniques of yellow sticky traps, pan traps, and stem traps, and destructive sampling of the whole leaf and whole plant. The results indicated that S. sacchari (n = 29,137) was more abundant and detected throughout the growing season, with population peaks in the mid-season, while H. summervillei (n = 2706) showed peaks of the early-season activity. S. sacchari is primarily located on sugarcane stems and roots, compared to H. summervillei, which is located on leaves and roots. The whole-leaf collection and stem trap were the most effective sampling techniques for quantification of H. summervillei and S. sacchari, respectively. This study enhanced the understanding of S. sacchari and the first-ever record of H. summervillei on sugarcane in Australia and will contribute to the development of more effective pest management strategies.

13.
Plants (Basel) ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065471

RESUMO

The stick tea thrip (Dendrothrips minowai) is one of the most serious sucking pests of tea plants (Camellia sinensis) in China, North Korea, and Japan. Plant volatile lures are widely used for both monitoring and mass trapping. Previously, we demonstrated that sticky traps baited with p-anisaldehyde, eugenol, farnesene, or 3-methyl butanal captured significantly more D. minowai in tea plantations, with p-anisaldehyde notably capturing the most. In this study, we showed that D. minowai adults exhibited significantly higher attraction to mixtures of p-anisaldehyde, eugenol, and farnesene compared to an equivalent dose of p-anisaldehyde alone in H-tube olfactometer assays under laboratory conditions. Moreover, in field experiments conducted in 2022, rubber septa impregnated with a ternary blend of p-anisaldehyde, eugenol, and farnesene (at 3-4.5 mg and a ratio of 3:1:1) captured the highest number of adults on sticky traps, outperforming traps bailed with individual components or a solvent control over two weeks. Significantly, the mass trapping strategy employing these lures achieved control efficacies ranging from 62.8% to 70.7% when compared to traps without attractant, which achieved control efficacies of only 14.2% to 35.4% across three test sites in 2023. These results indicate that the combination of p-anisaldehyde, eugenol, and farnesene exhibits an additive or synergistic effect on D. minowai. In conclusion, our findings establish a theoretical framework and provide practical technological support for integrating attractant-based strategies into comprehensive thrips management strategies.

14.
Micromachines (Basel) ; 15(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39064382

RESUMO

This paper investigates the threshold voltage shift (ΔVTH) induced by positive bias temperature instability (PBTI) in silicon carbide (SiC) power MOSFETs. By analyzing ΔVTH under various gate stress voltages (VGstress) at 150 °C, distinct mechanisms are revealed: (i) trapping in the interface and/or border pre-existing defects and (ii) the creation of oxide defects and/or trapping in spatially deeper oxide states with an activation energy of ~80 meV. Notably, the adoption of different characterization methods highlights the distinct roles of these mechanisms. Moreover, the study demonstrates consistent behavior in permanent ΔVTH degradation across VGstress levels using a power law model. Overall, these findings deepen the understanding of PBTI in SiC MOSFETs, providing insights for reliability optimization.

15.
BMC Chem ; 18(1): 135, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049130

RESUMO

Molybdenum sulfide (MoS2) and modified MoS2 with different percentages of CdS (10%, 30%, and 50% CdS@MoS2) were successfully synthesized and characterized. The photocatalytic performance of the MoS2 and CdS@MoS2 was evaluated by degrading brilliant green (BG), methylene blue (MB), and rhodamine B (RhB) dyes under visible light irradiation. Amongst the synthesized photocatalysts, 50% CdS@MoS2 exhibited the highest photocatalytic activity, degrading 97.6%, 90.3%, and 75.5% of BG, MB, and RhB dyes, respectively within 5 h. The active species involved in the degradation processes were investigated. All trapping agents inhibited BG and MB degradation to a similar extent, indicating that all of the probed active species play an important role in the degradation of BG and MB. In contrast, h+ and O2•- were found to be the main reactive species in the photocatalytic RhB degradation. A potential mechanism for the photocatalytic degradation of dyes using CdS@MoS2 has been proposed. This work highlights the potential of CdS@MoS2 as a photocatalyst for more efficient water remediation applications.

16.
Methods Mol Biol ; 2839: 249-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008259

RESUMO

Thiol-disulfide interconversions are pivotal in the intricate chemistry of biological systems. They play a vital role in governing cellular redox potential and shielding against oxidative harm. These interconversions can also act as molecular switches within an expanding array of redox-regulated proteins, facilitating dynamic and responsive processes. Furthermore, metal-binding proteins often use thiols for coordination. Reverse thiol trapping is a valuable analytical tool to study the redox state of cysteines in biological systems. By selectively capturing and stabilizing free thiol species with an alkylating agent, reverse thiol trapping allows for their subsequent identification and quantification. Various methods can be employed to analyze the trapped thiol adducts, including electrophoresis-based methods, mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatographic techniques. In this chapter, we will focus on describing a simple and sensitive method to sequentially block thiols in their cellular state with a cell-permeant agent (iodoacetamide), and following reduction and denaturation of the samples, trap the native disulfides with a second blocker that shifts the apparent molecular weight of the protein. The oxidation status of proteins for which suitable antibodies are available can then be analyzed by immunoblotting. We present examples of mitochondrial proteins that use cysteine thiols to coordinate metal factors such as iron-sulfur clusters, zinc, and copper.


Assuntos
Proteínas Mitocondriais , Oxirredução , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Humanos , Iodoacetamida/química , Dissulfetos/química , Dissulfetos/metabolismo , Metais/química , Metais/metabolismo , Cisteína/química , Cisteína/metabolismo
17.
Adv Mater ; : e2314083, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003611

RESUMO

Smart stimuli-responsive persistent luminescence materials, combining the various advantages and frontier applications prospects, have gained booming progress in recent years. The trap-controlled property and energy storage capability to respond to external multi-stimulations through diverse luminescence pathways make them attractive in emerging multi-responsive smart platforms. This review aims at the recent advances in trap-controlled luminescence materials for advanced multi-stimuli-responsive smart platforms. The design principles, luminescence mechanisms, and representative stimulations, i.e., thermo-, photo-, mechano-, and X-rays responsiveness, are comprehensively summarized. Various emerging multi-responsive hybrid systems containing trap-controlled luminescence materials are highlighted. Specifically, temperature dependent trapping and de-trapping performance is discussed, from extreme-low temperature to ultra-high temperature conditions. Emerging applications and future perspectives are briefly presented. It is hoped that this review would provide new insights and guidelines for the rational design and performance manipulation of multi-responsive materials for advanced smart platforms.

18.
Adv Sci (Weinh) ; : e2404019, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981048

RESUMO

Triboelectric nanogenerators (TENGs) have become reliable green energy harvesters by converting biomechanical motions into electricity. However, the inevitable charge leakage and poor electric field (EF) of conventional TENG result in inferior tribo-charge density on the active layer. In this paper, TiO2-MXene incorporated polystyrene (PS) nanofiber membrane (PTMx NFM) charge trapping interlayer is introduced into single electrode mode TENG (S-TENG) to prevent electron loss at the electrode interface. Surprisingly, this charge-trapping mechanism augments the surface charge density and electric output performance of TENGs. Polyvinylidene difluoride (PVDF) mixed polyurethane (PU) NFM is used as tribo-active layer, which improves the crystallinity and mechanical property of PVDF to prevent delamination during long cycle tests. Herein, the effect of this double-layer capacitive model is explained experimentally and theoretically. With optimization of the PTMx interlayer thickness, S-TENG exhibits a maximum open-circuit voltage of (280 V), short-circuit current of (20 µA) transfer charge of (120 nC), and power density of (25.2 µW cm-2). Then, this energy is utilized to charge electrical appliances. In addition, the influence of AC/DC EF simulation in wound healing management (vitro L929 cell migration, vivo tissue regeneration) is also investigated by changing the polarity of trans-epithelial potential (TEP) distribution in the wounded area.

19.
Chemistry ; : e202401938, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984590

RESUMO

Nanoparticles (NPs), including perovskite nanocrystals (PNCs) with single photon purity, present challenges in fluorescence correlation spectroscopy (FCS) studies due to their distinct photoluminescence (PL) behaviors. In particular, the zero-time correlation amplitude [g2(0)] and the associated diffusion timescale (τD) of their FCS curves show substantial dependency on pump intensity (IP). Optical saturation inadequately explains the origin of this FCS phenomenon in NPs, thus setting them apart from conventional dye molecules, which do not manifest such behavior. This observation is apparently attributed to either photo-brightening or optical trapping, both lead to increased NP occupancy (N) in the excitation volume, consequently reducing the g2(0) amplitude [since g2(0) α 1/N] at high IP. However, an advanced FCS study utilizing alternating laser excitation at two different intensities dismisses such possibilities. Further investigation into single-particle blinking behaviors as a function of IP reveals that the intensity dependence of g2(0) primarily arises from the brightness heterogeneity prevalent in almost all types of NPs. This report delves into the complexities of the photophysical properties of NPs and their adverse impacts on FCS studies.

20.
Adv Sci (Weinh) ; : e2400140, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973255

RESUMO

Most clinical PARP inhibitors (PARPis) trap PARP1 in a chromatin-bound state, leading to PARPi-mediated cytotoxicity. PARPi resistance impedes the treatment of ovarian cancer in clinical practice. However, the mechanism by which cancer cells overcome PARP1 trapping to develop PARPi resistance remains unclear. Here, it is shown that high levels of KAT6A promote PARPi resistance in ovarian cancer, regardless of its catalytic activity. Mechanistically, the liquid-liquid phase separation (LLPS) of KAT6A, facilitated by APEX1, inhibits the cytotoxic effects of PARP1 trapping during PARPi treatment. The stable KAT6A-PARP1-APEX1 complex reduces the amount of PARP1 trapped at the DNA break sites. In addition, inhibition of KAT6A LLPS, rather than its catalytic activity, impairs DNA damage repair and restores PARPi sensitivity in ovarian cancer both in vivo and in vitro. In conclusion, the findings demonstrate the role of KAT6A LLPS in fostering PARPi resistance and suggest that repressing KAT6A LLPS can be a potential therapeutic strategy for PARPi-resistant ovarian cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA