Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408954

RESUMO

Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1ß/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.


Assuntos
Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-Like , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , DNA , Venenos de Peixe , Proteínas de Membrana/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Citotóxicas Formadoras de Poros , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
2.
Int J Mol Sci, v. 23, n. 7, 3600, mar. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4295

RESUMO

Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1β/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.

3.
Cell Microbiol ; 23(10): e13375, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34169616

RESUMO

In this study, we provide evidence that galectin-3 (Gal-3) plays an important role in Brucella abortus infection. Our results showed increased Gal-3 expression and secretion in B. abortus infected macrophages and mice. Additionally, our findings indicate that Gal-3 is dispensable for Brucella-containing vacuoles disruption, inflammasome activation and pyroptosis. On the other hand, we observed that Brucella-induced Gal-3 expression is crucial for induction of molecules associated to type I IFN signalling pathway, such as IFN-ß: Interferon beta (IFN-ß), C-X-C motif chemokine ligand 10 (CXCL10) and guanylate-binding proteins. Gal-3 KO macrophages showed reduced bacterial numbers compared to wild-type cells, suggesting that Gal-3 facilitates bacterial replication in vitro. Moreover, priming Gal-3 KO cells with IFN-ß favoured B. abortus survival in macrophages. Additionally, we also observed that Gal-3 KO mice are more resistant to B. abortus infection and these animals showed elevated production of proinflammatory cytokines when compared to control mice. Finally, we observed an increased recruitment of macrophages, dendritic cells and neutrophils in spleens of Gal-3 KO mice compared to wild-type animals. In conclusion, this study demonstrated that Brucella-induced Gal-3 is detrimental to host and this molecule is implicated in inhibition of recruitment and activation of immune cells, which promotes B. abortus spread and aggravates the infection. TAKE AWAYS: Brucella abortus infection upregulates galectin-3 expression Galectin-3 regulates guanylate-binding proteins expression but is not required for Brucella-containing vacuole disruption Galectin-3 modulates proinflammatory cytokine production during bacterial infection Galectin-3 favours Brucella replication.


Assuntos
Brucella abortus , Brucelose , Galectina 3/metabolismo , Animais , Citocinas , Galectina 3/genética , Macrófagos , Camundongos , Camundongos Knockout
4.
Virus Res ; 286: 198035, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461190

RESUMO

Comprehensive pathogenesis studies on Peste des Petits Ruminants virus (PPRV) have been delayed so far by the absence of a small animal model reproducing the disease or an in vitro biological system revealing virulence differences. In this study, a mouse 10T1/2 cell line has been identified as presenting different susceptibility to virulent and attenuated PPRV strains. As evidenced by immunofluorescence test and RT-PCR, both virulent and attenuated PPR viruses penetrated and initiated the replication cycle in 10T1/2 cells, independently of the presence of the SLAM goat receptor. However, only virulent strains successfully completed their replication cycle while the vaccine strains did not. Since 10T1/2 cells are interferon-producing cells, the role of the type I interferon (type I IFN) response on this differentiated replication between virulent and attenuated strains was verified by stimulation or repression. Modulation of the type I IFN response did not improve the replication of the vaccine strains, indicating that other cell factor(s) not yet established may hinder the replication of attenuated PPRV in 10T1/2. This 10T1/2 cell line can be proposed as a new in vitro tool for PPRV-host interaction and virulence studies.


Assuntos
Linhagem Celular , Interferon Tipo I/imunologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Animais , Chlorocebus aethiops , Imunofluorescência , Cabras , Camundongos , Vírus da Peste dos Pequenos Ruminantes/genética , Células Vero , Virulência , Replicação Viral
5.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670552

RESUMO

Neospora caninum is a protozoan parasite closely related to Toxoplasma gondii and has been studied for causing neuromuscular disease in dogs and abortions in cattle. It is recognized as one of the main transmissible causes of reproductive failure in cattle and consequent economic losses to the sector. In that sense, this study aimed to evaluate the role of Toll-like receptor 3 (TLR3)-TRIF-dependent resistance against N. caninum infection in mice. We observed that TLR3-/- and TRIF-/- mice presented higher parasite burdens, increased inflammatory lesions, and reduced production of interleukin 12p40 (IL-12p40), tumor necrosis factor (TNF), gamma interferon (IFN-γ), and nitric oxide (NO). Unlike those of T. gondii, N. caninum tachyzoites and RNA recruited TLR3 to the parasitophorous vacuole (PV) and translocated interferon response factor 3 (IRF3) to the nucleus. We also observed that N. caninum upregulated the expression of TRIF in murine macrophages, which in turn upregulated IFN-α and IFN-ß in the presence of the parasite. Furthermore, TRIF-/- infected macrophages produced lower levels of IL-12p40, while exogenous IFN-α replacement was able to completely restore the production of this key cytokine. Our results show that the TLR3-TRIF signaling pathway enhances resistance against N. caninum infection in mice, since it improves Th1 immune responses that result in controlled parasitism and reduced tissue inflammation, which are hallmarks of the disease.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Coccidiose/imunologia , Coccidiose/parasitologia , Neospora/fisiologia , RNA de Protozoário/imunologia , Receptor 3 Toll-Like/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Coccidiose/genética , Feminino , Interações Hospedeiro-Parasita , Humanos , Interferon gama/genética , Interferon gama/imunologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neospora/genética , Neospora/imunologia , Óxido Nítrico/imunologia , RNA de Protozoário/genética , Células Th1/imunologia , Células Th1/parasitologia , Receptor 3 Toll-Like/genética
6.
BMC Infect Dis ; 18(1): 422, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143000

RESUMO

BACKGROUND: The major factors contributing for nerve damage and permanent disabilities in leprosy are type 1 or reversal reactions (RR) and type 2 or erythema nodosum leprosum (ENL). Gene profiling of leprosy reactions have shown that different pathways are activated during the course of reactions, which is consistent with the exacerbated immune response exhibited by these patients. METHODS: We used qPCR to screen a panel of 90 genes related to the immune response in leprosy in RNA-derived peripheral leukocytes of patients with (N = 94) and without leprosy reactions (N = 57) in order to define expression signatures correlated to RR or ENL. RESULTS: Our results show that there is a marked signature for RR in the blood, comprising genes mostly related to the innate immune responses, including type I IFN components, autophagy, parkins and Toll like receptors. On the other hand, only Parkin was differentially expressed in the ENL group. CONCLUSIONS: The data put together corroborates previous work that brings evidence that an acute uncontrolled exacerbated immune response designed to contain the spread of M. leprae antigens might be cause of RR pathogenesis. Identifying a blood profile useful to predict leprosy reactions prior to its development might help to reduce the morbidity associated to this disabling disease.


Assuntos
Imunidade Inata/genética , Hanseníase/genética , Mycobacterium leprae/imunologia , Adulto , Análise Química do Sangue/métodos , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Hanseníase/sangue , Hanseníase/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
7.
Front Immunol ; 9: 975, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867955

RESUMO

Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/genética , Inflamação , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Adolescente , Adulto , Animais , Antivirais , Linfócitos T CD8-Positivos/imunologia , Classe Ib de Fosfatidilinositol 3-Quinase/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética , Humanos , Vírus da Influenza A Subtipo H1N1 , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Infiltração de Neutrófilos , Polimorfismo de Nucleotídeo Único , Adulto Jovem
8.
Front Immunol ; 8: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28167945

RESUMO

Brucella abortus is a Gram-negative, facultative intracellular bacterium that causes brucellosis, a worldwide zoonotic disease leading to undulant fever in humans and abortion in cattle. The immune response against this bacterium relies on the recognition of microbial pathogen-associated molecular patterns, such as lipoproteins, lipopolysaccharides, and DNA; however, the immunostimulatory potential of B. abortus RNA remains to be elucidated. Here, we show that dendritic cells (DCs) produce significant amounts of IL-12, IL-6, and IP-10/CXCL10, when stimulated with purified B. abortus RNA. IL-12 secretion by DCs stimulated with RNA depends on TLR7 while IL-6 depends on TLR7 and partially on TLR3. Further, only TLR7 plays a role in IL-12 production induced by B. abortus infection. Moreover, cytokine production in DCs infected with B. abortus or stimulated with bacterial RNA was reduced upon pretreatment with MAPK/NF-κB inhibitors. By confocal microscopy, we demonstrated that TLR7 is colocalized with B. abortus in LAMP-1+Brucella-containing vacuoles. Additionally, type I IFN expression and IP-10/CXCL10 secretion in DCs stimulated with bacterial RNA were dependent on TLR3 and TLR7. Our results suggest that TLR3 and TLR7 are not required to control Brucella infection in vivo, but they play an important role on sensing B. abortus RNA in vitro.

9.
Virol J ; 13: 127, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405392

RESUMO

BACKGROUND: The nonstructural protein 1 (NS1) of influenza A viruses can act as a viral replication enhancer by antagonizing type I interferon (IFN) induction and response in infected cells. We previously reported that A/Puerto Rico/8/1934 (H1N1) (PR8) containing the NS1 gene derived from A/swine/IA/15/1930 (H1N1) (IA30) replicated more efficiently than the wild type virus. Here, we identified amino acids in NS1 critical for enhancing viral replication. METHODS: To identify a key amino acid in NS1 which can increase the virus replication, growth kinetics of PR8 viruses encoding single mutation in NS1 were compared in A549 cells. NS1 mutant functions were studied using dsRNA-protein pull down, RIG-I mediated IFNß-promoter activity assays and growth curve analysis in murine lung epithelial type I (Let1) cells. RESULTS: The G45R mutation in the NS1 of PR8 (G45R/NS1) virus is critical for the enhanced viral replication in A549 cells. G45R/NS1 slightly decreased NS1 binding to dsRNA but did not interfere with its suppression of RIG-I-mediated type I IFN production. Likewise, replication of G45R/NS1 virus was increased in comparison to wild type virus in both wild type and type I interferon receptor null Let1 cells. CONCLUSIONS: The non-conserved amino acid, R45, enhances viral replication which is apparently independent of dsRNA binding and suppression of type I IFN, suggesting a non-characterized function of NS1 for the enhanced viral replication. As G45R/NS1 virus induced the type I IFN induction and response in infected A549 cells, it is also interesting to investigate virus virulence for further studies.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/metabolismo , Interferon beta/metabolismo , Mutação de Sentido Incorreto , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/química , Replicação Viral , Motivos de Aminoácidos , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Influenza Humana/virologia , Interferon beta/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo
10.
Clin Exp Immunol ; 183(1): 114-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26340409

RESUMO

Dengue is the most prevalent arboviral disease worldwide. The outcome of the infection is determined by the interplay of viral and host factors. In the present study, we evaluated the cellular response of human monocyte-derived DCs (mdDCs) infected with recombinant dengue virus type 1 (DV1) strains carrying a single point mutation in the NS3hel protein (L435S or L480S). Both mutated viruses infect and replicate more efficiently and produce more viral progeny in infected mdDCs compared with the parental, non-mutated virus (vBACDV1). Additionally, global gene expression analysis using cDNA microarrays revealed that the mutated DVs induce the up-regulation of the interferon (IFN) signalling and pattern recognition receptor (PRR) canonical pathways in mdDCs. Pronounced production of type I IFN were detected specifically in mdDCs infected with DV1-NS3hel-mutated virus compared with mdDCs infected with the parental virus. In addition, we showed that the type I IFN produced by mdDCs is able to reduce DV1 infection rates, suggesting that cytokine function is effective but not sufficient to mediate viral clearance of DV1-NS3hel-mutated strains. Our results demonstrate that single point mutations in subdomain 2 have important implications for adenosine triphosphatase (ATPase) activity of DV1-NS3hel. Although a direct functional connection between the increased ATPase activity and viral replication still requires further studies, these mutations speed up viral RNA replication and are sufficient to enhance viral replicative capacity in human primary cell infection and circumvent type I IFN activity. This information may have particular relevance for attenuated vaccine protocols designed for DV.


Assuntos
Células Dendríticas/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/fisiologia , Dengue/imunologia , Serina Endopeptidases/metabolismo , Adenosina Trifosfatases/metabolismo , Células Cultivadas , Células Dendríticas/virologia , Humanos , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Análise em Microsséries , Monócitos/imunologia , Mutação Puntual/genética , Serina Endopeptidases/genética , Replicação Viral/genética
11.
s.l; s.n; 2016. 10 p. tab, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1095379

RESUMO

Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen.


Assuntos
Humanos , Células de Schwann/microbiologia , Células Cultivadas , Perfilação da Expressão Gênica , Células Epiteliais/microbiologia , Viabilidade Microbiana , Interações Hospedeiro-Patógeno , Técnicas de Silenciamento de Genes , Hanseníase/microbiologia , Hanseníase/patologia , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Mycobacterium bovis/fisiologia , Mycobacterium leprae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA