Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124684, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38981290

RESUMO

Human telomeres (HTs) can form DNA G-quadruplex (G4), an attractive target for anticancer and antiviral drugs. HT-G4s exhibit inherent structural polymorphism, posing challenges for understanding their specific recognition by ligands. Here, we aim to explore the impact of different topologies within a small segment of the HT (Tel22) on its interaction with BRACO19, a rationally designed G4 ligand with high quadruplex affinity, already employed in in-vivo treatments. Our multi-technique approach is based on the combined use of a set of contactless spectroscopic tools. Circular dichroism and UV resonance Raman spectroscopy probe ligand-induced conformational changes in the G4 sequence, while UV-visible absorption, coupled with steady-state fluorescence spectroscopy, provides further insights into the electronic features of the complex, exploiting the photoresponsive properties of BRACO19. Overall, we find that modifying the topology of the unbound Tel22 through cations (K+ or Na+), serves as a critical determinant for ligand interactions and binding modes, thus influencing the HT-G4's assembly capabilities. Furthermore, we show how fluorescence serves as a valuable probe for recognizing cation-driven multimeric structures, which may be present in living organisms, giving rise to pathological forms.

2.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999116

RESUMO

The present article describes the synthesis of an isonicotinate-derived meso-arylporphyrin, that has been fully characterized by spectroscopic methods (including fluorescence spectroscopy), as well as elemental analysis and HR-MS. The structure of an n-hexane monosolvate has been determined by single-crystal X-ray diffraction analysis. The radical scavenging activity of this new porphyrin against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical has been measured. Its antifungal activity against three yeast strains (C. albicans ATCC 90028, C. glabrata ATCC 64677, and C. tropicalis ATCC 64677) has been tested using the disk diffusion and microdilution methods. Whereas the measured antioxidant activity was low, the porphyrin showed moderate but encouraging antifungal activity. Finally, a study of its effect on the germination of lentil seeds revealed interesting allelopathic properties.


Assuntos
Antifúngicos , Antioxidantes , Porfirinas , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/síntese química , Ácidos Isonicotínicos/química , Ácidos Isonicotínicos/farmacologia , Ácidos Isonicotínicos/síntese química , Estrutura Molecular , Compostos de Bifenilo/química , Picratos/química , Picratos/antagonistas & inibidores , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Lens (Planta)/química , Germinação/efeitos dos fármacos , Alelopatia
3.
Molecules ; 29(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999152

RESUMO

The present work reports the synthesis of indigo-dye-incorporated polyaniline (Indigo-PANI), poly(1-naphthylamine) (Indigo-PNA), poly(o-phenylenediamine) (Indigo-POPD), polypyrrole (Indigo-PPy), and polythiophene (Indigo-PTh) via an ultrasound-assisted method. The synthesized oligomers were characterized using FTIR, UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence studies, and thermogravimetric analysis (TGA). The experimental data were theoretically compared to analyze the vibrational and electronic spectra via time-dependent density-functional theory (TD-DFT) by applying the Becke, three-parameter, and Lee-Yang-Parr (B3LYP) method with a 6-311G (d,p) basis set. The experimental, theoretical vibrational, and electronic spectra were found to be in close agreement and confirmed the successful incorporation of indigo dye in PANI, PNA, POPD, PPy, and PTh. These studies confirmed that multifunctional oligomers could be synthesized through a facile technique by incorporating dye moieties to enhance their optoelectronic properties, allowing them to be utilized as near-infrared-emitting probes for photodynamic therapy.

4.
J Pharm Bioallied Sci ; 16(Suppl 2): S1274-S1280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882846

RESUMO

Background: The present study, plant extract to biosynthesize silver nanoparticles (AgNPs), is an environmentally benign way to lessen the use of dangerous chemicals. Aims and Objectives: The antibacterial effects of the green production of AgNPs by Lawsonia inermis extract were examined. Materials and Methods: Utilizing scanning, transmission electron microscopy, X-ray diffraction (XRD), ultraviolet-visible spectroscopy, and infrared spectroscopy, researchers examined the physical and chemical characteristics of synthesized AgNPs. Results: Ag-NPs have the highest peak in visible light at 460 nm, according to UV-vis analysis. When silver nanocrystals were structurally characterized, peaks that matched Bragg's diffractions were found, with average crystallite sizes ranging from 28 to 60 nm. Examining Ag-NPs' antibacterial properties, it was shown that all microbes are extremely sensitive to these biologically produced Ag-NPs. Conclusion: Escherichia coli, Salmonella typhi, Bacillus cereus, and Staphylococcus aureus were tested for the antimicrobial properties of AgNPs synthesized.

5.
Microsc Res Tech ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752356

RESUMO

In this study, silver sulfide nanoparticles (Ag2SNP's) were successfully produced by using fruit extracts of Phyllanthus emblica. UV-vis, FTIR, XRD with SEM and EDX techniques were used for the synthesis process and for characterization of the resulting nanostructures. According to the findings, the fabricated nanostructure had a monoclinic crystal structure, measuring 44 nm in grain size, and its strain was 1.82 × 10-3. As revealed by SEM analysis, the synthesized nanostructure consists of irregular spherical and triangular shapes. The presence of silver (Ag) and sulfur (S) was also confirmed through EDX spectra. Furthermore, Ag2S nanoparticles were tested for their ability to effectively inhibit gram-positive and gram-negative bacterial growth. As a result of this study, it was clearly demonstrated that Ag2S nanoparticles possess powerful antibacterial properties, particularly when it came to inhibiting Escherichia coli growth. Ag2S nanoparticles had high total H2O2 and flavonoid concentrations and the greatest overall antioxidant activity, according to the evaluation of antioxidant activity of the samples. The results obtained from the P. emblica fruit extract were followed by those obtained from Ag2S nanoparticles were reported in detail. RESEARCH HIGHLIGHTS: Innovative Ag2SNP synthesis using Phyllanthus emblica fruit extract. SEM with EDX revealed a monoclinic crystal structure with a grain size of 44 nm and a strain of 1.82 × 10-3. Many of these applications are demonstrated by the potential of Ag2SNPs to treat and combat bacteria, particularly Escherichia coli. A peak at 653 cm-1 indicates the presence of primary sulfide aliphatic C-S extension vibrations. The abundant H2O2 and NO2 found in P. emblica nanocomposites make them potent antioxidants.

6.
Chemosphere ; 358: 142094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648984

RESUMO

Designing of an effectual heterostructure photocatalyst for catalytic organic pollutant exclusion has been the subject of rigorous research intended to resolve the related environmental aggravation. Fabricating p-n junctions is an effective strategy to promote electron-hole separation of semiconductor photocatalysts as well as enhance the organic toxin degradation performance. In this study, a series of n-type NiAlFe-layered triple hydroxide (LTH) loaded with various ratios of p-type MoS2 was synthesized for forming a heterostructure LTH/MoS2 (LMs) by an in situ hydrothermal strategy. The photocatalysts were characterized by XRD, SEM&EDX, TEM, FT-IR, XPS, as well as UV-vis DRS. The photoactivity of photocatalysts was tested by the degradation of Indigo Carmine (IC) dye. The optimized catalyst (LM1) degrades 100% of indigo dye in high alkaline pH under UV light for 100 min. Besides, the degradation rate of LM1 is 15 times higher than that of pristine NiAlFe-LTH. The enhanced photoactivity is attributed to the synergistic effect between NiAlFe-LTH and MoS2 as well as the p-n junction formation.


Assuntos
Corantes , Índigo Carmim , Molibdênio , Catálise , Corantes/química , Molibdênio/química , Índigo Carmim/química , Dissulfetos/química , Concentração de Íons de Hidrogênio , Luz , Poluentes Químicos da Água/química , Hidróxidos/química , Fotólise , Raios Ultravioleta
7.
Dose Response ; 22(2): 15593258241240233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576528

RESUMO

In this work, we study the effect of 6 MeV electron beam irradiation on the physicochemical properties of lyophilized Human Haemoglobin A (HbA). Electron beams generated from Race Track Microtron accelerator with energy 6 MeV were used to irradiate HbA at fluences of 5 × 1014 e-/cm2 and 10 × 1014 e-/cm2. Pristine and electron beam irradiated HbA were characterized using UV-visible and Fourier transform infrared spectroscopy (FTIR) spectroscopy. The interfacial tension of the aqueous solutions of HbA are also analysed by pendant drop method. Absorbance intensity, % transmittance and interfacial tension decrease with fluence. The peak position of the Soret band (λsoret = 404 nm) remains unaffected by the fluences. FTIR spectroscopy confirms the changes in the secondary structure of the haemoglobin. In the amide band I, the percentage of α-helix reduced from 8% to 1%, and an increase in ß-sheet (19% to 29%) and ß helix (6.3% to 15%) is observed. Interfacial tension decreases from 46.0 mN/m and 44.0 mN/m with increase in irradiation dose. These finding provides realistic guideline for biological cells exposure to electron beam radiation doses.

8.
J Fluoresc ; 34(3): 1441-1451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530561

RESUMO

Aspirin is a commonly used nonsteroidal anti-inflammatory drug, associated with many adverse effects. The adverse effects of aspirin such as tinnitus, Reye's syndrome and gastrointestinal bleeding are caused due to conversion of aspirin into its active metabolite salicylic acid after oral intake. Glutathione is a naturally occurring antioxidant produced by the liver and nerve cells in the central nervous system. It helps to metabolize toxins, break down free radicles, and support immune function. This study aims to investigate and explore the possibility of inhibiting aspirin to salicylic acid conversion in presence of glutathione at a molecular level using spectroscopic techniques such as UV-Visible absorption, time-Resolved and time-dependent fluorescence and theoretical DFT/ TD-DFT calculations. The results of steady state fluorescence spectroscopy and time-dependent fluorescence indicated that the aspirin to salicylic acid conversion is considerably inhibited in presence of glutathione. Further, the results presented here might have significant clinical implications for individuals with variations in glutathione level.


Assuntos
Aspirina , Teoria da Densidade Funcional , Glutationa , Ácido Salicílico , Espectrometria de Fluorescência , Aspirina/farmacologia , Aspirina/química , Aspirina/metabolismo , Glutationa/metabolismo , Glutationa/química , Ácido Salicílico/metabolismo , Ácido Salicílico/química , Ácido Salicílico/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Fluorescência , Estrutura Molecular
9.
Turk J Chem ; 48(1): 36-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544889

RESUMO

A sustainable, bio-based, mesoporous material, Starbon A800, was explored for use as an adsorbent in solid phase extraction (SPE). A solution containing seven nitrosamines was first used as a standard to optimise conditions for extraction efficiency with Starbon A800. After optimising conditions, 25 compounds of varying polarity (terpenes, phenolics, pesticides, PAHs, amines, and nitrosamines) were extracted with SPE using either Starbon® A800, C18 or Porous Graphitic Carbon (PGC) as the adsorbent, for comparison purposes. At the same time, 3 different elution solvents (heptane, dichloromethane, and ethanol) were used for each type of adsorbent. Hansen solubility parameters can be used to choose an appropriate elution solvent for the selected SPE adsorbent. The best average SPE recoveries found for the 25 various compounds were 83%, 79%, and 65% using Starbon A800, PGC, and C18 adsorbents respectively and these had dichloromethane as the elution solvent. The identification and quantification of components was carried out using UV-visible spectroscopy, two-dimensional gas chromatography (GCxGC) with time of flight/mass spectrometry (TOF/MS) or a nitrogen chemiluminescence detector (NCD). The optimized method was successfully applied to extract volatile organic compounds from red wine and tap water using Starbon A800. Starbon A800 was shown to be a promising, low-cost, green, scalable, alternative adsorbent for the extraction of various types of organic compounds of a wide range of polarities using SPE.

10.
J Fluoresc ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478264

RESUMO

Fluorescence and colorimetric sensors have gained significant traction in diverse scientific domains, including environmental, agricultural, and pharmaceutical chemistry. This article comprehensively surveys recent advancements in developing sensors employing 1,4-dihydroxyanthraquinone(1,4-DHAQ). The study delves into the unique properties of 1,4-dihydroxyanthraquinone(1,4-DHAQ) as a sensor, focusing on its capacity to detect Cu2+ ions and elucidating its fluorescence quenching mechanisms. Furthermore, the interaction of dihydroxyanthraquinone with Ga(III), Al(III), and In(III) ions is explored under both aqueous and non-aqueous conditions, leading to the formation of distinctive fluorescent species. The investigation extends to factors influencing ligand behavior, including time dependency, temperature, solvent type, counterions, and pH levels. These key parameters are systematically analyzed to understand sensor performance better. In conclusion, the article investigates the utility of the 1,4-dihydroxyanthraquinone-Zn2+ probe as a versatile sensing platform for phosphate anions, particularly in live cell imaging. The findings contribute to the evolving landscape of sensor technologies, offering insights into the diverse applications and potential advancements in this burgeoning field.

11.
J Fluoresc ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520622

RESUMO

This paper represents structure, photoluminescence, and colorimetric investigations of Sm-activated CaWO4 ceramic made with the help of a solid-state reaction process. Structures of the ceramics are examined through X-ray diffraction spectroscopy. It indicates that these materials have a tetragonal structure and I41/a space group without having any other secondary phase. Energy band gaps are increased with the higher concentrations of Sm dopants. Photoluminescence analyses show that concentration quenching is found at x = 0.02 Sm incorporated CaWO4. The critical distance of energy transfer is obtained as about 20 Å. Q-value is observed approximately equal to 6 which denotes that dipole-dipole interactions occur in the materials that create the critical energy transfer distance in them. Chromaticity values are described in that the ceramics emit orange-red color as well as excellent colorimetric parameters. Quantum efficiency of x = 0.02 Sm composition in CaWO4 is measured under 405 nm EX wavelength. Photoluminescence decay behaviors are observed and average lifetime values are evaluated.

12.
Biochim Biophys Acta Biomembr ; 1866(4): 184304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408695

RESUMO

Bufotenine is a fluorescent analog of Dimethyltryptamine (DMT) that has been widely studied due to its psychedelic properties and biological activity. However, little is known about its spectroscopic properties in different media. Thus, we present in this work, for the first time, the spectroscopic behavior of bufotenine and bufotenine N-oxide by means of their fluorescence properties. Both molecules exhibit changes in optical absorption and emission spectra with variations in pH of the medium and in different solvents. Assays in the presence of biomembranes models, like micelles and liposomes, were also performed. In surfactants titration experiments, the spectral shift observed in fluorescence shows the interaction of both molecules with pre-micellar structures and with micelles. Steady state anisotropy measurements show that both bufotenine and bufotenine N-oxide, in the studied concentration range, interact with liposomes without causing changes in the fluidity of the lipid bilayer. These results can be useful in studies that aim at searching for new compounds, inspired by bufotenine and bufotenine N-oxide, with relevant pharmacological activities and also in studies that use these molecules as markers of psychiatric disorders.


Assuntos
Bufotenina , Lipossomos , Humanos , Solventes , Micelas , Óxidos , Concentração de Íons de Hidrogênio
13.
Heliyon ; 10(4): e26373, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404845

RESUMO

This study aims at the application of two chemometric techniques to visible spectra of acetic acid solutions of Co (II) and Co (III) for simultaneous determination thereof. Spectral data of 145 samples in the range of 400-700 nm were used to build the models. Partial least squares regression models were developed for which latent variables were determined using internal cross-validation with a leave-one-out strategy and 3 and 2 latent variables were selected for Co(II) and Co(III) based on root mean square error of cross-validation. For these models, root mean square errors of prediction were 1.16 and 0.536 mM and coefficients of determination were 0.975 and 0.892 for Co (II) and Co (III). As an alternate method, artificial neural networks consisting of three layers, with 10 neurons in hidden layer, were trained to model spectra and concentrations of cobalt species. Levenberg-Marquardt algorithm with feed-forward back-propagation learning resulted root mean square errors of prediction of 0.316 and 0.346 mM for Co (II) and Co (III) respectively and coefficients of determination were 0.996 and 0.988.

14.
Photochem Photobiol ; 100(1): 87-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37448143

RESUMO

This study reports valuable information regarding the presence and concentration of a series of photoactive ß-carboline (ßCs) alkaloids (norharmane, harmane, harmine, harmol, harmaline, and harmalol) and their distribution across the floral age and organs of Passiflora caerulea. UHPLC-MS/MS data reported herein reveal that the ßCs' content ranged from 1 to 110 µg kg-1 , depending on the floral organ and age. In certain physiologically relevant organs, such as anthers, ßCs' content was one order of magnitude higher than in other organs, suggesting a special role for ßCs in this specific organ. ßCs' content also varied in a structure-dependent manner. Alkaloids bearing a hydroxyl group at position C(7) of the main ßC ring were present at concentrations one order of magnitude higher than other ßC derivatives investigated. UV-visible and fluorescence spectroscopy of the flower extracts provided complementary information regarding other biologically relevant groups of chromophores (phenolic/indolic derivatives, flavonoids/carotenes, and chlorophylls). Since flowers are constantly exposed to solar radiation, the presence of photoactive ßCs in floral organs may have several (photo)biological implications that are further discussed.


Assuntos
Alcaloides , Passiflora , Espectrometria de Massas em Tandem , Carbolinas/química
15.
J Fluoresc ; 34(2): 587-598, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37326926

RESUMO

In the current study, the co-precipitation technique was employed for the synthesis of Cadmium oxide (CdO) and Copper‒doped Cadmium oxide (Cu‒CdO) nanoparticles. The synthesized samples were subjected to powder X-Ray diffraction (P-XRD), Field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray (EDX), Fourier transforms Infrared (FT-IR), UV-Vis spectroscopy, photoluminescence (PL), laser-induced fluorescence spectroscopy and antibacterial investigations. According to the P-XRD analysis, both the samples were simple cubic in structure and have average grain sizes of 54 and 28 nm, respectively. FE-SEM was deployed to explore the surface textures of the samples. EDX technique was used to look at the elemental compositions of the samples. The technique of FT-IR was employed to identify the vibrational modes. UV-Vis spectra in diffuse reflectance mode were obtained and the optical bandgaps of the CdO and Cu‒CdO samples were obtained as 4.52 eV and 2.83 eV, respectively. The photoluminescence studies were conducted at an excitation wavelength of 300 nm and emission peaks were red-shifted in both samples. Fluorescence spectroscopy was applied to explore the lifetimes of synthesized nanoparticles. The technique of Agar-well diffusion was applied to assess the antibacterial performance of the generated nanoparticles against Micrococcus Luteus (gram-positive) and Escherichia coli (gram-negative) bacterium at variable concentrations. Both samples in the current study are significantly effective against both bacterial strains.

16.
J Fluoresc ; 34(1): 149-157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37178421

RESUMO

In this study, a simple Schiff base sensor 1-(((4-nitrophenyl)imino)methyl)naphthalen-2-ol(NNM) has been used for chemosensing of metal ions. The metal sensing properties of sensor NNM have been investigated using UV-visible and fluorescence spectroscopic approaches. The spectral investigations revealed a red shift in absorption spectra and quenching in the emission band of the ligand molecule in the presence of Cu2+ and Ni2+ ions. The binding stoichiometry of sensor NNM for the analyte (Cu2+ and Ni2+ ions) has been investigated by the Job's plot analysis and found to be 1:1 (NNM:Analyte). The data of the Benesi-Hildebrand plot demonstrated that NNM detected Cu2+ and Ni2+ ions in nanomolar quantity. The binding insights among NNM and analytes (Cu2+ and Ni2+ ions) have been confirmed by shifted IR signals. Moreover, the reusabilty of the sensor has been investigated using an EDTA solution. In addition, the sensor NNM also successfully applied to real water samples for the identification and measurement of Cu2+ and Ni2+ ions. Hence, this system could be highly applicable in environmental and biological applications.

17.
Environ Sci Pollut Res Int ; 31(2): 2907-2919, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38082040

RESUMO

This study presents the synthesis and characterization of composite material comprised of NiFe2O4 and CuO. The preparation of this composites involves a facile and cost-effective co-precipitation method, followed by heat treatment. The aim of this study is to explore the potential of this composite material for various catalytic applications. The synthesized NiFe2O4/CuO composites were extensively characterized using various analytical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), impedance analyzer, UV-Visible spectroscopy (UV-Vis.), Brunner-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). These characterizations revealed the successful formation of a nanocomposite material with a well-defined structure and identified the oxygen vacancies/defects in the samples which might result in enhanced photocatalytic efficiency. Photocatalytic activity of 0.5NiFe2O4/0.5CuO composite showed degradation of methylene blue dye by 96.15% in 120 min. This work is not only to understand the photocatalytic mechanism but also to develop effective catalysts for the degradation of harmful organic pollutants.


Assuntos
Recuperação e Remediação Ambiental , Nanocompostos , Luz , Microscopia Eletrônica de Transmissão , Nanocompostos/química
18.
J Fluoresc ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141145

RESUMO

Structural, optical, photoluminescence and colorimetric analyses of Gd (1-5 mol %) doped BNT ceramics synthesized by the solid-state reaction technique are reported. Structural analyses of all the samples are done by the X-ray diffraction method. It is shown that the samples have rhombohedral crystal structures with an R3C space group. The energy band gap of all the phosphors is computed from the UV-visible absorbance spectra. Photoluminescence behaviors are analyzed from the excitation along with the emission spectra of the prepared materials. The critical quenching concentration with the critical energy transfer distance is observed owing to the dipole-dipole interactions between the materials. Colorimetric analyses are carried out with the help of CIE chromaticity. Moreover, the color purity, correlated color temperature, color rendering index, and luminous efficiency of radiation values are evaluated by using the chromaticity coordinates.

19.
J Fluoresc ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109031

RESUMO

Fluorescent copper nanoclusters (Cu NCs) were synthesized by using Withania somnifera (W. somnifera) plant extract as a biotemplate. Aqueous dispersion of W. somnifera-Cu NCs displays intense emission peak at 458 nm upon excitation at 350 nm. This fluorescence emission was utilized for the detection of two pyrethroid pesticides (cypermethrin and lambda-cyhalothrin) via "turn-off" mechanism. Upon the addition of two pyrethiod pesticides independently, the fluorescence emission of W. somnifera-Cu NCs was gradually decreased with increasing concentrations of both pesticides. It was noticed that the decrease in emission intensity at 458 nm was linearly dependent on the logarithm of both pesticides concentrations in the ranges of 0.01-100 µM and of 0.05-100 µM for cypermethrin and lambda-cyhalothrin, respectively. Consequently, the limits of detection were found to be 27.06 and 23.28 nM for cypermethrin and lambda-cyhalothrin, respectively. The as-fabricated W. somnifera-Cu NCs acted as a facile sensor for the analyses of cypermethrin and lambda-cyhalothrin in vegetables (tomato and bottle gourd), which demonstrates that it could be used as portable sensing platform for assaying of two pyrethroid pesticides in food samples.

20.
J Biomol Struct Dyn ; : 1-10, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100566

RESUMO

Up to now, significant research efforts have been directed towards investigating indirubin and its derivatives as potential candidates for developing new compounds with multiple biological activities. In the present work, natural indirubin and numerous of its chemical derivatives referred to as indirubins have been investigated computationally using DFT method with the B3LYP/6-311 + G(d,p) level of theory, in order to reveal structure- biological activity relationship. We started with a structural properties description. Results analysis indicated that extra interaction sites were provided through the set of substitutions in compounds (1): Indirubin-3'-monoxime, (2): Indirubin-5-sulfonic acid, (3): 5-Nitro-indirubinoxime, (4): 5'-OH-5-nitro-indirubinoxime (AGM130), (5): 7-Bromo-5'-carboxyindirubin-3'-oxime, and (6): 7 BIO and consequently, extra hydrogen bonds may be formed with the active sites of molecular targets, such as GSK-3, CDKs, and Aurora kinases, as well as the aryl hydrocarbon receptor. Subsequently, to get more information on the electronic properties of indirubin and its analogues, HOMO, LUMO, Egap, and further electronic parameters were carried out. The indirubin derivatives showed an easier interaction with its environment than indirubin, the parent compound. The UV-Visible spectra of indirubin and compounds 1-6 were also produced using TD-DFT with B3LYP functional and 6-311 + G(2d,p) basis set. The relationship between absorption and chemical structure is discussed. Two phototoxic brominated compounds showed important absorption spectra modifications. It was also found that the main absorption bands of all compounds derived from π→π*(HOMO→LUMO) transitions.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...