Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Technol ; : 1-11, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286140

RESUMO

The combination of sewage anaerobic treatment and partial nitritation/anammox process (PN/A) can make wastewater treatment plants energetically self-sufficient. However, PN/A application has been a challenge in low-nitrogen wastewaters and it is little explored in anaerobically pretreated domestic sewage, as well as aeration strategies and the PN/A feasibility at ambient temperature. This study investigated PN/A in a sequential batch reactor (SBR) treating real anaerobically pretreated domestic sewage. After the startup, SBR was fed with real wastewater and operated at 35°C and at ambient temperature (20-31°C) without total nitrogen (TN) removal decrease (71 ± 8 and 75 ± 6%, respectively). The median ammonium and TN removals were 68 ± 21 and 59 ± 9%, respectively with 7 min on/14 min off strategy, which represents 12.3 ± 4.2 mg L-1 N-NH4+ effluent, which is lower than Brazilian discharge limits. The qPCR results showed anammox abundance in the range of 108-109 n° copies gVSS-1. Thus, results were very promising and showed the feasibility of the PN/A process for treating real anaerobically pretreated domestic sewage at ambient temperature.

2.
J Environ Manage ; 344: 118435, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379625

RESUMO

Due to the high concentration of pollutants, swine wastewater needs to be treated prior to disposal. The combination of anaerobic and aerobic technologies in one hybrid system allows to obtain higher removal efficiencies compared to those achieved via conventional biological treatment, and the performance of a hybrid system depends on the microbial community in the bioreactor. Here, we evaluated the community assembly of an anaerobic-aerobic hybrid reactor for swine wastewater treatment. Sequencing of partial 16S rRNA coding genes was performed using Illumina from DNA and retrotranscribed RNA templates (cDNA) extracted from samples from both sections of the hybrid system and from a UASB bioreactor fed with the same swine wastewater influent. Proteobacteria and Firmicutes were the dominant phyla and play a key role in anaerobic fermentation, followed by Methanosaeta and Methanobacterium. Several differences were found in the relative abundances of some genera between the DNA and cDNA samples, indicating an increase in the diversity of the metabolically active community, highlighting Chlorobaculum, Cladimonas, Turicibacter and Clostridium senso stricto. Nitrifying bacteria were more abundant in the hybrid bioreactor. Beta diversity analysis revealed that the microbial community structure significantly differed among the samples (p < 0.05) and between both anaerobic treatments. The main predicted metabolic pathways were the biosynthesis of amino acids and the formation of antibiotics. Also, the metabolism of C5-branched dibasic acid, Vit B5 and CoA, exhibited an important relationship with the main nitrogen-removing microorganisms. The anaerobic-aerobic hybrid bioreactor showed a higher ammonia removal rate compared to the conventional UASB system. However, further research and adjustments are needed to completely remove nitrogen from wastewater.


Assuntos
Chlorobi , Microbiota , Purificação da Água , Animais , Suínos , Águas Residuárias , Esgotos/química , Eliminação de Resíduos Líquidos , Anaerobiose , Chlorobi/genética , RNA Ribossômico 16S/genética , DNA Complementar , Reatores Biológicos/microbiologia
3.
Environ Technol ; 44(19): 2955-2968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35225750

RESUMO

The upflow anaerobic hybrid (UAHB) reactor combines the advantages of a upflow anaerobic sludge blanket (UASB-type) reactor and an anaerobic filter in a single compartment. A novel configuration of the UAHB reactor, composed of two three-phase separators (3PHS), was proposed to evaluate the biogas production in the moving and fixed bed in the treatment of synthetic sewage at a temperature range of 14-21 °C and hydraulic retention time (HRT) of 12, 10 and 8 h. The bench-scale reactor was operated in three different phases with organic loading rate (VOLR) of 0.6 (0.3-0.7), 0.7 ± 0.2, and 1.1 ± 0.1 kg COD m-3 d-1, respectively, for 225 days. The average removal efficiency of chemical oxygen demand (CODt) was 78 (42-89)%, and the total biogas yield was 3090 (1704-4782) mL d-1, with 66% of the lower 3PHS (moving bed) and 34% of the upper 3PHS (fixed bed). However, no significant difference was observed between the biogas yield on the 3PHS (p-value = 0.5048), thus confirming the influence of temperature in the biogas production. The average percentage of methane was 76 (60-82)% for both beds, and the filter media increased the production by 21%. Thus, it can be concluded that the fixed bed suppressed the instability of the moving bed regarding the biogas production and contributed to the final quality of the effluent.


Assuntos
Biocombustíveis , Eliminação de Resíduos Líquidos , Anaerobiose , Temperatura , Reatores Biológicos , Esgotos , Metano
4.
Environ Technol ; 44(4): 431-445, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34463202

RESUMO

This study aimed at evaluating the microaeration as an alternative for hydrogen sulfide removal from biogas of UASB reactors treating sewage. The set-up consisted of two pilot-scale UASB reactors, including a conventional anaerobic and a modified UASB reactor, operated under microaerated conditions. Air was supplied in the digestion zone, at 1 and 3 m from the bottom of the reactor, and three different air flows were investigated: 10, 20, and 30 mL.min-1, corresponding to 0.003, 0.005 and 0.005 LO2/Linfluent, respectively. The main results showed that the microaeration provided a substantial decrease in hydrogen sulfide concentrations when compared to the concentrations observed in the biogas of the anaerobic UASB reactor. Hydrogen sulfide concentrations remained below 70 ppmv throughout the experimental period, corresponding to an average removal efficiency of 98%. Although a decrease in methane concentrations in biogas was observed, the feasibility of energy use would not be affected. The effect of microaeration on the overall performance of the reactor was evaluated, however, no significant differences were observed. The feasibility of limiting aeration conditions in the reactor digestion zone as an efficient alternative for hydrogen sulfide removal from biogas was demonstrated.


Assuntos
Sulfeto de Hidrogênio , Anaerobiose , Biocombustíveis , Reatores Biológicos , Esgotos , Metano , Digestão , Eliminação de Resíduos Líquidos/métodos
5.
Environ Technol ; : 1-12, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476154

RESUMO

The objective of this study is to propose a new post-treatment of effluents from Upflow Anaerobic Sludge Blanket (UASB) using rapid filtration, aiming at the production of water for potable reuse. The final quality of the effluent produced by the treatment using gravel, sand, clinoptilolite and activated carbon associated with disinfection was evaluated by physical chemical analysis, heavy metals and persistent organic contaminants. Experiments were carried out in jar test, filter operation time, evaluation of the efficiency using peracetic acid and free chlorine as disinfectant and all results were statistically analysed. The best conditions were those using 20 mg/L of ferric chloride and natural pH of the effluent (≈ 7.0), which resulted in less reagent consumption. The use of intermediate fund discharges made it possible to obtain approximately 91% of recovered water efficiency. The effluent treated under these conditions showed DOC <2.0 mg/L, COD <1.0 mg/L, BOD <1.0 mg/L, turbidity <1.0 NTU, TSS <1.0 mg/L, ammonia <0.1 mg/L, total phosphorus <0.1 mg/L and surfactants <0.1 mg/L. The disinfection process with free chlorine and PAA allowed the total inactivation of faecal coliforms and total coliforms. The treatment using rapid filtration with disinfection by chlorine reached the appropriate level for urban, environmental, industrial and indirect potable water reuse.

6.
Sci Total Environ ; 850: 157940, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952890

RESUMO

The application of solar photo-Fenton as post-treatment of municipal secondary effluents (MSE) in developing tropical countries is the main topic of this review. Alternative technologies such as stabilization ponds and upflow anaerobic sludge blanket (UASB) are vastly applied in these countries. However, data related to the application of solar photo-Fenton to improve the quality of effluents from UASB systems are scarce. This review gathered main achievements and limitations associated to the application of solar photo-Fenton at neutral pH and at pilot scale to analyze possible challenges associated to its application as post-treatment of MSE generated by alternative treatments. To this end, the literature review considered studies published in the last decade focusing on CECs removal, toxicity reduction and disinfection via solar photo-Fenton. Physicochemical characteristics of effluents originated after UASB systems alone and followed by a biological post-treatment show significant difference when compared with effluents from conventional activated sludge (CAS) systems. Results obtained for solar photo-Fenton as post-treatment of MSE in developed countries indicate that remaining organic matter and alkalinity present in UASB effluents may pose challenges to the performance of solar advanced oxidation processes (AOPs). This drawback could result in a more toxic effluent. The use of chelating agents such as Fe3+-EDDS to perform solar photo-Fenton at neutral pH was compared to the application of intermittent additions of Fe2+ and both of these strategies were reported as effective to remove CECs from MSE. The latter strategy may be of greater interest in developing countries due to costs associated to complexing agents. In addition, more studies are needed to confirm the efficiency of solar photo-Fenton on the disinfection of effluent from UASB systems to verify reuse possibilities. Finally, future research urges to evaluate the efficiency of solar photo-Fenton at natural pH for the treatment of effluents from UASB systems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Quelantes , Desinfecção/métodos , Peróxido de Hidrogênio , Ferro , Oxirredução , Esgotos , Poluentes Químicos da Água/análise
7.
Environ Sci Pollut Res Int ; 29(53): 80994-81005, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35727513

RESUMO

This work aimed to analyze the performance of a hybrid upflow anaerobic sludge blanket (HUASB) reactor packed with natural zeolite for slaughterhouse wastewater treatment through kinetics modeling. Wastewater samples from a municipal bovine slaughterhouse were sieved through a 1-mm mesh screen and thermally pretreated in an autoclave. Then, biological treatment was carried out in a HUASB reactor packed with a zeolite filter at the top. Slaughterhouse wastewater was diluted with municipal wastewater during the start-up period to achieve a low organic loading rate (OLR) (3.4 kg chemical oxygen demand (COD)/m3/day); afterward, it gradually increased until dilution was eliminated, reaching 14.4 kg COD/m3/day. At this OLR, the maximum percentage removals of total COD, soluble COD, total solid, and volatile solid (67.7%, 68.3%, 55.2%, and 72.1%, respectively) were found. Moreover, the zeolite filter enabled NH4+-N and PO43--P removal, with the highest values (32.8% and 35%, respectively) at 9.8 kg COD/m3/day. Thus, the natural zeolite filter improved the reactor's performance. Among all equations analyzed, the modified Stover-Kincannon equation correctly fitted the results and provided the best prediction of the HUASB reactor's performance.


Assuntos
Águas Residuárias , Zeolitas , Bovinos , Animais , Esgotos , Eliminação de Resíduos Líquidos/métodos , Matadouros , Reatores Biológicos , Anaerobiose
8.
Sci Total Environ ; 842: 156773, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724791

RESUMO

Wastewater treatment plants (WWTPs) have been widely investigated in Europe, Asia and North America regarding the occurrence and fate of antibiotic resistance (AR) elements, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and antibiotic resistant bacteria and pathogens. However, monitoring data about AR elements in municipal WWTPs in Brazil are scarce. This study investigated the abundance of intI1, five ARGs (sul1, tetA, blaTEM, ermB and qnrB) and 16S rRNA in raw and treated wastewater of three WWTPs, using different sewage treatments named CAS (Conventional activated sludge), UASB/BTF (UASB followed by biological trickling filter) and MAS/UV (modified activated sludge with UV disinfection stage). Bacterial diversity and the presence of potentially pathogenic groups were also evaluated, and associations between genetic markers and the bacterial populations were presented. All WWTPs decreased the loads of genetic markers finally discharged to receiving water bodies and showed no evidence of being hotspots for antimicrobial resistance amplification in wastewater, since the abundances of intI1 and ARGs within the bacterial population were not increased in the treated effluents. UASB/BTF showed a similar performance to that of the CAS and MAS/UV, reinforcing the sanitary and environmental advantages of this biological treatment, widely applied for wastewater treatment in warm climate regions. Bacterial diversity and richness increased after treatments, and bacterial communities in wastewater samples differed due to catchment areas and treatment typologies. Potential pathogenic population underwent considerable decrease after the treatments; however, strong significant correlations with intI1 and ARGs revealed potential multidrug-resistant pathogenic bacteria (Aeromonas, Arcobacter, Enterobacter, Escherichia-Shigella, Stenotrophomonas and Streptococcus) in the treated effluents, although in reduced relative abundances. These are contributive results for understanding the fate of ARGs, MGEs and potential pathogenic bacteria after wastewater treatments, which might support actions to mitigate their release into Brazilian aquatic environments in the near future.


Assuntos
Microbiota , Purificação da Água , Antibacterianos/farmacologia , Bactérias/genética , Brasil , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Marcadores Genéticos , Sequências Repetitivas Dispersas , RNA Ribossômico 16S/genética , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise
9.
Bioresour Technol ; 354: 127185, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35439561

RESUMO

Anaerobic co-digestion (AcD) of sugarcane biorefinery byproducts (hemicelluloses hydrolysate (HH), vinasse, yeast extract and sugarcane bagasse fly ashes was evaluated using new anaerobic reactors fed with organic loading rates (OLR) from 0.9 to 10.8 gCODL-1d-1. The best results were obtained in a two-stage system when the OLR was 5.65 gCODL-1d-1, leading to a total chemical oxygen demand (COD) removal of 87.6 % and methane yield of 243NmLCH4gCODr-1. Microbial community analyses of sludge from both systems (one and two-stages) revealed structural changes and relationship among the main genus found (Clostridium (62.8%), Bacteroides(11.3 %), Desulfovibrio (19.1 %), Lactobacillus(67.7 %), Lactococcus (22.5%), Longilinea (78%), Methanosaeta (19.2 %) and Syntrophus (18.9 %)) with processes performance, kinetic and hydrodynamic parameters. Moreover, biomass granulation was observed in the novel structured anaerobic reactor operated at single stage due to sugarcane bagasse fly ash addition.


Assuntos
Microbiota , Saccharum , Anaerobiose , Biocombustíveis , Reatores Biológicos , Celulose , Digestão , Grão Comestível , Metano , Esgotos/química
10.
Water Res ; 212: 118069, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077942

RESUMO

Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.


Assuntos
COVID-19 , Purificação da Água , Adenoviridae , Anaerobiose , Reatores Biológicos , Escherichia coli , Humanos , RNA Viral , SARS-CoV-2 , Esgotos , Eliminação de Resíduos Líquidos
11.
Environ Technol ; 43(13): 2059-2068, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33334260

RESUMO

The discharge of raw wastewater into the environment can be a contamination source of Giardia spp. cysts and Cryptosporidium spp. oocysts. The UASB (Upflow Anaerobic Sludge Blanket) reactor is the most popular technology applied for wastewater treatment in Brazil, nevertheless there is little information concerning its capacity for (oo)cyst removal. In this context, this study investigated the occurrence and removal of Giardia spp. cysts and Cryptosporidium spp. oocysts by three different UASB reactors (i.e. Reactor A, B, and C) treating different wastewater types. In the wastewater influent, the concentration varied from 493.3 to 14,000 cysts·L-1 for Giardia spp. and from 'not detected' to 53.3 oocysts·L-1 for Cryptosporidium spp.. The (oo)cyst concentration increased after the anaerobic treatment in Reactors A and B, while Giardia spp. log-removal of 0.5 ± 0.2 was found in Reactor C. The increment in (oo)cyst concentration may happened due to the inefficacy for (oo)cyst removal by the specific UASB reactor and/or due to the reduction of matrix interference for reactor effluent samples in the detection method. The results suggest that hydraulic retention time (HRT) may be the key parameter for Giardia spp. removal by the UASB reactor. Furthermore, no parameter analysed (physical-chemical and indicator microorganisms) showed a common correlation with the (oo)cyst concentration in the three UASB reactors. Considering that official data of cryptosporidiosis and giardiasis cases are rarely reported in Brazil, monitoring Giardia spp. cysts and Cryptosporidium spp. oocysts in wastewater could be an alternative to estimate the occurrence of diseases in the served population.


Assuntos
Criptosporidiose , Cryptosporidium , Cistos , Anaerobiose , Animais , Brasil , Criptosporidiose/epidemiologia , Giardia , Oocistos , Águas Residuárias
12.
Eng. sanit. ambient ; Eng. sanit. ambient;26(6): 1097-1109, nov.-dez. 2021. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1350707

RESUMO

RESUMO Neste artigo, apresenta-se uma abordagem conceitual sobre propostas de alternativas para a concepção de sistemas com reator anaeróbio de manta de lodo. Em essência, propõem-se: i) a eliminação dos separadores de gás, líquido e sólido que constam em reatores upflow anaerobic sludge blanket reactors e sua substituição por unidade de sedimentação de alta taxa em setor incluso ou externo ao volume do reator biológico; ii) a recirculação de parcela do lodo retido no sedimentador, transformando o conjunto em um sistema semelhante ao de lodo ativado, porém preservando a manta de lodo no reator anaeróbio (activated anaerobic sludge blanket system) e, assim, viabilizando melhor controle do tempo de retenção celular; e iii) a simplificação (menor número de entradas) do sistema de distribuição do afluente junto ao fundo da zona de reação, mediante duas alternativas: agitação mecânica ou agitação hidráulica com jatos — em ambos os casos, intermitentes. As propostas, conforme apresentadas, constituem resumo de pesquisa baseada em reatores de bancada sucedida pela operação e testes em duas unidades-piloto paralelas (volume total: 20,8 m3, incluindo volumes de reação e de sedimentação). Constatou-se que é possível remover sólidos suspensos do efluente da região de reação sem a necessidade do separador trifásico e, também, que é possível manter-se a manta de lodo mesmo com a agitação na região de reação. Foram obtidos bons resultados na remoção de sólidos suspensos totais, demanda bioquímica de oxigênio e demanda química de oxigênio nos sedimentadores com valores de taxa de aplicação superficial de 34,0 até 81,6 m3m-2dia. Constatou-se, também, que valores bastante baixos de gradiente de velocidade (G £ 20s-1) são suficientes para promover a manutenção da manta de lodo e que a intermitência na agitação é favorável ao processo biológico. Os resultados relacionados com a remoção de demanda química de oxigênio, demanda bioquímica de oxigênio e sólidos suspensos totais foram comparados com os de outros estudos sobre reatores upflow anaerobic sludge blanket reactors convencionais. Contudo, aqueles relacionados com o tempo de reação celulat foram os mais significativos para as conclusões desta pesquisa. Quando o reator foi operado com tempo de detenção hidráulica de 8,2 h e velocidade ascensional no reator biológico de 0,69 mh-1, o tempo de reação celular do sistema resultou em 175 dias. Com velocidade ascensional menores, os valores de tempo de reação nuclear foram ainda maiores (por exemplo: velocidade ascensional = 0,39 mh-1; tempo de reação celular = 363 dias). Os resultados deste trabalho abrem perspectivas para novas pesquisas e novos horizontes para projeto de sistemas com reatores anaeróbios de manta de lodo e decantadores de alta taxa.


ABSTRACT This paper presented a conceptual approach toward alternatives for the design of anaerobic sludge blanket reactors. In essence, it is proposed: i) the elimination of gas-liquid-solid separators that integrate the upflow anaerobic sludge blanket reactors and their replacement by a high rate settlers placed inside or outside the volume of biological reactor; ii) the recirculation of a fraction of the of the sludge retained in the settler, converting the process into a solution that resembles the activated sludge system, however, preserving the sludge blanket (Activated Anaerobic Sludge Blanket System), and thus ensuring better control of the cell retention time; and iii) the simplification (lower inlet points) of the influent distribution system placed over the bottom of the reaction zone, upon the implementation of two alternatives: mechanical mixing or hydraulic agitation with jet discharges, intermittent, in both cases. The proposals, as presented, are a summary of researches based on bench scale tests succeeded by the operation and tests in two parallel pilot units (total volume: 20.8 m3, including reaction zone and settler). It was found that it is possible to remove suspended solids from the effluent of the reaction zone without the need for a three-phase separator, and also, that it is possible to maintain the sludge blanket even with mixing in the reaction zone. Good results regarding total suspended solids, biochemical oxygen demand and chemical oxygen demand removal in the settlers were obtained, with applied hydraulic loading rate from 34.0 to 81.6 m3m-2 day. It was also found that very low velocity gradient values (G £ 20 s-1) are required to promote the maintenance of the sludge blanket, and the intermittency in the agitation is favorable to the biological process. The results concerning, , and TSS removal were compared with those of other studies on conventional upflow anaerobic sludge blanket reactors. However, those related to sludge age were the most significant to the conclusions of this research. When the reactor was operated with a hydraulic retention time of 8.2 h and a upflow velocity upflow velocity of 0.69 mh-1 in the biological reactor, the average sludge age reached 175 days. When applying smaller values of upflow velocity, the sludge age values reached greater values (Example: upflow velocity = 0.39 mh-1; sludge age = 363 days). The results and conclusions of this research open new perspectives for future research and new horizons for designing systems consisting of anaerobic sludge blanket and high-rate settlers.

13.
Eng. sanit. ambient ; Eng. sanit. ambient;26(3): 591-600, maio-jun. 2021. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1286323

RESUMO

RESUMO A remoção de matéria orgânica e de nitrogênio em esgoto doméstico diluído foi avaliada em dois reatores híbridos, um anaeróbio (RHAN) e outro aeróbio (RHAE). O RHAN era formado por uma câmara tipo upflow anaerobic sludge blanket sobreposta por outra de filtro anaeróbio, enquanto o RHAE tinha uma câmara de lodo ativado sobreposta por outra de biofilme aerado submerso. A operação do sistema foi dividida em duas fases, FI e FII, com razões de recirculação de 50 e 75% e duração de 94 e 110 dias, respectivamente. Para a remoção de nitrogênio, o RHAE foi operado com oxigênio dissolvido de 3,0 mg.L-1. A técnica da reação em cadeia da polimerase foi empregada tanto para o lodo suspenso das câmaras inferiores, como para o biofilme aderido nas câmaras superiores, para identificar a presença de micro-organismos desnitrificantes e nitrificantes. As maiores eficiências de remoção em termos de demanda química de oxigênio e nitrogênio total foram obtidas em FII, sendo 91% e ~50%, respectivamente; as concentrações no efluente foram ~40 mg O2.L-1 e ~15 mg N-NT.L-1. A presença de três grupos de bactérias, as desnitrificantes, as oxidantes de amônia e as oxidantes de nitrito, foi confirmada no biofilme aderido do RHAE, indicando uma biomassa mixotrófica e sugerindo a possibilidade do processo de nitrificação e desnitrificação simultânea.


ABSTRACT The removal of organic matter and nitrogen in diluted domestic sewage was evaluated in two hybrid reactors, one anaerobic (ANHR) and another aerobic (AEHR). ANHR was formed by a upflow anaerobic sludge blanket (UASB)-type chamber overlaid by an anaerobic filter, while AEHR had an activated sludge chamber overlaid by a submerged aerated biofilm chamber. The experimental period was divided into two phases, FI and FII, with recirculation ratios of 50 and 75%, and duration of 94 and 110 days, respectively. For nitrogen removal, AEHR was operated with a 3.0-mg.L-1 dissolved oxygen. Polymerase chain reaction technique was used for both suspended sludge in the down-chambers and attached biofilm in the upper-chambers, to identify the presence of denitrifying and nitrifying microorganisms. The highest removal efficiencies in terms of chemical oxygen demand and total nitrogen were obtained in FII, being 91 and ~50%, respectively; effluent concentrations were ~40 mg O2.L-1 and ~15 mg N-TN.L-1. The presence of three groups of bacteria, the denitrifiers, the ammonia oxidants and the nitrite oxidants, was confirmed in the attached biofilm of the RHAE, indicating a mixotrophic biomass and suggesting the possibility of simultaneous nitrification and denitrification process.

14.
J Hazard Mater ; 403: 123932, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264982

RESUMO

The present work assessed some engineering approaches, such as the addition of the redox mediator anthraquinone-2,6-disulfonate (AQDS) (50 and 100 µM), microaeration (1 mL air min-1), and nitrate (100-400 mg L-1), for enhancing the biotransformation of the antibiotics sulfamethoxazole (SMX) and trimethoprim (TMP) (200 µg L-1 each) in anaerobic reactors operated at a short hydraulic retention time (7.4 h). Initially, very low removal efficiencies (REs) of SMX and TMP were obtained under anaerobic conditions (∼6%). After adding AQDS, the anaerobic biotransformation of these antibiotics significantly improved, with an increase of approximately 70% in the REs with 100 µM of AQDS. Microaeration also enhanced the biotransformation of SMX and TMP, especially when associated with AQDS, which provided REs above 70%, particularly for TMP (∼91% with 1 mL air min-1 and 50 µM of AQDS). Concerning nitrate, the higher the added concentration, the higher the REs of the antibiotics (∼86% with 400 mg L-1). Therefore, all the assessed approaches were demonstrated to be very effective in improving the limited biotransformation of SMX and TMP in anaerobic reactors, ensuring REs comparable to those found in higher-cost wastewater treatment technologies, such as conventional activated sludge, membrane bioreactors, and hybrid processes.


Assuntos
Antibacterianos , Nitratos , Anaerobiose , Reatores Biológicos , Biotransformação , Oxirredução , Esgotos
15.
Sci Total Environ ; 760: 144309, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348164

RESUMO

Human enteric pathogens are a major global concern, as they are responsible for thousands of preventable deaths every year. New pathogens in wastewater are constantly emerging. For example, SARS-CoV-2 has been recently detected in domestic sewage and primary sludge. Knowledge about the reduction of viruses in wastewater treatment and their partitioning between the treated liquid effluent versus the sludge or biosolids is still very scarce, especially in countries with emerging economies and tropical climates. Upflow anaerobic sludge blanket (UASB) reactors are among the top three most commonly used technologies for the treatment of sewage in Latin America and the Caribbean, and their use has become increasingly common in many other low- and middle-income countries. High-rate algal ponds (HRAP) are regarded as a sustainable technology for the post-treatment of UASB effluent. This study evaluated the overall reduction and the liquid-solid partitioning of somatic coliphages, F-specific coliphages, and E. coli in a pilot-scale system comprised of a UASB reactor followed by HRAPs treating real wastewater. Average log removal for somatic and F-specific coliphages were 0.40 and 0.56 for the UASB reactor, and 1.15 and 1.70 for HRAPs, respectively. The overall removal of both phages in the system was 2.06-log. Removal of E. coli was consistently higher. The number of viruses leaving the system in the UASB solids and algal biomass was less than 10% of the number leaving in the clarified liquid effluent. The number of E. coli leaving the system in solids residuals was estimated to be approximately one order of magnitude higher than the number of E. coli leaving in the liquid effluent. Results from this study demonstrate the suitability of UASB-HRAP systems to reduce viral and bacterial indicators from domestic sewage and the importance of adequately treating sludge for pathogen reduction before they are used as biosolids.


Assuntos
COVID-19 , Esgotos , Anaerobiose , Reatores Biológicos , Região do Caribe , Escherichia coli , Humanos , Lagoas , SARS-CoV-2 , Eliminação de Resíduos Líquidos
16.
J Environ Health Sci Eng ; 18(2): 1189-1205, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312634

