Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1359421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840631

RESUMO

Porcine circovirus disease (PCV) causes substantial economic losses in the pig industry, primarily from porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3). Novel vaccines are necessary to prevent and control PCV infections. PCV coat proteins are crucial for eliciting immunogenic proteins that induce the production of antibodies and immune responses. A vaccine platform utilizing Semliki Forest virus RNA replicons expressing vesicular stomatitis virus glycoprotein (VSV-G), was recently developed. This platform generates virus-like vesicles (VLVs) containing VSV-G exclusively, excluding other viral structural proteins. In our study, we developed a novel virus-like vesicle vaccine by constructing recombinant virus-like vesicles (rVLVs) that also express EGFP. These rVLVs were created using the RNA replicon of Venezuelan equine encephalomyelitis (VEEV) and New Jersey serotype VSV-G. The rVLVs underwent characterization and safety evaluation in vitro. Subsequently, rVLVs expressing PCV2d-Cap and PCV3-Cap proteins were constructed. Immunization of C57 mice with these rVLVs led to a significant increase in anti-porcine circovirus type 2 and type 3 capsid protein antibodies in mouse serum. Additionally, a cellular immune response was induced, as evidenced by high production of IFN-γ and IL-4 cytokines. Overall, this study demonstrates the feasibility of developing a novel porcine circovirus disease vaccine based on rVLVs.

2.
ACS Appl Mater Interfaces ; 8(26): 16564-72, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27284685

RESUMO

Vaccines and therapies are not available for several diseases caused by viruses, thus viral infections result in morbidity and mortality of millions of people every year. Nanoparticles are considered to be potentially effective in inhibiting viral infections. However, critical issues related to their use include their toxicity and their mechanisms of antiviral action, which are not yet completely elucidated. To tackle these problems, we synthesized silica nanoparticles with distinct surface properties and evaluated their biocompatibility and antiviral efficacy. We show that nanoparticles exhibited no significant toxicity to mammalian cells, while declines up to 50% in the viral transduction ability of two distinct recombinant viruses were observed. We designed experiments to address the mechanism of antiviral action of our nanoparticles and found that their hydrophobic/hydrophilic characters play a crucial role. Our results reveal that the use of functionalized silica particles is a promising approach for controlling viral infection and offer promising strategies for viral control.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanopartículas/química , Dióxido de Silício/farmacologia , Vírus/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA