Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.923
Filtrar
1.
Prev Nutr Food Sci ; 29(2): 118-124, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974586

RESUMO

Although zinc's involvement in bone calcification is well-established, its role in vascular calcification, characterized by abnormal calcium and phosphorus deposition in soft tissues and a key aspect of various vascular diseases, including atherosclerosis, remains unclear. This review focuses on zinc's action in vascular smooth muscle cell (VSMC) calcification, including the vascular calcification mechanism. Accumulated research has indicated that zinc deficiency induces calcification in VSMCs and the aorta, primarily through apoptosis accompanied by a downregulation of smooth muscle cell markers. Moreover, zinc deficiency-induced vascular calcification operates independently of the action of alkaline phosphatase (ALP) activity, typically associated with osteogenic processes, but is partly regulated via inorganic phosphate transporter-1 (Pit-1). To date, research has shown that zinc regulates vascular calcification through a mechanism distinct from that of osteogenic calcification, providing insight into its dual effects on physiological and pathological calcification and thereby explaining the "zinc paradox," wherein zinc simultaneously increases osteoblastic calcification and decreases VSMC calcification.

2.
Int J Biochem Cell Biol ; 173: 106613, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909746

RESUMO

Vascular calcification in diabetes patients is a major independent risk factor for developing diabetic cardiovascular complications. However, the mechanisms by which diabetes leads to vascular calcification are complex and not yet fully understood. Our previous study revealed that miR-32-5p is a potential new diagnostic marker for coronary artery calcification. In this study, we found that miR-32-5p levels were significantly greater in the plasma of type 2 diabetes patients with coronary artery calcification and were positively correlated with the coronary artery calcification score. In type 2 diabetic mice, miR-32-5p levels were also elevated in the aorta, and knockout of miR-32-5p inhibited the osteogenic differentiation of vascular smooth muscle cells in vivo. Furthermore, overexpression of miR-32-5p promoted vascular smooth muscle cell calcification, while antagonism of miR-32-5p inhibited vascular smooth muscle cell calcification under high-glucose conditions. GATA binding protein 6 (GATA6) was identified as the key target gene through which miR-32-5p promotes vascular smooth muscle cell calcification. Overexpression of GATA6 antagonized the effects of miR-32-5p on vascular calcification. Additionally, high glucose levels were shown to induce the upregulation of miR-32-5p by activating CCAAT/enhancer binding protein beta (CEBPB). These results suggest that miR-32-5p is an important procalcification factor in vascular calcification associated with type 2 diabetes and identify the CEBPB/miR-32-5p/GATA6 axis as a potential biomarker and therapeutic target for preventing and treating vascular calcification in type 2 diabetes.

3.
Cardiovasc Pathol ; 72: 107667, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866090

RESUMO

Vascular calcification is an important pathological change in a variety of disease states such as atherosclerosis (AS), diabetes, chronic kidney disease (CKD), hypertension, and is a strong predictor of cardiovascular events. The distribution and location of calcification in different vessels may have different clinical effects and prognosis. Therefore, the study of high-risk sites of vascular calcification will help us to better understand the prevention, diagnosis, and treatment of related diseases, as well as to evaluate the efficacy and prognosis. So far, although there are some studies on the sites with high incidence of vascular calcification, there is a lack of systematic sorting out the distribution and location of vascular calcification in humans. Based on this, relevant databases were searched, literatures were retrieved, analyzed, and summarized, and the locations of high incidence of vascular calcification and their distribution characteristics, the relationship between high incidence of vascular calcification and hemodynamics, and the common detection methods of high incidence of vascular calcification were systematically described, hoping to provide help for clinical and research.

4.
Exp Cell Res ; 440(2): 114147, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944174

RESUMO

Coronary artery calcification (CAC) is a hallmark event in the pathogenesis of cardiovascular disease, involving the phenotypic transformation of vascular smooth muscle cells (VSMC) towards an osteogenic state. Despite this understanding, the molecular mechanisms governing the VSMC osteogenic switch remain incompletely elucidated. Here, we sought to examine the potential role of circular RNA (circRNA) in the context of CAC. Through transcriptome analysis of circRNA-seq, we identified circTOP1 as a potential candidate circRNA in individuals with CAC. Furthermore, we observed that overexpression of circTOP1 exacerbated vascular calcification in a CAC model. Subsequent pull-down assays revealed an interaction between circTOP1 and PTBP1, a putative target gene of circTOP1 in the context of CAC. In both in vivo and in vitro experiments, we observed heightened expression of circTOP1 and PTBP1 in the CAC model, and noted that reducing circTOP1 expression effectively reduced calcium salt deposits and mineralized nodules in model mice. Additionally, in vitro experiments demonstrated that overexpression of PTBP1 reversed the weakening of signaling caused by silencing circTOP1, thereby exacerbating the osteogenic transition and calcification of VSMC. Collectively, our findings suggested that circTOP1 promotes CAC by modulating PTBP1 expression to mediate VSMC transdifferentiation.

5.
Gene ; 927: 148731, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944164

RESUMO

Vascular calcification is prevalent in chronic kidney disease (CKD). Genetic causes of CKD account for 10-20% of adult-onset disease. Vascular calcification is thought to be one of the most important risk factors for increased cardiovascular morbidity and mortality in CKD patients and is detectable in 80% of patients with end stage kidney disease (ESKD). Despite the high prevalence of vascular calcification in CKD, no single gene cause has been described. We hypothesized that variants in vascular calcification genes may contribute to disease pathogenesis in CKD, particularly in families who exhibit a predominant vascular calcification phenotype. We developed a list of eight genes that are hypothesized to play a role in vascular calcification due to their involvement in the ectopic calcification pathway: ABCC6, ALPL, ANK1, ENPP1, NT5E, SLC29A1, SLC20A2, and S100A12. With this, we assessed exome data from 77 CKD patients, who remained unsolved following evaluation for all known monogenic causes of CKD. We also analyzed an independent cohort (Ontario Neurodegenerative Disease Research Initiative (ONDRI), n = 520) who were screened for variants in ABCC6 and compared this to a control cohort of healthy adults (n = 52). We identified two CKD families with heterozygous pathogenic variants (R1141X and A667fs) in ABCC6. We identified 10 participants from the ONDRI cohort with heterozygous pathogenic or likely pathogenic variant in ABCC6. Replication in a healthy control cohort did not reveal any variants. Our study provides preliminary data supporting the hypothesis that ABCC6 may play a role in vascular calcification in CKD. By screening CKD patients for genetic causes early in the diagnostic pathway, patients with genetic causes associated with vascular calcification can potentially be preventatively treated with new therapeutics with aims to decrease mortality.

6.
Free Radic Biol Med ; 222: 437-455, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889865

RESUMO

Vascular calcification is a prevalent hallmark of cardiovascular risk in elderly and diabetic individuals. Senescent vascular smooth muscle cells (VSMCs) participate in calcification; however, the associated underlying mechanisms remain unknown. Aberrant activation of the cytosolic DNA sensing adaptor stimulator of interferon gene 1 (STING1) caused by cytosolic DNA, particularly that leaked from damaged mitochondria, is a catalyst for aging-related diseases. Although oleoylethanolamide (OEA) is an endogenous bioactive lipid mediator with lipid overload-associated vasoprotective effects, its benefit in diabetic vascular calcification remains uncharacterized. This study focused on the role of STING1 in mitochondrial dysfunction-mediated calcification and premature VMSC senescence in diabetes and the effects of OEA on these pathological processes. In diabetic in vivo rat/mouse aorta calcification models and an in vitro VSMC calcification model induced by Nε-carboxymethyl-lysine (CML), senescence levels, STING1 signaling activation, and mitochondrial damage markers were significantly augmented; however, these alterations were markedly alleviated by OEA, partially in a nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent manner, and similar anti-calcification and senescence effects were observed in STING1-knockout mice and STING1-knockdown VSMCs. Mechanistically, mitochondrial DNA (mtDNA) damage was aggravated by CML in a reactive oxygen species-dependent manner, followed by mtDNA leakage into the cytosol, contributing to VSMC senescence-associated calcification via STING1 pathway activation. OEA treatment significantly attenuated the aforementioned cytotoxic effects of CML by enhancing cellular antioxidant capacity through the maintenance of Nrf2 translocation to the nucleus. Collectively, targeting STING1, a newly defined VSMC senescence regulator, contributes to anti-vascular calcification effects.

8.
Diabetes Metab Syndr Obes ; 17: 2327-2346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881695

RESUMO

Introduction: Vascular calcification is a major cause of cardiovascular accidents in patients with type 2 diabetes mellitus. This study aimed to investigate the impact of carbohydrates on gut microbiota and aortic calcification in diabetic ApoE-/- mice. Methods: The diabetic ApoE-/- mice were randomly divided into 4 groups: ketogenic diet group, low carbohydrate diet group, medium carbohydrate diet group, and high carbohydrate diet group. The mice were fed continuously for 6 months, with blood glucose, blood ketone and body weight monitored monthly. Lipid metabolism indicators and inflammatory factors were detected using ELISA. The intestinal barrier, atherosclerotic lesion areas, and vascular calcifications were analyzed based on their morphology. Gut microbiota was analyzed using 16S rRNA genes. Results: We found that ketogenic diet played some roles improving glucose, lipid metabolism, and inflammation. Ketogenic diet could improve the intestinal barrier to some extent and increase intestinal bacteria. Compared to the other three groups, the relative abundance of genus Allobaculum, species Blautia producta and Clostridium Ramosum in the ketogenic diet group was significantly increased (P <0.05), which has protective effects in diabetic ApoE-/- mice. Conclusion: Ketogenic diet could delay the onset of aortic atherosclerosis, aortic calcification and improve intestinal barrier function in diabetic ApoE-/- mice.

9.
J Clin Med ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892880

RESUMO

Occlusive lesions of the common femoral artery (CFA) and its bifurcation have traditionally been treated with open surgery. Although long-term patency rates after open surgery are excellent, such repairs are associated with substantial local and general morbidity. In recent years, different treatment options have emerged within percutaneous endovascular repair. We hereby present a narrative review on endovascular treatment modalities and a treatment algorithm for endovascular revascularisation of the CFA and its bifurcation. Lesion analysis, access issues, vessel preparation tools, and types of repairs with or without the involvement of the bifurcation are described. Based on current data, an interventional approach can result in high technical success and acceptable mid-term patency rates. Further comparative evidence with open surgery and/or between the different types of endovascular repairs is required to improve the current treatment algorithm.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38899469

RESUMO

BACKGROUND: Vascular calcification is associated with increased mortality in patients with cardiovascular disease. Secondary calciprotein particles are believed to play a causal role in the pathophysiology of vascular calcification. The maturation time (T50) of calciprotein particles provides a measure of serum calcification propensity. We compared T50 between patients with ST-segment-elevated myocardial infarction and control subjects and studied the association of T50 with cardiovascular risk factors and outcome. METHODS: T50 was measured by nephelometry in 347 patients from the GIPS-III trial and in 254 matched general population controls from PREVEND (Prevention of Renal and Vascular End-Stage Disease). We also assessed the association between T50 and left ventricular ejection fraction, as well as infarct size, the incidence of ischemia-driven reintervention during 5 years of follow-up, and serum nitrite as a marker of endothelial dysfunction. RESULTS: Patients with ST-segment-elevated myocardial infarction had a significantly lower T50 (ie, higher serum calcification propensity) compared with controls (T50: 289±63 versus 338±56 minutes; P<0.001). In patients with ST-segment-elevated myocardial infarction, lower T50 was associated with female sex, lower systolic blood pressure, lower total cholesterol, lower LDL (low-density lipoprotein) cholesterol, lower triglycerides, and higher HDL (high-density lipoprotein) cholesterol but not with circulating nitrite or nitrate. Ischemia-driven reintervention was associated with higher LDL (P=0.03) and had a significant interaction term for T50 and sex (P=0.005), indicating a correlation between ischemia-driven reintervention and T50 above the median in men and below the median in women, between 150 days and 5 years of follow-up. CONCLUSIONS: Serum calcification propensity is increased in patients with ST-segment-elevated myocardial infarction compared with the general population, and its contribution is more pronounced in women than in men. Its lack of/inverse association with nitrite and blood pressure confirms T50 to be orthogonal to traditional cardiovascular disease risk factors. Lower T50 was associated with a more favorable serum lipid profile, suggesting the involvement of divergent pathways of calcification stress and lipid stress in the pathophysiology of myocardial infarction.

11.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891922

RESUMO

Vascular calcification has a global health impact that is closely linked to bone loss. The Receptor Activator of Nuclear Factor Kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, fundamental for bone metabolism, also plays an important role in vascular calcification. The Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a novel receptor for RANKL, regulates bone remodeling, and it appears to be involved in vascular calcification. Besides RANKL, LGR4 interacts with R-spondins (RSPOs), which are known for their roles in bone but are less understood in vascular calcification. Studies were conducted in rats with chronic renal failure fed normal or high phosphorus diets for 18 weeks, with and without control of circulating parathormone (PTH) levels, resulting in different degrees of aortic calcification. Additionally, vascular smooth muscle cells (VSMCs) were cultured under non-calcifying (1 mM phosphate) and calcifying (3 mM phosphate) media with different concentrations of PTH. To explore the role of RANKL in VSMC calcification, increasing concentrations of soluble RANKL were added to non-calcifying and calcifying media. The effects mediated by RANKL binding to its receptor LGR4 were investigated by silencing the LGR4 receptor in VSMCs. Furthermore, the gene expression of the RANK/RANKL/OPG system and the ligands of LGR4 was assessed in human epigastric arteries obtained from kidney transplant recipients with calcification scores (Kauppila Index). Increased aortic calcium in rats coincided with elevated systolic blood pressure, upregulated Lgr4 and Rankl gene expression, downregulated Opg gene expression, and higher serum RANKL/OPG ratio without changes in Rspos gene expression. Elevated phosphate in vitro increased calcium content and expression of Rankl and Lgr4 while reducing Opg. Elevated PTH in the presence of high phosphate exacerbated the increase in calcium content. No changes in Rspos were observed under the conditions employed. The addition of soluble RANKL to VSMCs induced genotypic differentiation and calcification, partly prevented by LGR4 silencing. In the epigastric arteries of individuals presenting vascular calcification, the gene expression of RANKL was higher. While RSPOs show minimal impact on VSMC calcification, RANKL, interacting with LGR4, drives osteogenic differentiation in VSMCs, unveiling a novel mechanism beyond RANKL-RANK binding.


Assuntos
Músculo Liso Vascular , Ligante RANK , Receptores Acoplados a Proteínas G , Calcificação Vascular , Ligante RANK/metabolismo , Ligante RANK/genética , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Ratos , Humanos , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Hormônio Paratireóideo/metabolismo , Células Cultivadas , Ratos Sprague-Dawley
12.
Urolithiasis ; 52(1): 97, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904673

RESUMO

An increased prevalence of vascular calcification (VC) has been reported in kidney stone formers (KSFs), along with an elevated cardiovascular risk. The aim of the current study is to assess whether VC in these patients develops at a younger age and is influenced by stone composition. This single-center, matched case-control study included KSFs with uric acid or calcium oxalate stones (diagnosed based on stone analysis) and age- and sex-matched controls without a history of nephrolithiasis. The prevalence and severity of abdominal aortic calcification (AAC) and bone mineral density (BMD) were compared between KSFs and non-KSFs. In total, 335 patients were investigated: 134 with calcium oxalate stones, 67 with uric acid stones, and 134 controls. Overall, the prevalence of AAC was significantly higher among calcium stone formers than among the controls (67.9% vs. 47%, p = 0.002). In patients under 60 years of age, those with calcium oxalate stones exhibited both a significantly elevated AAC prevalence (61.9% vs. 31.3%, p = 0.016) and severity (94.8 ± 15.4 vs. 30.3 ± 15.95, p = 0.001) compared to the controls. Within the age group of 40-49, osteoporosis was identified only in the KSFs. Multivariate analysis identified age, smoking, and the presence of calcium stones as independent predictors of AAC. This study highlights that VC and osteoporosis occur in KSFs at a younger age than in non-stone-formers, suggesting potential premature VC. Its pathogenesis is intriguing and needs to be elucidated. Early evaluation and intervention may be crucial for mitigating the cardiovascular risk in this population.


Assuntos
Densidade Óssea , Oxalato de Cálcio , Cálculos Renais , Calcificação Vascular , Humanos , Pessoa de Meia-Idade , Calcificação Vascular/epidemiologia , Calcificação Vascular/complicações , Feminino , Masculino , Cálculos Renais/química , Cálculos Renais/epidemiologia , Cálculos Renais/complicações , Estudos de Casos e Controles , Adulto , Fatores Etários , Prevalência , Oxalato de Cálcio/análise , Ácido Úrico/análise , Idoso , Aorta Abdominal/patologia , Aorta Abdominal/diagnóstico por imagem , Índice de Gravidade de Doença , Osteoporose/epidemiologia , Osteoporose/etiologia
13.
Nephrology (Carlton) ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866394

RESUMO

AIM: This research aimed to explore the serum levels of solute carrier family 7 member 11 (SLC7A11) in patients with maintenance peritoneal dialysis (MPD) and its correlation with vascular calcification (VC) and clinical results. METHODS: This present prospective observational cohort study enrolled 189 patients with MPD who were undergoing regular peritoneal dialysis for over 3 months in our hospital from February 2020 to July 2022. The abdominal aortic calcification score was used to assess the VC condition of MPD patients. The serum SLC7A11, interleukin (IL)-6, IL-1ß and C-reactive protein levels were measured by enzyme-linked immunosorbent assay (ELISA). Demographic and clinical statistics were collected. All patients were followed up for 1 year and the overall survival time (OS) of all patients were recorded. All data used SPSS 18.0 for statistical analyses. RESULTS: Patients with moderate/severe calcification in MPD had a longer duration of dialysis, higher serum levels of phosphate (P) and calcium (Ca) and lower serum levels of SLC7A11. Spearman's analysis revealed a negative correlation between serum SLC7A11 levels and the levels of P, Ca and IL-1ß. Additionally, we observed an association between serum SLC7A11 levels and clinical prognosis as well as the extent of VC in MPD patients. Multivariate logistic regression analysis indicated that dialysis duration, SLC7A11, and P were risk factors for VC in MPD patients. CONCLUSION: The serum SLC7A11 levels decreased remarkably in MPD patients with moderate/severe calcification. This study may provide new targets and comprehensive approach to cardiovascular protection in patients with chronic kidney disease.

14.
Front Immunol ; 15: 1395596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919629

RESUMO

Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.


Assuntos
Macrófagos , Osteopontina , Calcificação Vascular , Animais , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Osteopontina/metabolismo , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia , Placa Aterosclerótica/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Calcificação Vascular/imunologia , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
15.
J Endocr Soc ; 8(7): bvae111, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38939832

RESUMO

Context: The association of obesity with bone fragility fractures is complex and non-linear. Despite good efficacy on weight loss, bariatric surgery (BS) is also associated with bone loss. However, we lack information on risk factors of the long-term deleterious effects of BS on the skeleton. Objective: We aimed to assess the factors associated with low bone mineral density (BMD) performed a long time after Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG). Methods: This cross-sectional study involved patients at a long distance from their BS that underwent dual-energy x-ray absorptiometry (DXA) with biological factors (vitamins, micronutrients, bone and inflammation biomarkers). Simple and multiple linear models (stepwise and parsimony approach) were developed. Results: A total of 131 patients (91 RYGB, 40 SG) underwent DXA (51.8 ± 11.08 years, 87.8% women). At a mean of 6.8 ± 3.7 years after surgery, the mean weight loss was -28.6 ± 9.6%, and only 6 patients (5.7%) had a T-score less than or equal to -2.5. On univariate analysis, BMD was lower in the RYGB than in the SG group (P < .001) at all sites, despite similar fat and fat-free mass and weight loss. Serum parathyroid hormone and phosphate levels were higher in RYGB than SG patients. A total of 10.1% of patients showed vascular calcifications. On multivariable analysis, BMD remained different between surgery groups after adjustment for age, body mass index, ethnicity, and sex. The model-adjusted R 2 values were 0.451 for the total hip; 0.462 the femoral neck, and 0.191 the lumbar spine for the inflammation model; 0.458, 0.462, and 0.254, respectively, for the bone marker model; and 0.372, 0.396, and 0.142 for the vitamin model. Serum zinc, ferritin, and uric acid levels were the markers associated with BMD to a low extent. Conclusion: BMD differed depending on the BS procedure. A few biological markers may be associated weakly with BMD well after the surgery.

16.
Nutrients ; 16(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931153

RESUMO

Patients with chronic kidney disease (CKD) suffer disproportionately from a high burden of cardiovascular disease, which, despite recent scientific advances, remains partly understood. Vascular calcification (VC) is the result of an ongoing process of misplaced calcium in the inner and medial layers of the arteries, which has emerged as a critical contributor to cardiovascular events in CKD. Beyond its established role in blood clotting and bone health, vitamin K appears crucial in regulating VC via vitamin K-dependent proteins (VKDPs). Among these, the matrix Gla protein (MGP) serves as both a potent inhibitor of VC and a valuable biomarker (in its inactive form) for reflecting circulating vitamin K levels. CKD patients, especially in advanced stages, often present with vitamin K deficiency due to dietary restrictions, medications, and impaired intestinal absorption in the uremic environment. Epidemiological studies confirm a strong association between vitamin K levels, inactive MGP, and increased CVD risk across CKD stages. Based on the promising results of pre-clinical data, an increasing number of clinical trials have investigated the potential benefits of vitamin K supplementation to prevent, delay, or even reverse VC, but the results have remained inconsistent.


Assuntos
Proteínas da Matriz Extracelular , Proteína de Matriz Gla , Insuficiência Renal Crônica , Calcificação Vascular , Deficiência de Vitamina K , Vitamina K , Humanos , Calcificação Vascular/etiologia , Insuficiência Renal Crônica/complicações , Deficiência de Vitamina K/complicações , Proteínas da Matriz Extracelular/sangue , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Ligação ao Cálcio/sangue , Suplementos Nutricionais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Biomarcadores/sangue
17.
Gut Microbes ; 16(1): 2351532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727248

RESUMO

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Assuntos
Microbioma Gastrointestinal , Lipopolissacarídeos , NF-kappa B , Prevotella , Transdução de Sinais , Calcificação Vascular , Animais , Humanos , Masculino , Ratos , Fezes/microbiologia , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Osteogênese/efeitos dos fármacos , Prevotella/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/patologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/microbiologia , Calcificação Vascular/patologia
19.
Cell Signal ; 120: 111211, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705504

RESUMO

Vascular calcification (VC) is a characteristic feature in patients with diabetes mellitus (DM) and is closely associated with the osteogenic differentiation of vascular smooth muscle cells (VSMCs). Ubiquitin-Specific Protease 10 (USP10) has been shown to regulate multiple cellular processes; however, its relationship with diabetic VC remains unclear. This study aims to elucidate the role of USP10 in VC development and the underlying regulatory mechanisms. Nε-carboxymethyl lysine (CML) was significantly increased in calcified ateries from diabetic atherosclerosis ApoE-/- mice fed with high-fat diets. CML downregulated USP10 expression in VSMCs and calcified mice coronary arteries, as assessd by Western blotting, RT-qPCR,immunofluorescence and immunohistochemistry. Loss-and gain-of-function experiments were conducted both in vitro and in vivo to verify the biological functions of USP10. Ectopic expression of USP10 mitigated the severity of VC. With regard to the mechanism, the interaction between USP10 and AMPKα was investigated through double-label immunofluorescence and Co-immunoprecipitation. In vitro ubiquitination assay revealed that USP10 was capable of mediating AMPKα ubiquitination and caused increased AMPKα phosphorylation level at Thr172. Moreover, the anticalcification effect of USP10 was reversed by pharmacological inhibition of AMPK signaling pathway. The current fundings suggest an important role of USP10 in diabetic VC progression, at least in part, via mediating the ubiquitination and activation of AMPKα. USP10 may serve as a novel therapeutic target for the treatment of diabetic VC.


Assuntos
Proteínas Quinases Ativadas por AMP , Aterosclerose , Lisina , Ubiquitina Tiolesterase , Calcificação Vascular , Animais , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Camundongos , Aterosclerose/metabolismo , Aterosclerose/patologia , Lisina/metabolismo , Lisina/análogos & derivados , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Ubiquitinação , Camundongos Endogâmicos C57BL , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia
20.
Redox Biol ; 73: 103183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759418

RESUMO

AIMS: Vascular calcification is strongly linked to the development of major adverse cardiovascular events, but effective treatments are lacking. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an emerging category of oral hypoglycemic drugs that have displayed marked effects on metabolic and cardiovascular diseases, including recently reported vascular medial calcification. However, the roles and underlying mechanisms of SGLT2 inhibitors in vascular calcification have not been fully elucidated. Thus, we aimed to further determine whether SGLT2 inhibitors protect against vascular calcification and to investigate the mechanisms involved. METHODS AND RESULTS: A computed tomography angiography investigation of coronary arteries from 1554 patients with type 2 diabetes revealed that SGLT2 inhibitor use was correlated with a lower Agatston calcification score. In the vitamin D3 overdose, 5/6 nephrectomy chronic kidney disease-induced medial calcification and Western diet-induced atherosclerotic intimal calcification models, dapagliflozin (DAPA) substantially alleviated vascular calcification in the aorta. Furthermore, we showed that DAPA reduced vascular calcification via Runx2-dependent osteogenic transdifferentiation in vascular smooth muscle cells (VSMCs). Transcriptome profiling revealed that thioredoxin domain containing 5 (TXNDC5) was involved in the attenuation of vascular calcification by DAPA. Rescue experiments showed that DAPA-induced TXNDC5 downregulation in VSMCs blocked the protective effect on vascular calcification. Furthermore, TXNDC5 downregulation disrupted protein folding-dependent Runx2 stability and promoted subsequent proteasomal degradation. Moreover, DAPA downregulated TXNDC5 expression via amelioration of oxidative stress and ATF6-dependent endoplasmic reticulum stress. Consistently, the class effects of SGLT2 inhibitors on vascular calcification were validated with empagliflozin in intimal and medial calcification models. CONCLUSIONS: SGLT2 inhibitors ameliorate vascular calcification through blocking endoplasmic reticulum stress-dependent TXNDC5 upregulation and promoting subsequent Runx2 proteasomal degradation, suggesting that SGLT2 inhibitors are potentially beneficial for vascular calcification treatment and prevention.


Assuntos
Glucosídeos , Osteogênese , Inibidores do Transportador 2 de Sódio-Glicose , Calcificação Vascular , Calcificação Vascular/metabolismo , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia , Calcificação Vascular/etiologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Humanos , Osteogênese/efeitos dos fármacos , Camundongos , Glucosídeos/farmacologia , Masculino , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Compostos Benzidrílicos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Ratos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...