RESUMO

PURPOSE: The aim of the present work was to assess the electrogenic activity of bacteria from hydrothermal vent sediments achieved under sulfate reducing (SR) conditions in a microbial fuel cell design with acetate, propionate and butyrate as electron donors. METHODS: Two different mixtures of volatile fatty acids (VFA) were evaluated as the carbon source at two chemical oxygen demand (COD) proportions. The mixtures of VFA used were: acetate, propionate and butyrate COD: 3:0.5:0.5 (stage 1) and acetate - butyrate COD: 3.5:0.5 (stage 2). Periodical analysis of sulfate (SO4 -2), sulfide (HS-) and COD were conducted to assess sulfate reduction (SR) and COD removal along with measurements of voltage and current to assess the global performance of the consortium in the system. RESULTS: Percentage of SR was of 97.5 ± 0.7 and 74.3 ± 1.5% for stage 1 and 2, respectively. The % COD removal was of 91 ± 2.1 and 75.3 ± 9.6 for stage 1 and 2, respectively. Although SR and COD removal were higher at stage 1, in regards of energy, stage 2 presented higher current and power densities and Coulombic efficiency as follows: 741.7 ± 30.5 µA/m2, 376 ± 34.4 µW/m2 and 5 ± 2.7%, whereas for stage 1 these values were: 419 ± 71 µA/m2, 52.7 ± 18 µW/m2 and 0.02%, respectively. A metagenomic analysis - stage 2 - in the anodic chamber, demonstrated that SR was due to Dethiosulfovibrionaceae (HA73), Desulfobacter and Desulfococcus and the electrogenic microorganisms were Planococcus, SHD-231, Proteiniclasticum, vadinCA02, and families Porphyromonadacea and Pseudomonadaceae. CONCLUSIONS: It was demonstrated that microorganisms prevenient from hydrothermal vent sediments adapted to a microbial fuel cell system are able to generate electricity coupled to 74.3 ± 1.5 and 75.3 ± 9.6% of SR and COD removal respectively, with a mixture of acetate - butyrate.

17.
Polymers (Basel) ; 12(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882933

RESUMO

Sulfide produced by sulphate-reducing bacteria in anaerobic reactors can seriously affect biogas quality. Microaeration has become a reliable way to remove sulfide, by promoting its oxidation. However, limited research is available regarding its application in upflow anaerobic sludge bed (UASB) reactors. In this research, silicon membranes were studied as a mechanism to dose oxygen in USAB reactors. Two configurations were tested: the membrane placed inside the reactor or in an external module. Our results show that the external membrane proved to be a more practical alternative, providing conditions for sulfide oxidation. This led to a reduction in its concentration in the liquid effluent and biogas. External membrane configuration achieved a sulfide conversion rate of 2.4 g-S m2 d-1. Since the membrane was not sulfide-selective, methane losses were observed (about 9%). In addition, excessive oxygen consumption was observed, compared to the stoichiometric requirement. As is the case for many membrane-based systems, membrane area is a key factor determining the correct operation of the system.

18.
Sci Total Environ ; 720: 137593, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32146399

RESUMO

Reliable Life Cycle Assessment (LCA) indicators for wastewater treatment plants (WWTP) construction and operation phases are still a demand mainly in developing countries. Thus, the purpose of this paper was to present and discuss the environmental performance of a full-scale WWTP installed in a Brazilian city using LCA approach. The treatment process consists of a UASB reactor followed by constructed wetlands, which makes it particularly attractive to developing countries due to its operational simplicity. The Life Cycle Inventory (LCI) was developed from a WWTP design and operation data including those of untreated wastewater and effluent quality. The results show that the environmental impacts from construction phase should not be neglected in LCA studies of low complexity treatment technologies (e.g. UASB reactor, constructed wetlands and pond systems). There is a trade-off between the use of materials and energy for construction and the low energy and materials consumption during the operation phase in these systems. The majority share of hydroelectric generation in the energy matrix and the combination of anaerobic and natural processes for wastewater treatment have contributed to a smaller impact potential for the operation phase. The LCA approach should be associated with plans and actions to face the challenges of providing wastewater treatment in developing countries. Only in this way, compliance with the eco-efficiency targets and protect public health will be guaranteed.

19.
Eng. sanit. ambient ; Eng. sanit. ambient;25(2): 259-269, mar.-abr. 2020. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1098205

RESUMO

RESUMO Sistemas anaeróbios modernos de tratamento de esgoto doméstico, embora bastante eficientes na remoção de matéria orgânica e sólidos em suspensão, não produzem um efluente com qualidade compatível com os padrões legais para descarga em corpos d'água. Por essa razão, esses sistemas têm de ser associados a unidades de pós-tratamento. Este trabalho trata de uma investigação experimental sobre a viabilidade de aplicação do sistema de lodo ativado como uma alternativa do pós-tratamento, especificamente para o caso em que se prevê o efluente final para fertirrigação. Na investigação experimental, utilizou-se um reator de bateladas sequenciais (RBS), em escala laboratorial, como unidade de pós-tratamento. Os resultados experimentais mostraram que o comportamento do sistema RBS pode ser descrito como o modelo geral de lodo ativado da Associação Internacional da Água (IWA, na sigla em inglês), que resulta na definição dos aspectos fundamentais: qualidade do efluente final, consumo de oxigênio e produção de lodo. Na otimização do reator RBS, desenvolveu-se um modelo que permite estabelecer o tempo de permanência mínimo para o pós-tratamento em função de dois parâmetros básicos: a constante de utilização de material orgânico biodegradável pelas bactérias heterotróficas do lodo gerado no sistema de pós tratamento e a sedimentabilidade desse lodo. A constante de utilização de material orgânico foi determinada por testes respirométricos. O lodo gerado no sistema de pós-tratamento surpreendentemente mostrou ter uma sedimentabilidade bem superior àquela normalmente encontrada em sistemas de lodo ativado tratando esgoto bruto, o que constitui um argumento sólido para a aplicação do sistema RBS na prática de pós-tratamento do efluente do reator upflow anaerobic slugde blanket (UASB).


ABSTRACT Modern anaerobic systems for domestic sewage treatment, although very effective in removing organic matter and suspended solids, do not produce a quality effluent that complies with the legal standards for discharge into water bodies. Therefore, such systems have to be associated with post treatment units. This paper deals with an experimental investigation into the feasibility of applying the activated sludge system as an alternative post-treatment, specifically for the case where reuse of the final wastewater for fertigation is expected. In the experimental investigation, a pilot-scale sequencing batch reactor (SBR), in laboratory scale, was used as a post-treatment unit. The experimental results showed that the behavior of the RBS system can be described with the general IWA model for activated sludge, resulting in the definition of the fundamental aspects: quality of the final effluent, oxygen consumption, and sludge production. In the optimization of the RBS reactor, a model was developed to establish the minimum retention time for the post-treatment in terms of two basic parameters: the biodegradable organic material utilization constant by heterotrophic bacteria sludge of the post-treatment system and the sedimentability of this sludge. The organic material utilization constant was determined by respirometry testing. The sludge generated in the post-treatment system surprisingly been shown to have a much higher sedimentability than that normally found in activated sludge systems dealing with raw sewage, which is a sound argument for applying the RBS system in the practice of post-treatment reactor effluent UASB

20.
Eng. sanit. ambient ; Eng. sanit. ambient;25(1): 87-96, jan.-fev. 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1090126

RESUMO

ABSTRACT As the world population increases, the need to develop more efficient wastewater treatment systems requires the use of new technologies. Software aided project and optimization of bioreactors and bioprocesses have become a matter of interest in recent years, especially due to the advance in the state-of-the-art of computational resources. This work aimed to perform gas/liquid numerical simulations using the Fluent 16.2 software and to validate this model through Particle Image Velocimetry (PIV) and shadow imaging techniques. Eulerian-Eulerian, laminar, tridimensional and transient simulations were carried out. The results for the mass imbalance for the gas and liquid phases, gas volumetric fraction, gas velocity, bubble size, liquid magnitude and upflow velocity and the velocity profiles for the liquid phase were successfully validated against experimental data. Concerning the dispersed phase, it was found a difference of 4.37% for the gas volumetric fraction between experiments and simulations. Simulated results showed a difference for the bubble mean velocity of 1.73% when compared with shadow imaging results. No coalescence was observed along the experiments, and the flow regime was characterized as dispersed bubble flow. Regarding the liquid phase, it was found a difference of 3.2% for the mean velocity, between simulated and PIV results. Simulated and experimental velocity profiles showed a better agreement at the center of the reactor. Some differences were observed in those profiles, due to geometry simplifications assumed in order to get a better mesh. Considering the good agreement between simulation and experiments, the model was considered validated.


RESUMO Conforme a população mundial aumenta, a necessidade de desenvolvimento de sistemas de tratamento de efluentes mais eficientes requer o uso de novas tecnologias. O projeto e otimização de biorreatores e bioprocessos auxiliados por softwares têm se tornado uma questão de interesse, em especial devido ao avanço no estado da arte quando se trata de recursos computacionais. O objetivo deste trabalho foi realizar simulações numéricas gás/liquido, utilizando o software Fluent 16.2, e validar experimentalmente o modelo computacional através de técnicas de PIV e Shadow Imaging. Foram realizadas simulações laminares, tridimensionais, transientes adotando uma abordagem Euleriana-Euleriana. Os resultados para o desequilíbrio de massa para as fases gasosa e líquida, a fração volumétrica de gás, a velocidade do gás, o tamanho da bolha, a magnitude e a velocidade ascensional do líquido e os perfis de escoamento do líquido foram validados experimentalmente com êxito. Foi verificada uma diferença de 4,37% entre resultados numéricos e experimentais para a fração volumétrica de gás no reator. Quando comparados os resultados das simulações com os resultados obtidos através de Shadow Imaging, foi encontrada uma diferença de 1,73% para a velocidade média da bolha. Não foi verificada coalescência ao longo dos experimentos realizados, e o escoamento foi caracterizado como fluxo de bolhas dispersas. Em relação à fase líquida, foi encontrada uma diferença de 3,2% para a velocidade média, entre os resultados simulados e de PIV. Os perfis de velocidade simulada e experimental mostraram uma melhor concordância no centro do reator. Algumas diferenças foram observadas nesses perfis, devido às simplificações geométricas assumidas para obter uma malha melhor. Considerando a boa concordância entre resultados numéricos e experimentais, o modelo foi considerado validado.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA