Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PeerJ ; 12: e17765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148680

RESUMO

Therocephalia are an important clade of non-mammalian therapsids that evolved a diverse array of morphotypes and body sizes throughout their evolutionary history. The postcranial anatomy of therocephalians has largely been overlooked, but remains important towards understanding aspects of their palaeobiology and phylogenetic relationships. Here, we provide the first postcranial description of the large akidnognathid eutherocephalian Moschorhinus kitchingi by examining multiple specimens from fossil collections in South Africa. We also compare the postcranial anatomy with previously described therocephalian postcranial material and provide an updated literature review to ensure a reliable foundation of comparison for future descriptive work. Moschorhinus shares all the postcranial features of eutherocephalians that differentiate them from early-diverging therocephalians, but is differentiated from other eutherocephalian taxa by aspects concerning the scapula, interclavicle, sternum, manus, and femur. The novel anatomical data from this contribution shows that Moschorhinus possessed a stocky bauplan with a particularly robust scapula, humerus, and femur. These attributes, coupled with the short and robust skull bearing enlarged conical canines imply that Moschorhinus was well equipped to grapple with and subdue prey items. Additionally, the combination of these attributes differ from those of similarly sized coeval gorgonopsians, which would have occupied a similar niche in late Permian ecosystems. Moreover, Moschorhinus was the only large carnivore known to have survived the Permo-Triassic mass extinction. Thus, the subtle but important postcranial differences may suggest a type of niche partitioning in the predator guild during the Permo-Triassic mass extinction interval.


Assuntos
Evolução Biológica , Fósseis , Animais , África do Sul , Filogenia , Crânio/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Osso e Ossos/anatomia & histologia
2.
Materials (Basel) ; 17(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124332

RESUMO

The results of the content determination of the selected trace elements Ti, Sr, Ba, Zn, Pb, Cu, S, P, Cr, Cd, Ni, Zr, Mo, Rb, Sc, Y, and REEs were presented in this article. Studies were carried out to define the purity of limestones. The elements were measured in the carbonate minerals of Middle Triassic limestones of the Opole Silesia in Poland, using ICP-MS and X-ray fluorescence (XRF). Moreover, the contents of Sc and REY were also determined by electron microprobe analysis. These methods are characterized by high accuracy and precision of the measurement. The research results show that the contents of trace elements vary from below 1 ppm up to some hundreds ppm. The highest content was measured for strontium and the lowest for barium, elements characteristic of aragonite. Their occurrence indicates the presence of aragonite in the primary carbonate material. Some trace elements form substitutions in clay or carbonate minerals. Zn, Pb, Cu, Mo, and Ni may be associated with sulfides, and Ti and Cr may be associated with oxides. Sc and REY usually substitute Ca ions in calcite. The contents of measured Ce, Nd, Sm, Dy, Er, and Y vary from below 1 ppm up to 6 ppm, and Sc from 0 ppm to 10 ppm.

3.
Anat Rec (Hoboken) ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039851

RESUMO

Investigating the evolutionary trajectory of synapsid sensory and cephalic systems is pivotal for understanding the emergence and diversification of mammals. Recent studies using CT-scanning to analyze the rostral foramina and maxillary canals morphology in fossilized specimens of probainognathian cynodonts have contributed to clarifying the homology and paleobiological interpretations of these structures. In the present work, µCT-scannings of three specimens of Riograndia guaibensis, an early Norian cynodont from southern Brazil, were analyzed and revealed an incomplete separation between the lacrimal and maxillary canals, with points of contact via non-ossified areas. While the maxillary canal exhibits a consistent morphological pattern with other Prozostrodontia, featuring three main branches along the lateral region of the snout, the rostral alveolar canal in Riograndia displays variability in the number of extra branches terminating in foramina on the lateral surface of the maxilla, showing differences among individuals and within the same skull. Additionally, pneumatization is observed in the anterior region of the skull, resembling similar structures found in reptiles and mammals. Through this pneumatization, certain branches originating from the maxillary canal extend to the canine alveolus. Further investigation is warranted to elucidate the functionality of this structure and its occurrence in other cynodont groups.

4.
Biol Lett ; 20(7): 20240136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982977

RESUMO

Recent studies suggest that both stem- and crown-group Archosauria encompassed high ecological diversity during their initial Triassic radiation. We describe a new pseudosuchian archosaur, Benggwigwishingasuchus eremicarminis gen. et sp. nov., from the Anisian (Middle Triassic) Fossil Hill Member of the Favret Formation (Nevada, USA), a pelagic setting in the eastern Panthalassan Ocean characterized by the presence of abundant ammonoids and large-bodied ichthyosaurs. Coupled with archosauriforms from the eastern and western Tethys Ocean, Benggwigwishingasuchus reveals that pseudosuchians were also components of Panthalassan ocean coastal settings, establishing that the group occupied these habitats globally during the Middle Triassic. However, Benggwigwishingasuchus, Qianosuchus, and Ticinosuchus (two other pseudosuchians known from marine sediments) are not recovered in a monophyletic group, demonstrating that a nearshore marine lifestyle occurred widely across Archosauriformes during this time. Benggwigwishingasuchus is recovered as part of an expanded Poposauroidea, including several taxa (e.g. Mandasuchus, Mambawakalae) from the Middle Triassic Manda Beds of Tanzania among its basally branching members. This implies a greater undiscovered diversity of poposauroids during the Early Triassic, and supports that the group, and pseudosuchians more broadly, diversified rapidly following the End-Permian mass extinction.


Assuntos
Fósseis , Animais , Fósseis/anatomia & histologia , Nevada , Filogenia , Répteis/anatomia & histologia , Répteis/classificação , Evolução Biológica , Ecossistema
5.
Ann Bot ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982647

RESUMO

BACKGROUND AND AIMS: The complexity of fossil forest ecosystems is difficult to reconstruct due to the fragmentary nature of the fossil record. However, detailed morpho-anatomical studies of well-preserved individual fossils can provide key information on tree growth and ecology, including in biomes with no modern analog such as the lush forests that developed in the polar regions during past greenhouse climatic episodes. METHODS: We describe an unusual-looking stem from Middle Triassic (ca 240 Ma) deposits of Antarctica with over 100 very narrow growth-rings and conspicuous persistent vascular traces through the wood. Sections of the specimen were prepared using the cellulose acetate peel technique to determine its systematic affinities and analyse its growth. KEY RESULTS: The new fossil shows similarities with the form genus Woodworthia and with conifer stems from the Triassic of Antarctica, and is assigned to the conifers. Vascular traces are interpreted as those of small branches retained on the trunk. Growth-ring analyses reveal one of the slowest growth rates reported in the fossil record, with an average of 0.2 mm/season. While the tree was growing within the Triassic polar circle, sedimentological data and growth-ring information from other fossil trees, including from the same locality, support the presence of favorable conditions in the region. CONCLUSIONS: The specimen is interpreted as a dwarf conifer tree that grew under a generally favorable regional climate but whose growth was suppressed due to stressful local site conditions. This is the first time that a tree with suppressed growth is identified as such in the fossil record, providing new insights on the structure of polar forests under greenhouse climates and, more generally, on the complexity of tree communities in deep time.

6.
Anat Rec (Hoboken) ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943347

RESUMO

Riojasuchus tenuisceps was a pseudosuchian archosaur from the Late Triassic period in Argentina. Like other ornithosuchids, it had unusual morphology such as a unique "crocodile-reversed" ankle joint, a lesser trochanter as in dinosaurs and a few other archosaurs, robust vertebrae, and somewhat shortened, gracile forelimbs. Such traits have fuelled controversies about its locomotor function-were its limbs erect or "semi-erect"? Was it quadrupedal or bipedal, or a mixture thereof? These controversies seem to persist because analyses have been qualitative (functional morphology) or correlative (morphometrics) rather than explicitly, quantitatively testing mechanistic hypotheses about locomotor function. Here, we develop a 3D whole-body model of R. tenuisceps with the musculoskeletal apparatus of the hindlimbs represented in detail using a new muscle reconstruction. We use this model to quantify the body dimensions and hindlimb muscle leverages of this enigmatic taxon, and to estimate joint ranges of motion and qualitative joint functions. Our model supports prior arguments that R. tenuisceps used an erect posture, parasagittal gait and plantigrade pes. However, some of our inferences illuminate the rather contradictory nature of evidence from the musculoskeletal system of R. tenuisceps-different features support (or are ambiguous regarding) quadrupedalism or bipedalism. Deeper analyses of our biomechanical model could move toward a consensus regarding ornithosuchid locomotion. Answering these questions would not only help understand the palaeobiology and bizarre morphology of this clade, but also more broadly if (or how) locomotor abilities played a role in the survival versus extinction of various archosaur lineages during the end-Triassic mass extinction event.

7.
Sci Rep ; 14(1): 12831, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886453

RESUMO

Radiolarians have been used to determine geological ages and have contributed markedly to our understanding of Earth's history. Hydrofluoric acid (HF) has traditionally been used to extract radiolarian fossils from siliceous deposits (i.e., radiolarian cherts), but this acid is strictly regulated because of environmental and human health concerns. Here we report on the successful extraction of radiolarians from cherts using a low-concentration NaOH solution (1 mol/L NaOH) as an alternative to HF. The degree of chert dissolution in NaOH is strongly temperature-dependent and is limited at < 80 °C. However, even a 1 mol/L NaOH solution is sufficient to dissolve chert at 100 °C. Our new NaOH method yields better-preserved radiolarian fossils compared with the conventional HF method. The 1 mol/L NaOH solution is less hazardous, easier to handle, and has fewer effects on the environment and human health than HF. Therefore, this method can be widely used for research and teaching purposes in studies of radiolarian fossils, even in institutions where HF cannot be used owing to chemical restrictions.

8.
Sci Rep ; 14(1): 11634, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773202

RESUMO

Oribatid mites are an ancient group that already roamed terrestrial ecosystems in the early and middle Devonian. The superfamily of Ameronothroidea, a supposedly monophyletic lineage, represents the only group of oribatid mites that has successfully invaded the marine coastal environment. By using mitogenome data and nucleic ribosomal RNA genes (18S, 5.8S, 28S), we show that Ameronothroidea are a paraphyletic assemblage and that the land-to-sea transition happened three times independently. Common ancestors of the tropical Fortuyniidae and Selenoribatidae were the first to colonize the coasts and molecular calibration of our phylogeny dates this event to a period in the Triassic and Jurassic era (225-146 mya), whereas present-day distribution indicates that this event might have happened early in this period during the Triassic, when the supercontinent Pangaea still existed. The cold temperate northern hemispheric Ameronothridae colonized the marine littoral later in the late Jurassic-Early Cretaceous and had an ancient distribution on Laurasian coasts. The third and final land-to-sea transition happened in the same geological period, but approx. 30 my later when ancestors of Podacaridae invaded coastal marine environments of the Gondwanan landmasses.


Assuntos
Metagenômica , Ácaros , Filogenia , Animais , Ácaros/genética , Ácaros/classificação , Metagenômica/métodos , Genoma Mitocondrial , Mitocôndrias/genética , Metagenoma , Evolução Molecular , Ecossistema
9.
PeerJ ; 12: e17060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618574

RESUMO

Very large unidentified elongate and rounded fossil bone segments of uncertain origin recovered from different Rhaetian (Late Triassic) fossil localities across Europe have been puzzling the paleontological community since the second half of the 19th century. Different hypotheses have been proposed regarding the nature of these fossils: (1) giant amphibian bones, (2) dinosaurian or other archosaurian long bone shafts, and (3) giant ichthyosaurian jaw bone segments. We call the latter proposal the 'Giant Ichthyosaur Hypothesis' and test it using bone histology. In presumable ichthyosaur specimens from SW England (Lilstock), France (Autun), and indeterminate cortical fragments from Germany (Bonenburg), we found a combination of shared histological features in the periosteal cortex: an unusual woven-parallel complex of strictly longitudinal primary osteons set in a novel woven-fibered matrix type with intrinsic coarse collagen fibers (IFM), and a distinctive pattern of Haversian substitution in which secondary osteons often form within primary ones. The splenial and surangular of the holotype of the giant ichthyosaur Shastasaurus sikanniensis from Canada were sampled for comparison. The results of the sampling indicate a common osteohistology with the European specimens. A broad histological comparison is provided to reject alternative taxonomic affinities aside from ichthyosaurs of the very large bone segment. Most importantly, we highlight the occurrence of shared peculiar osteogenic processes in Late Triassic giant ichthyosaurs, reflecting special ossification strategies enabling fast growth and achievement of giant size and/or related to biomechanical properties akin to ossified tendons.


Assuntos
Dinossauros , Animais , Osteogênese , Diáfises , Canadá , Inglaterra
10.
Anat Rec (Hoboken) ; 307(4): 1634-1730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444024

RESUMO

The origin of cynodonts, the group ancestral to and including mammals, is one of the major outstanding problems in therapsid evolution. One of the most troubling aspects of the cynodont fossil record is the lengthy Permian ghost lineage between the latest possible divergence from its sister group Therocephalia and the first appearance of definitive cynodonts in the late Permian. The absence of cynodonts and dominance of therocephalians in middle Permian strata has led some workers to argue that cynodonts evolved from within therocephalians, rendering the latter paraphyletic, but more recent analyses support the reciprocal monophyly of Cynodontia and Therocephalia. Furthermore, although a fundamental dichotomy in the derived subclade Eucynodontia is well-supported in cynodont phylogeny, the relationships of more stemward cynodonts from the late Permian and Early Triassic are unresolved. Here, we provide a re-evaluation of the phylogeny of Eutheriodontia (Cynodontia + Therocephalia) and an assessment of character evolution within the group. Using computed tomographic data derived from extensive sampling of the earliest known (late Permian and Early Triassic) cynodonts and selected exemplars of therocephalians and later (Middle Triassic onwards) cynodonts, we describe novel aspects of the endocranial anatomy of these animals. These data were incorporated into a new phylogenetic data set including a comprehensive sample of early cynodonts. Our phylogenetic analyses support some results previously recovered by other authors, but recover therocephalians as paraphyletic with regards to cynodonts, with cynodonts and eutherocephalians forming a clade to the exclusion of the "basal therocephalian" families Lycosuchidae and Scylacosauridae. Though both conservatism and homoplasy mark the endocranial anatomy of early non-mammalian cynodonts, we were able to identify several new endocranial synapomorphies for eutheriodont subclades and recovered generally better-supported topologies than previous analyses using primarily external craniodental characters.


Assuntos
Evolução Biológica , Fósseis , Humanos , Animais , Filogenia , Tomografia Computadorizada por Raios X , Mamíferos/anatomia & histologia
11.
BMC Ecol Evol ; 24(1): 35, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493125

RESUMO

The Arnstadt Formation of Saxony-Anhalt, Germany has yielded some of Germany's most substantial finds of Late Triassic tetrapods, including the sauropodomorph Plateosaurus and the stem-turtle Proganochelys quenstedti. Here, we describe an almost complete skull of a new sphenodontian taxon from this formation (Norian, 227-208 Ma), making it the oldest known articulated sphenodontian skull from Europe and one of the oldest in the world. The material is represented by the dermal skull roof and by the complete maxilla and temporal region, as well as parts of the palate, braincase, and lower jaw. A phylogenetic assessment recovers it as a basal sphenodontian closely related to Planocephalosaurus robinsonae and to Eusphenodontia, making it the earliest-diverging sphenodontian known with an articulated skull. Its cranial anatomy is generally similar to the well-known Diphydontosaurus avonis from the Rhaetian of England, showing that this successful phenotype was already established in the clade around 10 myr earlier than assumed. An analysis of evolutionary change rates recovers high rates of evolution in basal sphenodontians, with decreasing rates throughout the evolution of the group. However, contrary to previous studies, reversals in this trend were identified, indicating additional peaks of evolutionary change. These results improve our understanding of the early sphenodontian diversity in Europe, providing critical information on evolutionary trends throughout the history of the clade and sparking renewed interest in its evolution.


Assuntos
Evolução Biológica , Fósseis , Filogenia , Crânio/anatomia & histologia , Alemanha
12.
Anat Rec (Hoboken) ; 307(4): 1271-1299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206046

RESUMO

The Late Triassic Dockum Group in northwestern Texas preserves a rich diversity of pseudosuchian taxa, particularly of aetosaurs. In this contribution, we present Garzapelta muelleri gen. et sp. nov., a new aetosaur from the Late Triassic middle Cooper Canyon Formation (latest Adamanian-earliest Revueltian teilzones) in Garza County, Texas, based on an associated specimen that preserves a significant portion of its dorsal carapace. The carapace of G. muelleri exhibits a striking degree of similarity between that of the paratypothoracin Rioarribasuchus chamaensis and desmatosuchins. We quantitatively assessed the relationships of G. muelleri using several iterations of the matrix. Scoring the paramedian and lateral osteoderms of G. muelleri independently results in conflicting topologies. Thus, it is evident that our current matrix is limited in its ability to discern the convergence within this new taxon and that our current character lists are not fully accounting for the morphological disparity of the aetosaurian carapace. Qualitative comparisons suggest that G. muelleri is a Rioarribasuchus-like paratypothoracin with lateral osteoderms that are convergent with those of desmatosuchins. Although the shape of the dorsal eminence, and the presence of a dorsal flange that is rectangular and proportionately longer than the lateral flange are desmatosuchin-like features of G. muelleri, the taxon does not exhibit the articulation style between the paramedian and lateral osteoderms which diagnose the Desmatosuchini (i.e., a rigid interlocking contact, and an anteromedial edge of the lateral osteoderm that overlaps the adjacent paramedian osteoderm).


Assuntos
Exoesqueleto , Fósseis , Animais , Filogenia , Texas
13.
Anat Rec (Hoboken) ; 307(4): 726-743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240478

RESUMO

The End-Permian Mass Extinction marked a critical turning point in Earth's history, and the biological recovery that followed the crisis led to the emergence of several modern vertebrate and invertebrate taxa. Even considering the importance of the Early Triassic biotic recovery for the evolution of modern faunas and floras, our knowledge of this event is still hindered by the sparse sampling of crucial geological formations. This leaves our understanding of Early Triassic ecosystems fundamentally biased toward productive and historically well-explored geological units. Recent surveys in poorly known Gondwanan localities, such as those within the Sanga do Cabral Formation in southern Brazil, have unveiled insights into Early Triassic terrestrial ecosystems, shedding light on a diverse and previously unknown tetrapod fauna. Here, we report the discovery of a new temnospondyl genus and species in the Lower Triassic Sanga do Cabral Formation. The new taxon can be confidently assigned to the Benthosuchidae, a stereospondyl clade with a distribution previously restricted to the East European Platform. Phylogenetic analysis confirms the relationship of the new genus to the trematosaurian lineage, being closely related to the genus Benthosuchus. Our results raise questions about the biogeographical history of stereospondyls after the End-Permian Mass Extinction and suggest a potential connection between Russian and South American Early Triassic faunas. Further investigations are needed to thoroughly explore the potential dispersal routes that may explain this seemingly unusual biogeographical pattern.


Assuntos
Biodiversidade , Ecossistema , Filogenia , Fósseis , Brasil , Extinção Biológica , Evolução Biológica
14.
Anat Rec (Hoboken) ; 307(4): 752-775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38259049

RESUMO

Teyujagua paradoxa is a remarkable early archosauromorph from the Lower Triassic Sanga do Cabral Formation, Brazil. The species was originally described from an almost complete skull and a few associated cervical vertebrae, and no further postcranial elements were known at that time. Additional fieldwork in the Sanga do Cabral Formation, however, was successful in recovering a fairly complete postcranial skeleton attributable to the holotype. Here, we describe this new postcranial material, which is composed of cervical, dorsal, sacral and caudal vertebrae, limbs, pectoral and pelvic girdles, ribs, and gastralia. The description of its postcranial skeleton makes T. paradoxa one of the best-known early-diverging archosauromorphs. The cladistic analysis performed after the scoring of postcranial data recovered T. paradoxa in the same position initially described, close to the node that defines the Archosauriformes. Teyujagua paradoxa shares morphological features with representatives of early-diverging archosauromorphs and archosauriforms, with certain traits demonstrating a mosaic of plesiomorphic and apomorphic character states. We also performed partitioned morphospace and disparity analysis to elucidate the morphological disparity and evolutionary patterns among archosauromorphs. Teyujagua paradoxa occupies a notable position, suggesting an intermediate morphology between early archosauromorphs and proterosuchids. Disparity estimates highlighted Pseudosuchia and Avemetatarsalia as having the highest median disparity, reflecting their diverse cranial and postcranial morphologies, respectively. These findings offer valuable insights into archosauromorph macroevolution and adaptation.


Assuntos
Fósseis , Répteis , Animais , Filogenia , Répteis/anatomia & histologia , Crânio/anatomia & histologia , Brasil
15.
Anat Rec (Hoboken) ; 307(4): 1001-1010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263641

RESUMO

Lagerpeton chanarensis is an early avemetatarsalian from the lower Carnian (lowermost Upper Triassic) levels of the Chañares Formation, La Rioja Province, Argentina. Lagerpeton and its kin were traditionally interpreted as dinosaur precursors of cursorial habits, with a bipedal posture and parasagittal gait. Some authors also speculated saltatorial capabilities for this genus. Recent analyses indicate that lagerpetids are early-diverging pterosauromorphs, a hypothesis that invites a review of most aspects of their anatomy and function. A revision of available specimens and additional preparation of previously known individuals indicate that Lagerpeton lacked a parasagittal gait and was probably a sprawling archosaur. This latter inference is based on the femoral head articulation with the acetabulum. The acetabular rim has a strongly laterally projected posteroventral antitrochanteric corner, which results in a position of the legs that recalls that of sprawling living reptiles, such as lizards, and departs from the parasagittally positioned limbs of dinosaurs. This may indicate that early pterosauromorphs had a sprawling posture of their hindlegs, casting doubts on the significance of bipedal posture and parasagittal gait for the radiation of early ornithodirans, given that both traits have been regarded as key features that triggered the ecological and evolutionary success of the clade. Our results bolster recent claims of a high ecomorphological diversity among early avemetatarsalians.


Assuntos
Dinossauros , Lagartos , Animais , Filogenia , Fósseis , Evolução Biológica , Extremidade Inferior/anatomia & histologia , Dinossauros/anatomia & histologia , Marcha , Lagartos/anatomia & histologia , Postura
16.
Anat Rec (Hoboken) ; 307(4): 1315-1365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278769

RESUMO

Allokotosauria, a clade of non-archosauriform archosauromorphs with a broad diversity of body plans, plays a crucial role in better understanding the evolutionary history of early diverging stem-archosaurs. Here we provide a detailed redescription of Malerisaurus robinsonae, a malerisaurine allokotosaur from the middle Carnian-lowermost Norian lower Maleri Formation, Pranhita-Godavari Basin, India. The new anatomical information available from recently discovered and well-preserved skeletons of various allokotosaurs, such as Azendohsaurus madagaskarensis, Shringasaurus indicus, Puercosuchus traverorum, and Malerisaurus-like taxa, and their comparison with Malerisaurus robinsonae enriches our understanding of the anatomy of this species. To reassess the phylogenetic relationships of Malerisaurus robinsonae, we revised its scorings and included eight additional allokotosaurian species to the already most comprehensive phylogenetic dataset focused on Permo-Triassic archosauromorphs. We modified 70 scorings for Malerisaurus robinsonae and the new analysis recovered this species at the base of Malerisaurinae and this group as the earliest branch of Azendohsauridae. Pamelaria dolichotrachela is found as the earliest diverging non-malerisaurine azendohsaurid and sister taxon to the Shringasaurus indicus + Azendohsaurus spp. clade. Trilophosaurid interrelationships are well resolved, with Teraterpeton hrynewichorum, Coelodontognathus ricovi, and Rutiotomodon tytthos as their successive earliest-branching species. The position of Anisodontosaurus greeri as a sister taxon to Variodens inopinatus bolsters long ghost lineages in the Late Triassic trilophosaurid record. A disparity analysis of tooth crown morphology shows that Allokotosauria is the most disparate Permo-Triassic archosauromorph clade, exploring the almost complete range of basic crown morphologies. Trilophosaurids occupy an area of the dental morphospace unique among archosauromorphs.


Assuntos
Evolução Biológica , Fósseis , Filogenia , Índia
17.
J Anat ; 244(6): 959-976, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38284134

RESUMO

Phytosaurs are a group of Upper Triassic semi-aquatic archosauriform reptiles. Their variable skull morphology forms the foundation of our understanding of their relationships and paleoecology, while only a few studies have focused on demonstrating the existence of postcranial variation. The numbers of vertebrae in the sacrum are thought to vary from two, the plesiomorphic condition for archosauriforms, to three, with the addition of a sacralized dorsal (i.e., dorsosacral) vertebra. In this study, we demonstrate the presence of a sacralized first caudal (i.e., caudosacral) vertebra in a sacrum belonging to Machaeroprosopus mccauleyi. We rule out taphonomic distortion or pathology as explanations for the inclusion of this element in the sacrum, suggesting instead that it occurred through modifications of the same developmental processes that likely produced dorsosacral vertebrae in phytosaurs. Additionally, we show that a dorsosacral vertebra is common in phytosaur specimens from the Chinle Formation and Dockum Group of the southwestern United States and suggest that it may be widespread among phytosaurs. The addition of sacral vertebrae potentially aided adaptation to larger body sizes or more terrestrial lifestyles in certain taxa.


Assuntos
Fósseis , Sacro , Animais , Sacro/anatomia & histologia , Dinossauros/anatomia & histologia , Evolução Biológica , Répteis/anatomia & histologia , Crânio/anatomia & histologia , Filogenia
18.
Anat Rec (Hoboken) ; 307(4): 1366-1389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36951279

RESUMO

Understanding the origins of the vertebrate brain is fundamental for uncovering evolutionary patterns in neuroanatomy. Regarding extinct species, the anatomy of the brain and other soft tissues housed in endocranial spaces can be approximated by casts of these cavities (endocasts). The neuroanatomical knowledge of Rhynchocephalia, a reptilian clade exceptionally diverse in the early Mesozoic, is restricted to the brain of its only living relative, Sphenodon punctatus, and unknown for fossil species. Here, we describe the endocast and the reptilian encephalization quotient (REQ) of the Triassic rhynchocephalian Clevosaurus brasiliensis and compare it with an ontogenetic series of S. punctatus. To better understand the informative potential of endocasts in Rhynchocephalia, we also examine the brain-endocast relationship in S. punctatus. We found that the brain occupies 30% of its cavity, but the latter recovers the general shape and length of the brain. The REQ of C. brasiliensis (0.27) is much lower than S. punctatus (0.84-1.16), with the tuatara being close to the mean for non-avian reptiles. The endocast of S. punctatus is dorsoventrally flexed and becomes more elongated throughout ontogeny. The endocast of C. brasiliensis is mostly unflexed and tubular, possibly representing a more plesiomorphic anatomy in relation to S. punctatus. Given the small size of C. brasiliensis, the main differences may result from allometric and heterochronic phenomena, consistent with suggestions that S. punctatus shows peramorphic anatomy compared to Mesozoic rhynchocephalians. Our results highlight a previously undocumented anatomical diversity among rhynchocephalians and provide a framework for future neuroanatomical comparisons among lepidosaurs.


Assuntos
Neuroanatomia , Répteis , Animais , Filogenia , Répteis/anatomia & histologia , Evolução Biológica , Encéfalo/anatomia & histologia , Fósseis , Crânio/anatomia & histologia
19.
Anat Rec (Hoboken) ; 307(4): 1474-1514, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37246488

RESUMO

In this contribution we describe a new genus and species of gomphodontosuchine cynodont from the Late Triassic Hyperodapedon Assemblage Zone (AZ) of the Santa Maria Supersequence of southern Brazil, based on material collected 20 years ago. The new taxon, Santagnathus mariensis gen. et sp. nov., is based on numerous cranial and postcranial remains, which altogether provide data on several parts of the skeleton. Santagnathus mariensis is closely related to Siriusgnathus niemeyerorum and Exaeretodon spp. and expands the knowledge about gomphodontosuchine cynodonts. Morphologically, the new species has a skull bauplan particularly similar to S. niemeyerorum and E. riograndensis, differing from them by a unique combination of traits such as three upper incisors, the absence of a descending process in the jugal, a more posterior position of the postorbital bar and a preorbital region larger than the temporal one. The new traversodontid was found associated with the rhynchosaur Hyperodapedon sp., corroborating the assignment of the cynodont fossils to the Hyperodapedon AZ. We also provide comments on the status of the Argentine traversodontid cynodont Proexaeretodon vincei, typically considered a junior synonym of Exaeretodon argentinus, and here accepted as a valid taxon.


Assuntos
Fósseis , Crânio , Filogenia , Brasil , Crânio/anatomia & histologia , Cabeça/anatomia & histologia
20.
Anat Rec (Hoboken) ; 307(4): 1084-1092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36971057

RESUMO

One of the most remarkable features in sauropod dinosaurs relates to their pneumatized skeletons permeated by a bird-like air sac system. Many studies described the late evolution and diversification of this trait in mid to late Mesozoic forms but few focused on the origin of the invasive respiratory diverticula in sauropodomorphs. Fortunately, it is possible to solve this thanks to the boom of new species described in the last decade as well as the broad accessibility of new technologies. Here we analyze the unaysaurid sauropodomorph Macrocollum itaquii from the Late Triassic (early Norian) of southern Brazil using micro-computed tomography. We describe the chronologically oldest and phylogenetically earliest unambiguous evidence of an invasive air sac system in a dinosaur. Surprisingly, this species presented a unique pattern of pneumatization in non-sauropod sauropodomorphs, with pneumatic foramina in posterior cervical and anterior dorsal vertebrae. This suggests that patterns of pneumatization were not cladistically consistent prior to the arrival of Jurassic eusauropods. Additionally, we describe the protocamerae tissue, a new type of pneumatic tissue with properties of both camellae and camerae. This reverts the previous hypothesis which stated that the skeletal pneumatization first evolved into camarae, and derived into delicate trabecular arrangements. This tissue is evidence of thin camellate-like tissue developing into larger chambers. Finally, Macrocollum is an example of the gradual evolution of skeletal tissues responding to the fastly specializing Respiratory System of saurischian dinosaurs.


Assuntos
Sacos Aéreos , Dinossauros , Animais , Evolução Biológica , Dinossauros/anatomia & histologia , Microtomografia por Raio-X , Fósseis , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA