Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39090303

RESUMO

INTRODUCTION: Although a broadband acoustic click is physically the shortest duration sound we can hear, its peripheral neural representation is not as short because of cochlear filtering. The traveling wave imposes frequency-dependent delays to the sound waveform so that in response to a click, apical nerve fibers, coding for low frequencies, are excited several milliseconds after basal fibers, coding for high frequencies. Nevertheless, a click sounds like a click and these across-fiber delays are not perceived. This suggests that they may be compensated by the central auditory system, rendering our perception consistent with the external world. This explanation is difficult to evaluate in normal-hearing listeners because the contributions of peripheral and central auditory processing cannot easily be disentangled. Here, we test this hypothesis in cochlear implant listeners for whom cochlear mechanics is bypassed. METHOD: Eight cochlear implant users ranked in perceived duration 12 electrical chirps of various physical durations and spanning the cochlea in the apex-to-base or base-to-apex direction (Exp. 1). Late-latency cortical potentials were also recorded in response to a subset of these chirps (Exp. 2). RESULTS: We show that an electrical chirp spanning the cochlea from base-to-apex is perceived as shorter than the same chirp spanning the cochlea in the opposite direction despite having the same physical duration. Cortical potentials also provide neural correlates of this asymmetry in perception. CONCLUSION: These results demonstrate that the central auditory system processes frequency sweeps differently depending on the direction of the frequency change and that this processing difference is not simply the result of peripheral filtering.

2.
Sci Rep ; 14(1): 19723, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183208

RESUMO

We focused on solitonic phenomena in wave propagation which was extracted from a generalized breaking soliton system in (3 + 1)-dimensions. The model describes the interaction phenomena between Riemann wave and long wave via two space variable in nonlinear media. Abundant double-periodic soliton, breather wave and the multiple rogue wave solutions to a generalized breaking soliton system by the Hirota bilinear form and a mixture of exponentials and trigonometric functions are presented. Periodic-soliton, breather wave and periodic are studied with the usage of symbolic computation. In addition, the symbolic computation and the applied methods for governing model are investigated. Through three-dimensional graph, density graph, and two-dimensional design using Maple, the physical features of double-periodic soliton and breather wave solutions are explained all right. The findings demonstrate the investigated model's broad variety of explicit solutions. All outcomes in this work are necessary to understand the physical meaning and behavior of the explored results and shed light on the significance of the investigation of several nonlinear wave phenomena in sciences and engineering.

3.
Sci Rep ; 14(1): 15282, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961091

RESUMO

This study presents a comprehensive analysis of a nonlinear telecommunications model, exploring bifurcation, stability, and wave solutions using Hamiltonian and Jacobian techniques. The investigation begins with a thorough examination of bifurcation behavior, identifying critical points and their stability characteristics, leading to the discovery of diverse bifurcation scenarios. The stability of critical points is further assessed through graphical and numerical methods, highlighting the sensitivity to parameter variations. The study delves into the derivation of both numerical and analytical wave solutions, aligning them with energy orbits depicted in phase portraits, revealing a spectrum of wave behaviors. Additionally, the analysis extends to traveling wave solutions, providing insights into wave propagation dynamics. Notably, the study underscores the efficacy of the planar dynamical approach in capturing system behavior in harmony with phase portrait orbits. The findings have significant implications for telecommunications engineers and researchers, offering insights into system behavior, stability, and signal propagation, ultimately advancing our understanding of complex nonlinear dynamics in telecommunications networks.

4.
Math Biosci ; 374: 109240, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906525

RESUMO

A fundamental feature of collective cell migration is phenotypic heterogeneity which, for example, influences tumour progression and relapse. While current mathematical models often consider discrete phenotypic structuring of the cell population, in-line with the 'go-or-grow' hypothesis (Hatzikirou et al., 2012; Stepien et al., 2018), they regularly overlook the role that the environment may play in determining the cells' phenotype during migration. Comparing a previously studied volume-filling model for a homogeneous population of generalist cells that can proliferate, move and degrade extracellular matrix (ECM) (Crossley et al., 2023) to a novel model for a heterogeneous population comprising two distinct sub-populations of specialist cells that can either move and degrade ECM or proliferate, this study explores how different hypothetical phenotypic switching mechanisms affect the speed and structure of the invading cell populations. Through a continuum model derived from its individual-based counterpart, insights into the influence of the ECM and the impact of phenotypic switching on migrating cell populations emerge. Notably, specialist cell populations that cannot switch phenotype show reduced invasiveness compared to generalist cell populations, while implementing different forms of switching significantly alters the structure of migrating cell fronts. This key result suggests that the structure of an invading cell population could be used to infer the underlying mechanisms governing phenotypic switching.


Assuntos
Movimento Celular , Matriz Extracelular , Modelos Biológicos , Fenótipo , Matriz Extracelular/fisiologia , Movimento Celular/fisiologia , Humanos , Proliferação de Células/fisiologia
5.
Bull Math Biol ; 86(8): 93, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896363

RESUMO

Virotherapy treatment is a new and promising target therapy that selectively attacks cancer cells without harming normal cells. Mathematical models of oncolytic viruses have shown predator-prey like oscillatory patterns as result of an underlying Hopf bifurcation. In a spatial context, these oscillations can lead to different spatio-temporal phenomena such as hollow-ring patterns, target patterns, and dispersed patterns. In this paper we continue the systematic analysis of these spatial oscillations and discuss their relevance in the clinical context. We consider a bifurcation analysis of a spatially explicit reaction-diffusion model to find the above mentioned spatio-temporal virus infection patterns. The desired pattern for tumor eradication is the hollow ring pattern and we find exact conditions for its occurrence. Moreover, we derive the minimal speed of travelling invasion waves for the cancer and for the oncolytic virus. Our numerical simulations in 2-D reveal complex spatial interactions of the virus infection and a new phenomenon of a periodic peak splitting. An effect that we cannot explain with our current methods.


Assuntos
Simulação por Computador , Conceitos Matemáticos , Modelos Biológicos , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Humanos , Neoplasias/terapia , Neoplasias/virologia
6.
J Math Biol ; 89(1): 2, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739209

RESUMO

We study traveling wave solutions for a reaction-diffusion model, introduced in the article Calvez et al. (Regime switching on the propagation speed of travelling waves of some size-structured myxobacteriapopulation models, 2023), describing the spread of the social bacterium Myxococcus xanthus. This model describes the spatial dynamics of two different cluster sizes: isolated bacteria and paired bacteria. Two isolated bacteria can coagulate to form a cluster of two bacteria and conversely, a pair of bacteria can fragment into two isolated bacteria. Coagulation and fragmentation are assumed to occur at a certain rate denoted by k. In this article we study theoretically the limit of fast coagulation fragmentation corresponding mathematically to the limit when the value of the parameter k tends to + ∞ . For this regime, we demonstrate the existence and uniqueness of a transition between pulled and pushed fronts for a certain critical ratio θ ⋆ between the diffusion coefficient of isolated bacteria and the diffusion coefficient of paired bacteria. When the ratio is below θ ⋆ , the critical front speed is constant and corresponds to the linear speed. Conversely, when the ratio is above the critical threshold, the critical spreading speed becomes strictly greater than the linear speed.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Myxococcus xanthus , Myxococcus xanthus/fisiologia , Simulação por Computador , Difusão
7.
Bull Math Biol ; 86(7): 78, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777934

RESUMO

Understanding the propagation of invasive plants at the beginning of invasive spread is important as it can help practitioners eradicate harmful species more efficiently. In our work the propagation regime of the invasive plant species is studied at the short-time scale before a travelling wave is established and advances into space at a constant speed. The integro-difference framework has been employed to deal with a stage-structured population, and a short-distance dispersal mode has been considered in the homogeneous environment and when a road presents in the landscape. It is explained in the paper how nonlinear spatio-temporal dynamics arise in a transient regime where the propagation speed depends on the detection threshold population density. Furthermore, we investigate the question of whether the transient dynamics become different when the homogeneous landscape is transformed into the heterogeneous one. It is shown in the paper how invasion slows down in a transient regime in the presence of a road.


Assuntos
Ecossistema , Espécies Introduzidas , Conceitos Matemáticos , Modelos Biológicos , Dinâmica não Linear , Espécies Introduzidas/estatística & dados numéricos , Dinâmica Populacional/estatística & dados numéricos , Densidade Demográfica , Simulação por Computador , Análise Espaço-Temporal
8.
J Math Biol ; 89(1): 4, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750128

RESUMO

A system of partial differential equations is developed to study the spreading of tau pathology in the brain for Alzheimer's and other neurodegenerative diseases. Two cases are considered with one assuming intracellular diffusion through synaptic activities or the nanotubes that connect the adjacent cells. The other, in addition to intracellular spreading, takes into account of the secretion of the tau species which are able to diffuse, move with the interstitial fluid flow and subsequently taken up by the surrounding cells providing an alternative pathway for disease spreading. Cross membrane transport of the tau species are considered enabling us to examine the role of extracellular clearance of tau protein on the disease status. Bifurcation analysis is carried out for the steady states of the spatially homogeneous system yielding the results that fast cross-membrane transport combined with effective extracellular clearance is key to maintain the brain's healthy status. Numerical simulations of the first case exhibit solutions of travelling wave form describing the gradual outward spreading of the pathology; whereas the second case shows faster spreading with the buildup of neurofibrillary tangles quickly elevated throughout. Our investigation thus indicates that the gradual progression of the intracellular spreading case is more consistent with the clinical observations of the development of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Encéfalo , Simulação por Computador , Conceitos Matemáticos , Doenças Neurodegenerativas , Proteínas tau , Proteínas tau/metabolismo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Neurológicos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Modelos Biológicos , Progressão da Doença , Tauopatias/metabolismo , Tauopatias/patologia
9.
Sci Rep ; 14(1): 9473, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658626

RESUMO

This study uses the rational Sine-Gordon expansion (RSGE) method to investigate the dynamical behavior of traveling wave solutions of the water wave phenomena for the time-fractional phi-four equation and the (2 + 1) dimensional Calogero-Bogoyavlanskil schilf (CBS) equation based on the conformable derivative. The technique uses the sine-Gordon equation as an auxiliary equation to generalize the well-known sine-Gordon expansion. It adopts a more broad strategy, a rational function rather than a polynomial one, of the solutions of the auxiliary equation, in contrast to the traditional sine-Gordon expansion technique. Several explanations for hyperbolic functions may be produced using the previously stated approach. The approach mentioned above is employed to provide diverse solutions of the time-fractional phi-four equation and the (2 + 1) dimensional CBS equations involving hyperbolic functions, such as soliton, single soliton, multiple-soliton, kink, cusp, lump-kink, kink double-soliton, and others. The RSGE approach enhances our comprehension of nonlinear processes, offers precise solutions to nonlinear equations, facilitates the investigation of solitons, propels the development of mathematical tools, and is applicable in many scientific and technical fields. The solutions are graphically shown in three-dimensional (3D) surface and contour plots using MATLAB software. All screens display the absolute wave configurations in the resolutions of the equation with the proper parameters. Furthermore, it can be deduced that the physical properties of the found solutions and their characteristics may help us comprehend how shallow water waves move in nonlinear dynamics.

10.
Anal Chim Acta ; 1304: 342535, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637036

RESUMO

The implementation of ion mobility spectrometry (IMS) in liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflows has become a valuable tool for improving compound annotation in metabolomics analyses by increasing peak capacity and by adding a new molecular descriptor, the collision cross section (CCS). Although some studies reported high repeatability and reproducibility of CCS determination and only few studies reported good interplatform agreement for small molecules, standardized protocols are still missing due to the lack of reference CCS values and reference materials. We present a comparison of CCS values of approximatively one hundred lipid species either commercially available or extracted from human plasma. We used three different commercial ion mobility technologies from different laboratories, drift tube IMS (DTIMS), travelling wave IMS (TWIMS) and trapped IMS (TIMS), to evaluate both instrument repeatability and interlaboratory reproducibility. We showed that CCS discrepancies of 0.3% (average) could occur depending on the data processing software tools. Moreover, eleven CCS calibrants were evaluated yielding mean RSD below 2% for eight calibrants, ESI Low concentration tuning mix (Tune Mix) showing the lowest RSD (< 0.5%) in both ion modes. Tune Mix calibrated CCS from the three different IMS instruments proved to be well correlated and highly reproducible (R2 > 0.995 and mean RSD ≤ 1%). More than 90% of the lipid CCS had deviations of less than 1%, demonstrating high comparability between techniques, and the possibility to use the CCS as molecular descriptor. We highlighted the need of standardized procedures for calibration, data acquisition, and data processing. This work demonstrates that using harmonized analytical conditions are required for interplatform reproducibility for CCS determination of human plasma lipids.


Assuntos
Lipídeos , Metabolômica , Humanos , Reprodutibilidade dos Testes
11.
Clin Neurophysiol ; 162: 262-270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480063

RESUMO

OBJECTIVE: Propagation of electroencephalogram (EEG) oscillations, often referred to as traveling waves, reflects the role of brain oscillations in neural information transmission. This propagation can be distorted by brain disorders such as schizophrenia that features disconnection of neural information transmission (i.e., disconnection syndrome). However, this possibility of the disruption of EEG oscillation propagation in patients with schizophrenia remains largely unexplored. METHODS: Using a publicly shared dataset (N = 19 and 24; patients with schizophrenia and healthy controls, respectively), we investigated EEG oscillation propagation by analyzing the local phase gradients (LPG) of alpha (8-12 Hz) oscillations in both healthy participants and patients with schizophrenia. RESULTS: Our results showed significant directionality in the propagation of alpha oscillations in healthy participants. Specifically, alpha oscillations propagated in an anterior-to-posterior direction along mid-line and a posterior-to-anterior direction laterally. In patients with schizophrenia, some of alpha oscillation propagation were notably disrupted, particularly in the central midline area where alpha oscillations propagated from anterior to posterior areas. CONCLUSION: Our finding lends support to the hypothesis of a disconnection syndrome in schizophrenia, underscoring a disruption in the anterior-to-posterior propagation of alpha oscillations. SIGNIFICANCE: This study identified disruption of alpha oscillation propagation observed in scalp EEG as a biomarker for schizophrenia.


Assuntos
Ritmo alfa , Esquizofrenia , Humanos , Esquizofrenia/fisiopatologia , Masculino , Feminino , Ritmo alfa/fisiologia , Adulto , Eletroencefalografia/métodos , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Adulto Jovem
12.
Front Mol Biosci ; 10: 1230282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602325

RESUMO

This mini review focuses on the opportunities provided by current and emerging separation techniques for mass spectrometry metabolomics. The purpose of separation technologies in metabolomics is primarily to reduce complexity of the heterogeneous systems studied, and to provide concentration enrichment by increasing sensitivity towards the quantification of low abundance metabolites. For this reason, a wide variety of separation systems, from column chemistries to solvent compositions and multidimensional separations, have been applied in the field. Multidimensional separations are a common method in both proteomics applications and gas chromatography mass spectrometry, allowing orthogonal separations to further reduce analytical complexity and expand peak capacity. These applications contribute to exponential increases in run times concomitant with first dimension fractionation followed by second dimension separations. Multidimensional liquid chromatography to increase peak capacity in metabolomics, when compared to the potential of running additional samples or replicates and increasing statistical confidence, mean that uptake of these methods has been minimal. In contrast, in the last 15 years there have been significant advances in the resolution and sensitivity of ion mobility spectrometry, to the point where high-resolution separation of analytes based on their collision cross section approaches chromatographic separation, with minimal loss in sensitivity. Additionally, ion mobility separations can be performed on a chromatographic timescale with little reduction in instrument duty cycle. In this review, we compare ion mobility separation to liquid chromatographic separation, highlight the history of the use of ion mobility separations in metabolomics, outline the current state-of-the-art in the field, and discuss the future outlook of the technology. "Where there is one, you're bound to divide it. Right in two", James Maynard Keenan.

13.
J Math Biol ; 87(2): 38, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537411

RESUMO

We explore the spatial spread of vector-borne infections with conditional vector preferences, meaning that vectors do not visit hosts at random. Vectors may be differentially attracted toward infected and uninfected hosts depending on whether they carry the pathogen or not. The model is expressed as a system of partial differential equations with vector diffusion. We first study the non-spatial model. We show that conditional vector preferences alone (in the absence of any epidemiological feedback on their population dynamics) may result in bistability between the disease-free equilibrium and an endemic equilibrium. A backward bifurcation may allow the disease to persist even though its basic reproductive number is less than one. Bistability can occur only if both infected and uninfected vectors prefer uninfected hosts. Back to the model with diffusion, we show that bistability in the local dynamics may generate travelling waves with either positive or negative spreading speeds, meaning that the disease either invades or retreats into space. In the monostable case, we show that the disease spreading speed depends on the preference of uninfected vectors for infected hosts, but also on the preference of infected vectors for uninfected hosts under some circumstances (when the spreading speed is not linearly determined). We discuss the implications of our results for vector-borne plant diseases, which are the main source of evidence for conditional vector preferences so far.


Assuntos
Doenças Transmissíveis , Doenças Transmitidas por Vetores , Humanos , Doenças Transmissíveis/epidemiologia , Número Básico de Reprodução
14.
Elife ; 122023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961500

RESUMO

Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral, and spatiotemporal characteristics, indicating distinct functional roles.


Assuntos
Ritmo beta , Córtex Sensório-Motor , Humanos , Ritmo beta/fisiologia , Córtex Sensório-Motor/fisiologia , Movimento/fisiologia , Magnetoencefalografia
15.
Life (Basel) ; 13(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36836784

RESUMO

Mathematical and computational models are used to describe biomechanical processes in multicellular systems. Here, we develop a model to analyse how two types of epithelial cell layers interact during tissue invasion depending on their cellular properties, i.e., simulating cancer cells expanding into a region of normal cells. We model the tissue invasion process using the cellular Potts model and implement our two-dimensional computational simulations in the software package CompuCell3D. The model predicts that differences in mechanical properties of cells can lead to tissue invasion, even if the division rates and death rates of the two cell types are the same. We also show how the invasion speed varies depending on the cell division and death rates and the mechanical properties of the cells.

16.
Philos Trans A Math Phys Eng Sci ; 381(2245): 20220076, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36842987

RESUMO

We consider a one-dimensional array of phase oscillators coupled via an auxiliary complex field. While in the seminal chimera studies by Kumamoto and Battogtokh only diffusion of the field was considered, we include advection which makes the coupling left-right asymmetric. Chimera starts to move and we demonstrate that a weakly turbulent moving pattern appears. It possesses a relatively large synchronous domain where the phases are nearly equal, and a more disordered domain where the local driving field is small. For a dense system with a large number of oscillators, there are strong local correlations in the disordered domain, which at most places looks like a smooth phase profile. We find also exact regular travelling wave chimera-like solutions of different complexity, but only some of them are stable. This article is part of the theme issue 'New trends in pattern formation and nonlinear dynamics of extended systems'.

17.
Proc Biol Sci ; 289(1986): 20221437, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350217

RESUMO

The repeated emergence of SARS-CoV-2 escape mutants from host immunity has obstructed the containment of the current pandemic and poses a serious threat to humanity. Prolonged infection in immunocompromised patients has received increasing attention as a driver of immune escape, and accumulating evidence suggests that viral genomic diversity and emergence of immune-escape mutants are promoted in immunocompromised patients. However, because immunocompromised patients comprise a small proportion of the host population, whether they have a significant impact on antigenic evolution at the population level is unknown. We consider an evolutionary epidemiological model that combines antigenic evolution and epidemiological dynamics. Applying this model to a heterogeneous host population, we study the impact of immunocompromised hosts on the evolutionary dynamics of pathogen antigenic escape from host immunity. We derived analytical formulae of the speed of antigenic evolution in heterogeneous host populations and found that even a small number of immunocompromised hosts in the population significantly accelerates antigenic evolution. Our results demonstrate that immunocompromised hosts play a key role in viral adaptation at the population level and emphasize the importance of critical care and surveillance of immunocompromised hosts.


Assuntos
Deriva e Deslocamento Antigênicos , COVID-19 , Humanos , SARS-CoV-2 , Genoma Viral , Hospedeiro Imunocomprometido
18.
Anal Chim Acta ; 1229: 340361, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36156233

RESUMO

The number of open access databases containing experimental and predicted collision cross section (CCS) values is rising and leads to their increased use for compound identification. However, the reproducibility of reference values with different instrumental designs and the comparison between predicted and experimental CCS values is still under evaluation. This study compared experimental CCS values of 56 small molecules (Contaminants of Emerging Concern) acquired by both drift tube (DT) and travelling wave (TW) ion mobility mass spectrometry (IM-MS). The TWIM-MS included two instrumental designs (Synapt G2 and VION). The experimental TWCCSN2 values obtained by the TWIM-MS systems showed absolute percent errors (APEs) < 2% in comparison to experimental DTIMS data, indicating a good correlation between the datasets. Furthermore, TWCCSN2 values of [M - H]- ions presented the lowest APEs. An influence of the compound class on APEs was observed. The applicability of prediction models based on artificial neural networks (ANN) and multivariate adaptive regression splines (MARS), both built using TWIM-MS data, was investigated for the first time for the prediction of DTCCSN2 values. For [M+H]+ and [M - H]- ions, the 95th percentile confidence intervals of observed APEs were comparable to values reported for both models indicating a good applicability for DTIMS predictions. For the prediction of DTCCSN2 values of [M+Na]+ ions, the MARS based model provided the best results with 73.9% of the ions showing APEs below the threshold reported for [M+Na]+. Finally, recommendations for database transfer and applications of prediction models for future DTIMS studies are made.


Assuntos
Hominidae , Espectrometria de Mobilidade Iônica , Animais , Espectrometria de Mobilidade Iônica/métodos , Íons/química , Reprodutibilidade dos Testes
19.
Entropy (Basel) ; 24(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36141174

RESUMO

We apply the Simple Equations Method (SEsM) for obtaining exact travelling-wave solutions of the extended fifth-order Korteweg-de Vries (KdV) equation. We present the solution of this equation as a composite function of two functions of two independent variables. The two composing functions are constructed as finite series of the solutions of two simple equations. For our convenience, we express these solutions by special functions V, which are solutions of appropriate ordinary differential equations, containing polynomial non-linearity. Various specific cases of the use of the special functions V are presented depending on the highest degrees of the polynomials of the used simple equations. We choose the simple equations used for this study to be ordinary differential equations of first order. Based on this choice, we obtain various travelling-wave solutions of the studied equation based on the solutions of appropriate ordinary differential equations, such as the Bernoulli equation, the Abel equation of first kind, the Riccati equation, the extended tanh-function equation and the linear equation.

20.
J Chromatogr A ; 1682: 463502, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36174373

RESUMO

This work evaluates the potential of ion mobility spectrometry (IMS) to improve the analytical performance of current liquid chromatography-mass spectrometry (LC-MS) workflows applied to the determination of ergot alkaloids (EAs) in cereal samples. Collision cross section (CCS) values for EA epimers are reported for the first time to contribute to their unambiguous identification. Additionally, CCS values have been inter-laboratory cross-validated and compared with CCS values predicted by machine-learning models. Slight differences were observed in terms of CCS values for ergotamine, ergosine and ergocristine and their corresponding epimers (from 3.3 to 4%), being sufficient to achieve a satisfactory peak-to-peak resolution for their unequivocal identification. A LC-travelling wave ion mobility (TWIM)-MS method has been developed for the analysis of EAs in barley and wheat samples. Signal-to-noise ratio (S/N) was improved between 2.5 and 4-fold compared to the analog LC-TOF-MS method. The quality of the extracted ion chromatograms was also improved by using IMS.


Assuntos
Alcaloides de Claviceps , Grão Comestível/química , Alcaloides de Claviceps/análise , Ergotaminas/análise , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA