Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Molecules ; 29(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542962

RESUMO

This review article examines the synthetic pathways for triazolothiadiazine derivatives, such as triazolo[3,4-b]thiadiazines, triazolo[5,1-b]thiadiazines, and triazolo[4,3-c]thiadiazines, originating from triazole derivatives, thiadiazine derivatives, or thiocarbohydrazide. The triazolothiadiazine derivatives exhibit several biological actions, including antibacterial, anticancer, antiviral, antiproliferative, analgesic, anti-inflammatory, and antioxidant properties. The review article aims to assist researchers in creating new biologically active compounds for designing target-oriented triazolothiadiazine-based medicines to treat multifunctional disorders.


Assuntos
Tiadiazinas , Tiadiazinas/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Analgésicos/farmacologia , Triazóis/farmacologia
2.
Chemistry ; 30(29): e202304291, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38490950

RESUMO

The reaction between bis(1,2,3-triazol-1-yl)methane derivatives and nBuLi and various aldehydes, yielded novel neutral ligand precursors incorporating alcohol functional groups. The resulting compounds exhibited distinct characteristics depending on the steric hindrance of the aldehyde employed. In instances where aromatic aldehydes were utilized, functionalization occurred at the methine group bridging both triazole rings. Conversely, the use of pivalic aldehyde prompted functionalization at the C5 position of the triazole ring. These compounds were subsequently employed as ligand precursors in the synthesis of organometallic aluminum and zinc complexes, yielding dinuclear complexes with high efficiency. The structural elucidation of all compounds was accomplished through spectroscopic methods and validated by X-ray crystallography. Preliminary catalytic investigations into the coupling reaction of cyclohexene oxide and CO2 revealed that aluminum and zinc complexes catalyzed the selective formation of polyether and polycarbonate materials, respectively.

3.
Eur J Med Chem ; 266: 116137, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237343

RESUMO

Present article is devoted to the purposeful search of novel anti-inflammatory agents among carboxyl-containing partially hydrogenated [1,2,4]triazolo[1,5-с]quinazolines and products of their tandem cyclization. It has been shown that target compound's could be obtained via interaction between [2-(3-R-1H-1,2,4-triazol-5-yl)phenyl]amines and oxo-containing carboxylic acids and their esters of various structure. The structures of synthesized compounds were verified by appropriate methods, the features of NMR-spectra patterns were discussed as well. The low predicted toxicity of obtained compounds has been estimated using in silico methods. In vivo study on the model of acute aseptic inflammation (carrageenan test) have been revealed that synthesized compounds expose anti-inflammatory activity in the range of 0.94-52.66%. 4-(2-(Ethoxycarbonyl)-5,6-dihydro-[1,2,4]triazolo[1,5-c]quinazolin-5-yl)benzoic acid has been identified as most active compound. Additionally, the effects of some (2-R-5,6-dihydro[1,2,4]triazolo[1,5-c]quinazolin-5-yl)benzoic acids (compounds 3) on the levels of key inflammatory markers have been estimated. It has been shown that studied compounds decrease the level of neutrophils, COX-2, nitrotyrosine, IL-1b, C-reactive protein and increase level of eNOS. 4-(2-(Ethoxycarbonyl)-5,6-dihydro-[1,2,4]triazolo[1,5-c]quinazolin-5-yl)benzoic acid (3.2) has been identified as compound with most expressed anti-inflammatory activity and significant effect on the levels of marker of inflammatory processes. Molecular docking study towards СОХ-1 and СОХ-2 has been conducted to substantiate possible mechanism of obtained compounds anti-inflammatory activity. It has been found that fixation of 4-(2-(ethoxycarbonyl)-5,6-dihydro-[1,2,4]triazolo[1,5-c]quinazolin-5-yl)benzoic acid (3.2) molecule in active site of enzyme is outstandingly similar to the reference ligands. The essential value of carboxylic group for presence of anti-inflammatory activity has been estimated as result of SAR-analysis. It has been found that studied class of compounds is perspective for further structural modification aimed to the creation of novel anti-inflammatory agents.


Assuntos
Anti-Inflamatórios , Quinazolinas , Anti-Inflamatórios/farmacologia , Ácido Benzoico , Simulação de Acoplamento Molecular , Quinazolinas/farmacologia , Quinazolinas/química , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia
4.
Sci Total Environ ; 904: 166968, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37704157

RESUMO

The demand for munitions that are less likely to detonate accidentally has led to an increased use of Insensitive High Explosives (IHE), which contain substances like 2,4-dinitroanisole (DNAN) and 5-nitro-1,2,4-triazol-3-one (NTO). These substances have different properties compared to traditional explosives, and their potential environmental impact is not well understood. When these explosives are used in live-fire training exercises, their residues end up in the soil. It is important to determine how these residues dissolve and enter the soil. This study aimed to experimentally measure the rate at which an IHE formulation dissolves when exposed to rainwater with pH levels of 5.0 and 6.5, and to simulate how these residues dissolve and move through two different soil types. The dissolution rates were determined by conducting experiments in which IHE particles (30-60 mg) were exposed to water with varying pH levels and temperatures. The results showed that the dissolution rate of NTO did not vary with pH, while the dissolution rate of DNAN and RDX decreased with decreasing pH. Specifically, the dissolution rate of DNAN decreased from 18 ± 40 µg min-1 at pH 6.5 to 6 ± 4 µg min-1 at pH 5.0, while the dissolution rate of RDX decreased from 8 ± 4 to 3 ± 1 µg min-1. These findings were used to develop a stochastic model that successfully simulated the concentration of IHE in the leachate from soil columns over time. A sensitivity analysis revealed that while dissolution rates determined the amount of mass entering the soil, they did not significantly regulate the amount of mass that migrated through the soil and leached out of the soil columns.

5.
Chem Asian J ; 18(15): e202300484, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345323

RESUMO

The 'click'-derived 1,2,3-triazolium salts [L1/L2-H]I (1-(4-iodo/bromo-phenyl)-1H-1,2,3-triazolium salt) featuring two distinct coordination sites, one via oxidative addition and other via classical deprotonation cum metalation, were designed and explored towards the synthesis of various mono- and bimetallic complexes. Accordingly, a series of well-characterized 1,2,3-triazol-5-ylidene coordinated cyclometalated transition metal complexes (1-3) were obtained. However, these complexes were found to be ineffective in accessing the desired heterobimetallic complexes. Nevertheless, same ligand systems readily underwent oxidative addition with Pd0 metal precursors, to give the PdII complexes 4/5, and the considerable change and reversal in chemical shift values of the triazole C4/C5-backbone protons (C4-H being downfield shifted than that of C5-H) of these oxidatively added PdII complexes were detected. The PdII complex 5 with chelating DPPE was finally successfully applied for the synthesis of the heterobimetallic PdII -RuII complex 6 and 2D NMR analyses, as well as DFT calculations supported the formation of the rare C4/C5-unprotected 1,2,3-triazol-4-ylidene coordinated RuII -complex.

6.
ACS Chem Neurosci ; 14(12): 2333-2346, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294690

RESUMO

Major depressive disorder (MDD) is a psychiatric disorder that affects a large portion of the population, with dysregulation of the serotonergic system, which is deeply involved in both the pathophysiology of MDD and mechanism of action of many antidepressants. Current pharmacological therapies do not meet the neurobiological needs of all depressed individuals, making the development of new antidepressants necessary. In recent decades, compounds containing triazoles have become promising due to their range of biological activities, including antidepressant activity. In this study, we evaluated the antidepressant-like effect of a hybrid containing triazole and acetophenone, 1-(2-(4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1-one (ETAP) (0.5-5 mg/kg), in the forced swimming test (FST) and tail suspension test (TST) in mice, as well as the involvement of the serotonergic system in this effect. Our findings demonstrated that ETAP exhibited an antidepressant-like effect from the dose of 1 mg/kg and that this effect is modulated by 5-HT2A/2C and 5-HT4 receptors. We also demonstrated that this effect may be related to inhibition of monoamine oxidase A activity in the hippocampus. Additionally, we evaluated the in silico pharmacokinetic profile of ETAP, which predicted its penetration into the central nervous system. ETAP exhibited a low potential for toxicity at a high dose, making this molecule interesting for the development of a new therapeutic strategy for MDD.


Assuntos
Transtorno Depressivo Maior , Serotonina , Camundongos , Animais , Serotonina/fisiologia , Transtorno Depressivo Maior/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Natação/psicologia , Elevação dos Membros Posteriores/psicologia , Depressão/tratamento farmacológico
7.
J Fungi (Basel) ; 9(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36675900

RESUMO

Agents with antifungal activity play a vital role as therapeutics in health care, as do fungicides in agriculture. Effectiveness, toxicological profile, and eco-friendliness are among the properties used to select suitable substances. Furthermore, a steady supply of new agents with different modes of action is required to counter the well-known potential of human and phyto-pathogenic fungi to develop resistance against established antifungals. Here, we use an in vitro growth assay to investigate the activity of the calcineurin inhibitor tacrolimus in combination with the commercial fungicides cyproconazole and hymexazol, as well as with two earlier reported novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines, against the fungi Aspergillus niger, Colletotrichum higginsianum, Fusarium oxysporum and the oomycete Phytophthora infestans, which are notoriously harmful in agriculture. When tacrolimus was added in a concentration range from 0.25 to 25 mg/L to the tested antifungals (at a fixed concentration of 25 or 50 mg/L), the inhibitory activities were distinctly enhanced. Molecular docking calculations revealed triazole derivative 5, (2-(3-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-4-chloroaniline), as a potent inhibitor of chitin deacetylases (CDA) of Aspergillus nidulans and A. niger (AnCDA and AngCDA, respectively), which was stronger than the previously reported polyoxorin D, J075-4187, and chitotriose. The results are discussed in the context of potential synergism and molecular mode of action.

8.
J Biomol Struct Dyn ; 41(10): 4286-4294, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35442162

RESUMO

In this study, a series of novel Schiff bases (4a-4h) containing 1,2,4-triazole structure were synthesized through a condensation reaction of 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones with 3-(4-methylbenzenesulfonyloxy)-benzaldehyde. The structures of 3-alkyl(aryl)-4-[3-(4-methylsulfonyloxy)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones (4a-h) were determined through a range of spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and elemental analysis). In addition, enzyme inhibitory properties of the newly synthesized Schiff bases were determined against acetylcholinesterase (AChE). Their Ki values were calculated in the range of 0.70 ± 0.07-8.65 ± 5.6 µM. Besides, their IC50 values were calculated in the range of 0.43-3.87 µM. Finally, in silico molecular docking interactions of the compounds with AChE target enzyme (PDB ID:4EY7) were evaluated using Chimera and AutoDock Vina softwares. The lowest binding energy levels (-12.0 kcal/mol) of the compounds 4e and 4g with AChE target enzyme were verified the best binding affinities and molecular interactions.Communicated by Ramaswamy H. Sarma.


Assuntos
Acetilcolinesterase , Bases de Schiff , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Estrutura Molecular , Relação Estrutura-Atividade
9.
J Biomol Struct Dyn ; 41(13): 5970-5980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35850638

RESUMO

In this study, triazol derivatives, 4,4'-(((1E, 1E')-1,2-phenylenebis (methanylyidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (2), 4,4'-(((1E, 1E')-1,3-phenylenebis (methanylyidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3) and 4,4'-(((1E, 1E')-1,4-phenylene bis (methanyl yidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (4) were synthesized from the reaction of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one and phthalaldehyde/isophthalaldehyde/terephthalaldehyde, respectively. Compounds 2-4 were characterized by Fourier transform infrared (FTIR), proton and carbon-13 nuclear magnetic resonance (1H- and 13C- NMR) spectroscopic methods. Theoretical study for compounds 2-4 were carried out by DFT/B3LYP/6-311++G(d,p). Structural and spectroscopic parameters were determined theoreticaly and compared with experimental ones. Also, the molecular electrostatic potential (MEP) maps of compounds were obtained. Leishmanicidal activity of compounds 2-4 against to Leishmania infantum was determined by microdilution broth method containing alamar blue. As a result of the study, compounds 2-4 were found to be effective against the specie of Leishmania. Molecular docking analysis against Trypanothione Reductase (TRe) with compound 2 was carried out to see the necessary interactions responsible for antileishmanial activity. The docking calculations of compound 2 supported the antileishmanial activity exhibiting high inhibition constant.Communicated by Ramaswamy H. Sarma.


Assuntos
Antiprotozoários , Simulação de Acoplamento Molecular , Antiprotozoários/farmacologia , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Environ Toxicol Chem ; 42(1): 46-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342340

RESUMO

Environmental release of 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) is of great concern due to high migration potential in the environment. In the present study we evaluated the adsorption and microbially-mediated removal kinetics of dissolved DNAN and NTO in contrasting freshwater sediments with different total organic carbon (TOC) content. River sand (low TOC), pond silt (high TOC), clay-rich lake sediment (low TOC), wetland silt (high TOC), carbonate sand (low TOC), and iron-rich clay (low TOC) were evaluated. Separate abiotic and biotic bench-top sediment slurry incubations were carried out at 23, 15, and 4 °C for DNAN and NTO. Experiments were conducted over 3 weeks. Time series aqueous samples and sediment samples collected at the end of the experiment were analyzed for DNAN and NTO concentrations. The DNAN compound equilibrated with sediment within the first 2 h after addition whereas NTO showed no adsorption. 2,4-Dinitroanisole adsorbed more onto fine-grained organic-rich sediments (Kd = 2-40 L kg-1 sed-1 ) than coarse-grained organic-poor sediments (Kd = 0.2-0.6 L kg-1 sed-1 ), and the TOC content and cation exchange capacity of sediment were reliable predictors for abiotic DNAN adsorption. Adsorption rate constants and equilibrium partitioning constants for DNAN were inversely proportional to temperature in all sediment types. The biotic removal half-life of DNAN was faster (t1/2 = 0.1-58 h) than that of NTO (t1/2 = 5-347 h) in all sediment slurries. Biotic removal rates (t1/2 = 0.1-58 h) were higher than abiotic rates (t1/2 = 0.3-107 h) for DNAN at 23 °C. Smaller grain size coupled with higher TOC content enhanced biotic NTO and DNAN removal in freshwater environments. Environ Toxicol Chem 2023;42:46-59. © 2022 SETAC.


Assuntos
Água Doce , Areia , Argila , Anisóis/análise
11.
Cardiovasc Hematol Agents Med Chem ; 21(2): 108-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36321236

RESUMO

BACKGROUND: Human factor XIIa (FXIIa) is a plasma serine protease that plays a significant role in several physiological and pathological processes. Animal models have revealed an important contribution of FXIIa to thromboembolic diseases. Remarkably, animals and patients with FXII deficiency appear to have normal hemostasis. Thus, FXIIa inhibition may serve as a promising therapeutic strategy to attain safer and more effective anticoagulation. Very few small molecule inhibitors of FXIIa have been reported. We synthesized and investigated a focused library of triazol-1-yl benzamide derivatives for FXIIa inhibition. METHODS: We chemically synthesized, characterized, and investigated a focused library of triazol- 1-yl benzamide derivatives for FXIIa inhibition. Using a standardized chromogenic substrate hydrolysis assay, the derivatives were evaluated for inhibiting human FXIIa. Their selectivity over other clotting factors was also evaluated using the corresponding substrate hydrolysis assays. The best inhibitor affinity to FXIIa was also determined using fluorescence spectroscopy. Effects on the clotting times (prothrombin time (PT) and activated partial thromboplastin time (APTT)) of human plasma were also studied. RESULTS: We identified a specific derivative (1) as the most potent inhibitor in this series. The inhibitor exhibited nanomolar binding affinity to FXIIa. It also exhibited significant selectivity against several serine proteases. It also selectively doubled the activated partial thromboplastin time of human plasma. CONCLUSION: Overall, this work puts forward inhibitor 1 as a potent and selective inhibitor of FXIIa for further development as an anticoagulant.


Assuntos
Coagulação Sanguínea , Fator XIIa , Animais , Humanos , Fator XIIa/metabolismo , Fator XIIa/farmacologia , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Tempo de Protrombina
12.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558037

RESUMO

Reactions of 1-(5-methyl)-1H-1,2,3-triazol-4-yl)ethan-1-ones and benzaldehydes in ethanol under basic conditions gave the corresponding chalcones. Reactions of the chalcones combined with thiosemicarbazide in dry ethanol containing sodium hydroxide afforded the corresponding pyrazolin-N-thioamides. Reactions of the synthesized pyrazolin-N-thioamides and several ketones (namely, ethyl 2-chloro-3-oxobutanoate, 2-bromoacetylbenzofuran, and hydrazonoyl chloride) gave the corresponding novel 2-(1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazoles in high yields (77-90%). Additionally, 2-(4,5-dihydro-1H-pyrazol-1-yl)-4-(1H-1,2,3-triazol-4-yl)thiazoles were obtained in high yields (84-87%) from reactions with N-pyrazoline-thioamides and 4-bromoacetyl-1,2,3-triazoles under basic conditions. The structures of six of the newly synthesized heterocycles were confirmed by X-ray crystallography.


Assuntos
Chalconas , Tiazóis , Tiazóis/química , Etanol
13.
J Phys Condens Matter ; 35(6)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36351301

RESUMO

This work highlights the effect of pressure ranging from 0 to 9 GPa on structural, directional dependent mechanical properties and unravel the previously unknown phase transitions of two important high energy molecular solids namely monoclinic-ß-Nitrotriazole (NTO) and 2,4,6-triamino-1,3,5-trinitrobenzene (TATB). The projected augmented plane wave method with generalized gradient approximation Perdew-Burke-Ernzerhof functional with the D2 van der Waals corrections method of Grimme is used to reproduce the experimental data within ∼1% error. The structural optimization results reveal thatß-NTO undergoes a previously unknown structural phase transition at 9 GPa which is evident from the abrupt change of calculated lattice vectors, volume (V), lattice angleßat 9 GPa. The single crystal elastic properties analysis also supports these findings and NTO voilate the Born's mechanical stability criteria at 9 GPa. Besides to it, all the calculated volumetric and directional dependent shear modulus (G), bulk modulus (B), compressibility results ofß-NTO in (100), (010), (001) planes also suggest a possible phase transition around 9 GPa. The directional dependent polycrystalline compressibility anisotropy analysis of TATB with pressure in (100), (010), (001) planes unreveal the origin of experimentally reported new phase transition around 4 GPa. The calculated PughB/Gratio suggests that, both the materials found to be brittle in the studied pressure range except NTO at 9 GPa. The degree of mechanical anisotropy ofß-NTO found to increase with increasing pressure from (100)->(010)->(001) planes, while the TATB anisotropy results were found to be relatively small and stable. The Young's modulus (E), Poisson's ratio (σ), P-wave modulus, universal elastic anisotropy (AU), Chung-Buessen anisotropy (Ac), Vickers hardness coefficient (Hv), sound velocities ((Vm) average, (Vl) longitudinal, (Vt) transverse) and (θD) Debye temperature are also predicted. The calculated intermolecular interaction strength contribution to the total Hirsh Field Surface at different pressures confirms the initial decomposition mechanism of NTO, TATB and the results are good in agreement with previous observations. Thus our work has accentuated the reasons behind the impact and friction sensitivity differences ofß-NTO, TATB through the two new phase transitions.

14.
Eur J Med Chem ; 244: 114823, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274278

RESUMO

In order to search for innovative nootropic agents, new 1-benzyl-4- (4- (R)-5-sulfonylidene-4,5-dihydro-1H-1,2,4-triazol-3-yl) pyrrolidine-2-ones was synthesized by reacting benzylamine with itaconic acid to 1-benzyl-5-oxopyrrolidine-3-carboxylic acid, which was then subjected to hydrazinolysis followed by the addition of substituted isothiacyanate followed by cyclization of intermediate thiosemicarbazides. The structure and purity of the obtained substances were confirmed by elemental analysis, 1H NMR spectroscopy, 13C NMR spectroscopy and LC/MS. Docking studies were performed for the substances synthesized using Autodock 4.2 software. Approximate values of LD50 (in silico determination) are around 870-1000 mg/kg. All synthesized substances were tested for nootropic activity by the passive avoidance test on the scopolamine amnesia model in doses that are about 1/10 of the estimated LD50. Based on the results of docking and pharmacological experiment, the most promising substances 7a, as well as 7e, 7f were identified. The results of molecular docking (hit compound 7a) indicate a positive correlation between the obtained values of docking studies and experimental data.


Assuntos
Nootrópicos , Pirrolidinonas , Cromatografia Líquida , Espectroscopia de Ressonância Magnética , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular , Nootrópicos/síntese química , Nootrópicos/química , Nootrópicos/farmacologia , Relação Estrutura-Atividade , Pirrolidinonas/síntese química , Pirrolidinonas/química , Pirrolidinonas/farmacologia
15.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235016

RESUMO

A three-component reaction between the 1,4-benzenedicarboxylic (terephthalic) acid (H2bdc), bis(1,2,4-triazol-1-yl)methane (btrm) and zinc nitrate was studied, and three new coordination polymers were isolated by a careful selection of the reaction conditions. Coordination polymers {[Zn3(DMF)(btrm)(bdc)3]·nDMF}∞ and {[Zn3(btrm)(bdc)3]·nDMF}∞ containing trinuclear {Zn3(bdc)3} secondary building units are joined by btrm auxiliary linkers into three-dimensional metal-organic frameworks. The coordination polymer {[Zn(bdc)(btrm)]∙nDMF}∞ consists of Zn2+ cations joined by bdc2- and btrm linkers into a two-fold interpenetrated network. Upon activation, MOF [Zn3(btrm)(bdc)3]∞ demonstrated CO2/N2 adsorption selectivity with an ideal adsorbed solution theory (IAST) factor of 21. All three MOF demonstrated photoluminescence with a maximum near 435-440 nm upon excitation at 330 nm.

16.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296538

RESUMO

This research aims to develop new high-energy dense ordinary- and nano-energetic composites based on hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) and nitrated cellulose and nanostructured nitrocellulose (NC and NMCC). The elaborated energetic formulations (HNTO/NC and HNTO/NMCC) were fully characterized in terms of their chemical compatibility, morphology, thermal stability, and energetic performance. The experimental findings implied that the designed HNTO/NC and HNTO/NMCC formulations have good compatibilities with attractive characteristics such as density greater than 1.780 g/cm3 and impact sensitivity around 6 J. Furthermore, theoretical performance calculations (EXPLO5 V6.04) displayed that the optimal composition of the as-prepared energetic composites yielded excellent specific impulses and detonation velocities, which increased from 205.7 s and 7908 m/s for HNTO/NC to 209.6 s and 8064 m/s for HNTO/NMCC. Moreover, deep insight on the multi-step kinetic behaviors of the as-prepared formulations was provided based on the measured DSC data combined with isoconversional kinetic methods. It is revealed that both energetic composites undergo three consecutive exothermic events with satisfactory activation energies in the range of 139-166 kJ/mol for HNTO/NC and 119-134 kJ/mol for HNTO/NMCC. Overall, this research displayed that the new developed nanoenergetic composite based on nitrated cellulose nanostructure could serve as a promising candidate for practical applications in solid rocket propellants and composite explosives.


Assuntos
Hidrazinas , Nanoestruturas , Colódio/química , Cinética
17.
Front Chem ; 10: 939644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928214

RESUMO

Crop disease caused by fungi seriously affected food security and economic development. Inspired by the utilization of fungicide containing 1,2,4-triazole and trifluoromethylpyrimidine, a novel series of 1,2,4-triazolo[4,3-c]trifluoromethylpyrimidine derivatives bearing the thioether moiety were synthesized. Meanwhile, the antifungal activities of the title compounds were evaluated and most compounds exhibited obvious antifungal activities against cucumber Botrytis cinerea, strawberry Botrytis cinerea, tobacco Botrytis cinerea, blueberry Botrytis cinerea, Phytophthora infestans, and Pyricularia oryzae Cav. Among the compounds, 4, 5h, 5o, and 5r showed significant antifungal activities against three of the four Botrytis cinerea, which indicated the potential to become the leading structures or candidates for resistance to Botrytis cinerea.

18.
Biotechnol Bioeng ; 119(9): 2437-2446, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35706349

RESUMO

Insensitive munitions compounds (IMCs), such as 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), are replacing conventional explosives in munitions formulations. Manufacture and use of IMCs generate waste streams in manufacturing plants and load/assemble/pack facilities. There is a lack of practical experience in executing biodegradation strategies to treat IMCs waste streams. This study establishes a proof-of-concept that bacterial consortia can be designed to mineralize IMCs and co-occurring nitroaromatics in waste streams. First, DNAN, 4-nitroanisole (4-NA), and 4-chloronitrobenzene (4-CNB) in a synthetic DNAN-manufacturing waste stream were biodegraded using an aerobic fluidized-bed reactor (FBR) inoculated with Nocardioides sp. JS 1661 (DNAN degrader), Rhodococcus sp. JS 3073 (4-NA degrader), and Comamonadaceae sp. LW1 (4-CNB degrader). No biodegradation was detected when the FBR was operated under anoxic conditions. Second, DNAN and NTO were biodegraded in a synthetic load/assemble/pack waste stream during a sequential treatment comprising: (i) aerobic DNAN biodegradation in the FBR; (ii) anaerobic NTO biotransformation to 3-amino-1,2,4-triazol-5-one (ATO) by an NTO-respiring enrichment; and (iii) aerobic ATO mineralization by an ATO-oxidizing enrichment. Complete biodegradation relied on switching redox conditions. The results provide the basis for designing consortia to treat mixtures of IMCs and related waste products by incorporating microbes with the required catabolic capabilities.


Assuntos
Substâncias Explosivas , Nitrocompostos , Anisóis/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biotransformação , Substâncias Explosivas/metabolismo , Nitrocompostos/metabolismo , Triazóis/metabolismo
19.
Acta Pharm Sin B ; 12(1): 246-261, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127383

RESUMO

The first rate-limiting enzyme of the serine synthesis pathway (SSP), phosphoglycerate dehydrogenase (PHGDH), is hyperactive in multiple tumors, which leads to the activation of SSP and promotes tumorigenesis. However, only a few inhibitors of PHGDH have been discovered to date, especially the covalent inhibitors of PHGDH. Here, we identified withangulatin A (WA), a natural small molecule, as a novel covalent inhibitor of PHGDH. Affinity-based protein profiling identified that WA could directly bind to PHGDH and inactivate the enzyme activity of PHGDH. Biolayer interferometry and LC-MS/MS analysis further demonstrated the selective covalent binding of WA to the cysteine 295 residue (Cys295) of PHGDH. With the covalent modification of Cys295, WA blocked the substrate-binding domain (SBD) of PHGDH and exerted an allosteric effect to induce PHGDH inactivation. Further studies revealed that with the inhibition of PHGDH mediated by WA, the glutathione synthesis was decreased and intracellular levels of reactive oxygen species (ROS) were elevated, leading to the inhibition of tumor proliferation. This study indicates WA as a novel PHGDH covalent inhibitor, which identifies Cys295 as a novel allosteric regulatory site of PHGDH and holds great potential in developing anti-tumor agents for targeting PHGDH.

20.
Curr Org Synth ; 19(5): 578-582, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34967296

RESUMO

BACKGROUND: 1,2,4-triazoles scaffolds display significant biological activities due to hydrogen bonding, solubility, dipole character, and rigidity. OBJECTIVE: The core motif of 1,2,4-triazoles plays a vital role in clinical drugs such as Rizatriptan (antimigraine), Ribavirin (antiviral), anastrozole (anticancer), etizolam (anxiolytic), estazolam (anticonvulsant), alprazolam (anti-hypnotic), letrozole (aromatase inhibitor), loreclezole (anticonvulsant), trazadone (antidepressant) etc. Methods: Epoxide ring opening of tert-butyl 6-oxa-3-azabicyclo [3.1.0] hexane-3-carboxylate followed by methylation under basic conditions and de-protection gave the corresponding trans 1-(4- methoxypyrrolidin-3-yl)-1H-1,2,4-triazole hydrochloride salt as the precursor. This precursor on reaction with substituted benzoyl chlorides and benzyl bromides gave the desired amide and amine products. RESULTS: A library of 14 N-substituted pyrrolidine derivatives i.e. trans3-methoxy-4-(1H-1,2,4-triazol- 1-yl) pyrrolidin-1-yl) (phenyl)methanone and trans 1-benzyl-4-methoxypyrrolidin-3-yl)-1H-1,2,4- triazole were prepared. CONCLUSION: Eight novel amides (6a-h) and six amines (8a-f) derivatives were synthesized using 1-(4- methoxypyrrolidin-3-yl)-1H-1,2,4-triazole 4 salt with substituted benzoyl chlorides and benzyl bromides.


Assuntos
Anticonvulsivantes , Brometos , Amidas , Pirrolidinas , Triazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...