Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.229
Filtrar
1.
Diagn Microbiol Infect Dis ; 110(1): 116371, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38838459

RESUMO

OBJECTIVES: Vibrio cholerae non-O1/non-O139 (NOVC) bacteremia is infrequently reported in Western countries and is associated with unfavorable outcome. PATIENT/METHOD: We describe here the case of a diabetic patient with hepatic cytolysis and NOVC bacteremia following an episode of diarrhea. RESULT: The patient was paucisymptomatic and had a favorable resolution with oral ciprofloxacin. CONCLUSION: NOVC should be systematically sought in stool samples, particularly in immunocompromised patients, due to an increased risk of infection occurrence.

2.
S Afr J Infect Dis ; 39(1): 619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841342

RESUMO

Cholera, a severe diarrhoeal disease caused by Vibrio cholerae is typically associated with inadequate potable water supply and poor sanitation. We report cholera disease presentation identified as a suspected case of acute diarrhoea (HIV/AIDS common condition) in a person living with HIV seen in a cholera non-endemic area. Contribution: We highlight the importance of recognizing cholera in cases of acute diarrhoea, especially among people with HIV, in resource-constraint areas that lack potable water supply.

3.
Vet Res Commun ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869748

RESUMO

Bacterial illness causes detrimental impacts on fish health and survival and finally economic losses for the aquaculture industry. Antibiotic medication causes microbial resistance, so alternative control strategies should be applied. In this work, we investigated the probiotic-medicated diet as an alternative control approach for antibiotics in treating Vibrio cholerae infection in Nile tilapia (Oreochromis niloticus). One hundred eighty fish (50 ± 2.5 g Mean ± SD) were allocated into six groups in glass aquariums (96 L) in triplicate for 10 days. Groups 1 (G1), G2, and G 3 were intraperitoneally (IP) injected with 0.5 mL sterilized tryptic soy broth and fed on a basal diet, basal diet contained B. subtilis (BS) (1 × 10 5 CFU/ kg-1 diet), and basal diet contained trimethoprim-sulfamethoxazole (TMP-SMX) (1.5 g/kg-1 diet), respectively. Additionally, G4, G5, and G6 were IP challenged with 0.5 mL of V. cholerae (1.5 × 107 CFU) and received the same feeding regime as G 1 to 3, respectively. The results exhibited that the V. cholera-infected fish exhibited skin hemorrhage, fin rot, and the lowest survival (63.33%). Additionally, lowered immune-antioxidant biomarkers (white blood cells count, serum bactericidal activity, phagocytic activity, phagocytic index, and lysozymes) with higher lipid peroxidation marker (malondialdehyde) were consequences of V. cholerae infection. Noteworthy, fish-fed therapeutic diets fortified with BS and TMP-SMX showed a substantial amelioration in the clinical signs and survival. The BS diet significantly improved (P < 0.05) the immune-antioxidant indices of the infected fish compared to the TMP-SMX diet. The current findings supported the use of a BS-enriched diet as an eco-friendly approach for the control of V. cholerae in O. niloticus.

4.
Infect Dis Model ; 9(3): 892-925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38765293

RESUMO

This paper deals with the problem of the prediction and control of cholera outbreak using real data of Cameroon. We first develop and analyze a deterministic model with seasonality for the cholera, the novelty of which lies in the incorporation of undetected cases. We present the basic properties of the model and compute two explicit threshold parameters R¯0 and R_0 that bound the effective reproduction number R0, from below and above, that is R_0≤R0≤R¯0. We prove that cholera tends to disappear when R¯0≤1, while when R_0>1, cholera persists uniformly within the population. After, assuming that the cholera transmission rates and the proportions of newly symptomatic are unknown, we develop the EnKf approach to estimate unmeasurable state variables and these unknown parameters using real data of cholera from 2014 to 2022 in Cameroon. We use this result to estimate the upper and lower bound of the effective reproduction number and reconstructed active asymptomatic and symptomatic cholera cases in Cameroon, and give a short-term forecasts of cholera in Cameroon until 2024. Numerical simulations show that (i) the transmission rate from free Vibrio cholerae in the environment is more important than the human transmission and begin to be high few week after May and in October, (ii) 90% of newly cholera infected cases that present the symptoms of cholera are not diagnosed and (iii) 60.36% of asymptomatic are detected at 14% and 86% of them recover naturally. The future trends reveals that an outbreak appeared from July to November 2023 with the number of cases reported monthly peaked in October 2023. An impulsive control strategy is incorporated in the model with the aim to avoid or prevent the cholera outbreak. In the first year of monitoring, we observed a reduction of more than 75% of incidences and the disappearance of the peaks when no control are available in Cameroon. A second monitoring of control led to a further reduction of around 60% of incidences the following year, showing how impulse control could be an effective means of eradicating cholera.

5.
Microorganisms ; 12(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38792707

RESUMO

Bacteria in the genus Vibrio are ubiquitous in estuarine and coastal waters. Some species (including Vibrio cholerae and Vibrio vulnificus) are known human pathogens causing ailments like cholera, diarrhea, or septicemia. Notably, V. vulnificus can also cause a severe systemic infection (known as vibriosis) in eels raised in aquaculture facilities. Water samples were periodically collected from the estuary of the Asahi River, located in the southern part of Okayama City, Japan. These samples were directly plated onto CHROMagar Vibrio plates, and colonies displaying turquoise-blue coloration were selected. Thereafter, polymerase chain reaction was used to identify V. cholerae and V. vulnificus. A total of 30 V. cholerae strains and 194 V. vulnificus strains were isolated during the warm season when the water temperature (WT) was higher than 20 °C. Concurrently, an increase in coliforms was observed during this period. Notably, V. vulnificus has two genotypes, designated as genotype 1 and genotype 2. Genotype 1 is pathogenic to humans, while genotype 2 is pathogenic to both humans and eels. The loop-mediated isothermal amplification method was developed to rapidly determine genotypes at a low cost. Of the 194 strains isolated, 80 (41.2%) were identified as genotype 1 strains. Among the 41 strains isolated when the WTs were higher than 28 °C, 25 strains (61.0%) belonged to genotype 1. In contrast, of the 32 strains isolated when the WTs were lower than 24 °C, 27 strains (84.4%) belonged to genotype 2. These results suggest that the distribution of the two genotypes was influenced by WT.

6.
Appl Environ Microbiol ; : e0006524, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775491

RESUMO

CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) is a gene knockdown method that uses a deactivated Cas9 protein (dCas9) that binds a specific gene target locus dictated by an encoded guide RNA (sgRNA) to block transcription. Mobile-CRISPRi is a suite of modular vectors that enable CRISPRi knockdowns in diverse bacteria by integrating IPTG-inducible dcas9 and sgRNA genes into the genome using Tn7 transposition. Here, we show that the Mobile-CRISPRi system functions robustly and specifically in multiple Vibrio species: Vibrio cholerae, Vibrio fischeri, Vibrio vulnificus, Vibrio parahaemolyticus, and Vibrio campbellii. We demonstrate efficacy by targeting both essential and non-essential genes that function to produce defined, measurable phenotypes: bioluminescence, quorum sensing, cell division, and growth arrest. We anticipate that Mobile-CRISPRi will be used in Vibrio species to systematically probe gene function and essentiality in various behaviors and native environments.IMPORTANCEThe genetic manipulation of bacterial genomes is an invaluable tool in experimental microbiology. The development of CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) tools has revolutionized genetics in many organisms, including bacteria. Here, we optimized the use of Mobile-CRISPRi in five Vibrio species, each of which has significant impacts on marine environments and organisms that include squid, shrimp, shellfish, finfish, corals, and multiple of which pose direct threats to human health. The Mobile-CRISPRi technology is easily adaptable, moveable from strain to strain, and enables researchers to selectively turn off gene expression. Our experiments demonstrate Mobile-CRISPRi is effective and robust at repressing gene expression of both essential and non-essential genes in Vibrio species.

7.
Curr Biol ; 34(11): 2403-2417.e9, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38749426

RESUMO

The bacterial type VI secretion system (T6SS) is a widespread, kin-discriminatory weapon capable of shaping microbial communities. Due to the system's dependency on contact, cellular interactions can lead to either competition or kin protection. Cell-to-cell contact is often accomplished via surface-exposed type IV pili (T4Ps). In Vibrio cholerae, these T4Ps facilitate specific interactions when the bacteria colonize natural chitinous surfaces. However, it has remained unclear whether and, if so, how these interactions affect the bacterium's T6SS-mediated killing. In this study, we demonstrate that pilus-mediated interactions can be harnessed by T6SS-equipped V. cholerae to kill non-kin cells under liquid growth conditions. We also show that the naturally occurring diversity of pili determines the likelihood of cell-to-cell contact and, consequently, the extent of T6SS-mediated competition. To determine the factors that enable or hinder the T6SS's targeted reduction of competitors carrying pili, we developed a physics-grounded computational model for autoaggregation. Collectively, our research demonstrates that T4Ps involved in cell-to-cell contact can impose a selective burden when V. cholerae encounters non-kin cells that possess an active T6SS. Additionally, our study underscores the significance of T4P diversity in protecting closely related individuals from T6SS attacks through autoaggregation and spatial segregation.


Assuntos
Fímbrias Bacterianas , Sistemas de Secreção Tipo VI , Vibrio cholerae , Vibrio cholerae/fisiologia , Vibrio cholerae/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/fisiologia , Interações Microbianas/fisiologia
8.
Int Immunopharmacol ; 134: 112160, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710117

RESUMO

INTRODUCTION: Cholera is a severe gastrointestinal disease that manifests with rapid onset of diarrhea, vomiting, and high mortality rates. Due to its widespread occurrence in impoverished communities with poor water sanitation, there is an urgent demand for a cost-effective and highly efficient vaccine. Multi-epitope vaccines containing dominant immunological epitopes and adjuvant compounds have demonstrated potential in boosting the immune response. MATERIAL AND METHODS: B and T epitopes of OMPU, OMPW, TCPA, CTXA, and CTXB proteins were predicted using bioinformatics methods. Subsequently, highly antigenic multi-epitopes that are non-allergenic and non-toxic were synthesized. These multi-epitopes were then cloned into the pCOMB phagemid. A plasmid M13KO7ΔpIII containing all helper phage proteins except pIII was created to produce the recombinant phage. Female Balb/c mice were divided into three groups and immunized accordingly. The mice received the helper phage, recombinant phage or PBS via gavage feeding thrice within two weeks. Serum samples were collected before and after immunization for the ELISA test as well as evaluating immune system induction through ELISpot testing of spleen lymphocytes. RESULTS: The titer of the recombinant phage was determined to be 1011 PFU/ml. The presence of the recombinant phage was confirmed through differences in optical density between sample and control groups in the ELISA phage technique, as well as by observing transduction activity, which demonstrated successful production of a recombinant phage displaying the Vibrio multi-epitope on M13 phage pIII. ELISA results revealed significant differences in phage antibodies before and after inoculation, particularly notable in the negative control mice. Mice treated with multi-epitope phages exhibited antibodies against Vibrio cholerae lysate. Additionally, ELISpot results indicated activation of cellular immunity in mice receiving both Vibrio and helper phage. CONCLUSION: This study emphasizes the potential of multi-epitope on phage to enhance both cellular and humoral immunity in mice, demonstrating how phages can be used as adjuvants to stimulate mucosal immunity and act as promising candidates for oral vaccination.


Assuntos
Anticorpos Antibacterianos , Vacinas contra Cólera , Cólera , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos BALB C , Vibrio cholerae , Animais , Vibrio cholerae/imunologia , Feminino , Cólera/prevenção & controle , Cólera/imunologia , Vacinas contra Cólera/imunologia , Vacinas contra Cólera/administração & dosagem , Administração Oral , Camundongos , Anticorpos Antibacterianos/sangue , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Imunização , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Humanos , Bacteriófagos/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética
9.
Vaccine ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38760271

RESUMO

Cholera is responsible for 1.3 to 4.0 million cholera cases globally and poses a significant threat, with Zambia reporting 17,169 cases as of 4th February 2024. Recognizing the crucial link between natural cholera infections and vaccine protection, this study aimed to assess immune responses post cholera infection and vaccination. This was a comparative study consisting of 50 participants enrolled during a cholera outbreak in Zambia's Eastern Province and an additional 56 participants who received oral cholera vaccinations in Zambia's Central Province. Vibriocidal antibodies were plotted as geometric mean titres in the naturally infected and vaccinated individuals. A significant difference (p < 0.047) emerged when comparing naturally infected to fully vaccinated individuals (2 doses) on day 28 against V. cholerae Ogawa. Those who received two doses of the oral cholera vaccine had higher antibody titres than those who were naturally infected. Notably, the lowest titres occurred between 0-9 days post onset, contrasting with peak responses at 10-19 days. This study addresses a critical knowledge gap in understanding cholera immunity dynamics, emphasizing the potential superiority of vaccination-induced immune responses. We recommend post infection vaccination after 40 days for sustained immunity and prolonged protection, especially in cholera hotspots.

10.
Indian J Med Microbiol ; 49: 100611, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735644

RESUMO

Non-O1/non-O139 Vibrio cholerae, a comparably poorly studied pathogen is culpable of sporadic but serious infections. We report a case of non O1 non O139 Vibrio cholerae septicemia in a middle aged male recently diagnosed with carcinoma pancreas. He underwent biliary tract interventional procedure for hematemesis three weeks before the presentation. Now, he presented with fever, abdominal pain, hematemesis and melena. Endoscopy revealed severe portal hypertensive gastropathy and mild hemobilia. Blood culture grew Vibrio cholerae, identified as non O1 non O139 by serogrouping. He recovered successfully with timely diagnosis, appropriate antibiotics and supportive measures.

11.
Health Sci Rep ; 7(5): e2013, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742091

RESUMO

Background and Aim: Cholera is a life-threatening infectious disease that is still one of the most common acute watery diarrheal diseases in the world today. Acute diarrhea and severe dehydration brought on by cholera can cause hypovolemic shock, which can be fatal in minutes. Without competent clinical therapy, the rate of case fatality surpasses 50%. The purpose of this review was to highlight cholera challenges in Africa and the Middle East and explain the reasons for why this region is currently a fertile environment for cholera. We investigated cholera serology, epidemiology, and the geographical distribution of cholera in Africa and the Middle East in 2022 and 2023. We reviewed detection methods, such as rapid diagnostic tests (RDTs), and treatments, such as antibiotics and phage therapy. Finally, this review explored oral cholera vaccines (OCVs), and the vaccine shortage crisis. Methods: We carried out a systematic search in multiple databases, including PubMed, Web of Science, Google Scholar, Scopus, MEDLINE, and Embase, for studies on cholera using the following keywords: ((Cholera) OR (Vibrio cholera) and (Coronavirus) OR (COVID-19) OR (SARS-CoV2) OR (The Middle East) OR (Africa)). Results and Conclusions: Cholera outbreaks have increased dramatically, mainly in Africa and many Middle Eastern countries. The COVID-19 pandemic has reduced the attention devoted to cholera and disrupted diagnosis and treatment services, as well as vaccination initiatives. Most of the cholera cases in Africa and the Middle East were reported in Malawi and Syria, respectively, in 2022. RDTs are effective in the early detection of cholera epidemics, especially with limited advanced resources, which is the case in much of Africa. By offering both direct and indirect protection, expanding the use of OCV will significantly reduce the burden of current cholera outbreaks in Africa and the Middle East.

12.
Biochem Biophys Res Commun ; 716: 150030, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704889

RESUMO

Sugar phosphates are potential sources of carbon and phosphate for bacteria. Despite that the process of internalization of Glucose-6-Phosphate (G6P) through plasma membrane remained elusive in several bacteria. VCA0625-27, made of periplasmic ligand binding protein (PLBP) VCA0625, an atypical monomeric permease VCA0626, and a cytosolic ATPase VCA0627, recently emerged as hexose-6-phosphate uptake system of Vibrio cholerae. Here we report high resolution crystal structure of VCA0625 in G6P bound state that largely resembles AfuA of Actinobacillus pleuropneumoniae. MD simulations on VCA0625 in apo and G6P bound states unraveled an 'open to close' and swinging bi-lobal motions, which are diminished upon G6P binding. Mutagenesis followed by biochemical assays on VCA0625 underscored that R34 works as gateway to bind G6P. Although VCA0627 binds ATP, it is ATPase deficient in the absence of VCA0625 and VCA0626, which is a signature phenomenon of type-I ABC importer. Further, modeling, docking and systematic sequence analysis allowed us to envisage the existence of similar atypical type-I G6P importer with fused monomeric permease in 27 other gram-negative bacteria.


Assuntos
Proteínas de Bactérias , Glucose-6-Fosfato , Vibrio cholerae , Vibrio cholerae/metabolismo , Vibrio cholerae/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Simulação de Dinâmica Molecular , Conformação Proteica , Modelos Moleculares , Ligação Proteica , Sítios de Ligação
13.
Trop Med Infect Dis ; 9(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38787036

RESUMO

Cholera is highly endemic in many sub-Saharan African countries. The bacterium Vibrio cholerae is responsible for this severe dehydrating diarrheal disease that accounts for over 100,000 deaths each year globally. In recent years, the pathogen has been found to invade intestinal layers and translocate into the bloodstream of humans. The non-toxigenic strains of V. cholerae (non-O1/O139), also known as NOVC, which do not cause epidemic or pandemic cases of cholera, are the major culprits of V. cholerae bacteremia. In non-cholera-endemic regions, clinical reports on NOVC infection have been noted over the past few decades, particularly in Europe and America. Although low-middle-income countries are most susceptible to cholera infections because of challenges with access to clean water and inappropriate sanitation issues, just a few cases of V. cholerae bloodstream infections have been reported. The lack of evidence-based research and surveillance of V. cholerae bacteremia in Africa may have significant clinical implications. This commentary summarizes the existing knowledge on the host risk factors, pathogenesis, and diagnostics of NOVC bacteremia.

14.
Int J Food Microbiol ; 418: 110734, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759293

RESUMO

This study reports a comprehensive epidemiological and genetic analysis of V. cholerae strains, specifically non-O1/non-O139 serogroups, isolated from animal-derived food samples in Guangdong province from 2015 to 2019. A total of 21 V. cholerae strains were obtained, which exhibited high resistance rates for nalidixic acid (57.14 %, 12/21), ampicillin (33.33 %, 7/21), and ciprofloxacin (19.05 %, 4/21). The quinolone resistance-related gene, qnrVC, was prevalent in 80.95 % (17/21) of the isolates. Additionally, chromosomally mediated quinolone-resistance mutations, including mutations in GyrA at position 83 (S83I) and ParC at position 85 (S85L), were detected in 47.62 % of the isolates. The combination of target mutation and qnrVC genes was shown to mediate resistance or intermediate resistance to ciprofloxacin in V. cholerae. Furthermore, an IncC-type conjugative plasmid carrying thirteen antibiotic resistance genes, including genes conferring resistance to two clinically important antibiotics, cephalosporins and fluoroquinolones, was identified in the shrimp-derived strain Vc516. While none of our food isolates harbored the toxigenic CTX- and TCP-encoding genes, they did possess genes encoding toxins such as HlyA and Autoinducer-2. Notably, some V. cholerae strains from this study exhibited a close genetic relationship with clinical strains, suggesting their potential to cause human infections. Taken together, this study provides a comprehensive view of the epidemiological features and genetic basis of antimicrobial resistance and virulence potential of V. cholerae strains isolated from food in southern China, thereby advancing our understanding of this important pathogen.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Microbiologia de Alimentos , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Animais , Humanos , Testes de Sensibilidade Microbiana , Cólera/microbiologia , Cólera/epidemiologia , Vibrio cholerae/genética , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/isolamento & purificação , Vibrio cholerae não O1/genética , Vibrio cholerae não O1/efeitos dos fármacos , Vibrio cholerae não O1/isolamento & purificação , Plasmídeos/genética
15.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617239

RESUMO

A major challenge faced by Vibrio cholerae is constant predation by bacteriophage (phage) in aquatic reservoirs and during infection of human hosts. To overcome phage predation, V. cholerae has evolved a myriad of phage defense systems. Although several novel defense systems have been discovered, we hypothesized more were encoded in V. cholerae given the relative paucity of phage that have been isolated which infect this species. Using a V. cholerae genomic library, we identified a Type IV restriction system consisting of two genes within a 16kB region of the Vibrio pathogenicity island-2 that we name TgvA and TgvB (Type I-embedded gmrSD-like system of VPI-2). We show that both TgvA and TgvB are required for defense against T2, T4, and T6 by targeting glucosylated 5-hydroxymethylcytosine (5hmC). T2 or T4 phages that lose the glucose modification are resistant to TgvAB defense but exhibit a significant evolutionary tradeoff becoming susceptible to other Type IV restriction systems that target unglucosylated 5hmC. We show that additional phage defense genes are encoded in VPI-2 that protect against other phage like T3, secΦ18, secΦ27 and λ. Our study uncovers a novel Type IV restriction system in V. cholerae, increasing our understanding of the evolution and ecology of V. cholerae while highlighting the evolutionary interplay between restriction systems and phage genome modification.

16.
Mol Biol Rep ; 51(1): 512, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622483

RESUMO

Bacterial enteritis has a substantial role in contributing to a large portion of the global disease burden and serves as a major cause of newborn mortality. Despite advancements gained from current animal and cell models in improving our understanding of pathogens, their widespread application is hindered by apparent drawbacks. Therefore, more precise models are imperatively required to develop more accurate studies on host-pathogen interactions and drug discovery. Since the emergence of intestinal organoids, massive studies utilizing organoids have been conducted to study the pathogenesis of bacterial enteritis, revealing new mechanisms and validating established ones. In this review, we focus on the advancements of several bacterial pathogenesis mechanisms observed in intestinal organoid/enteroid models, exploring the host response and bacterial effectors during the infection process. Finally, we address the features that warrant additional investigation or could be enhanced in existing organoid models in order to guide future research endeavors.


Assuntos
Infecções Bacterianas , Enterite , Animais , Intestinos/microbiologia , Bactérias , Organoides
17.
Iran J Microbiol ; 16(1): 79-89, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38682070

RESUMO

Background and Objectives: Mesenchymal Stem Cells (MSCs) can repair gastrointestinal tract damage. The Secretome of MSCs has a high capacity to inhibit bacterial colonization and the subsequent inflammatory responses of Vibrio cholerae. Materials and Methods: The Caco-2 cells were treated with adipose-derived MSCs (AD-MSCs) secretome and then infected with V. cholerae. Subsequently, the bacterial attachment and invasion, cholera toxin gene expression, PGE2 and IL-6 secretion, TNF-α, IL-1ß, and IL-8 expression, and apoptosis of Caco-2 cells were evaluated. Results: The secretome of AD-MSCs significantly reduced the V. cholerae attachment and internalization on Caco-2 epithelial cells (P<0.0001). The cholera toxin (Ctx-B) gene expression (FR=4.56 ± 0.66) and PGE2 production (P=0.0007) were also significantly reduced. The production of NO and TNF-α, IL-1ß, and IL-8 pro-inflammatory cytokines were significantly (P<0.05) reduced in exposure to the secretome of AD-MSCs. Secretome also improved a significant 81.33% increase in IL-6 production (128.1 ± 37.6 pg/mL) and showed a 12.36% significant decrease in epithelial cell apoptosis (P< 0.0001) after exposure to V. cholerae. Conclusion: The secretome of AD-MSCs can play a critical role in inhibiting bacterial colonization, and subsequent inflammatory responses, and maintaining the integrity of the epithelial barrier. The secretome may be effective in the prevention of hypovolemic shock.

18.
Vaccines (Basel) ; 12(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38675772

RESUMO

Despite the successful introduction of oral cholera vaccines, Zambia continues to experience multiple, sporadic, and protracted cholera outbreaks in various parts of the country. While vaccines have been useful in staying the cholera outbreaks, the ideal window for re-vaccinating individuals resident in cholera hotspot areas remains unclear. Using a prospective cohort study design, 225 individuals were enrolled and re-vaccinated with two doses of Shanchol™, regardless of previous vaccination, and followed-up for 90 days. Bloods were collected at baseline before re-vaccination, at day 14 prior to second dosing, and subsequently on days 28, 60, and 90. Vibriocidal assay was performed on samples collected at all five time points. Our results showed that anti-LPS and vibriocidal antibody titers increased at day 14 after re-vaccination and decreased gradually at 28, 60, and 90 days across all the groups. Seroconversion rates were generally comparable in all treatment arms. We therefore conclude that vibriocidal antibody titers generated in response to re-vaccination still wane quickly, irrespective of previous vaccination status. However, despite the observed decline, the levels of vibriocidal antibodies remained elevated over baseline values across all groups, an important aspect for Zambia where there is no empirical evidence as to the ideal time for re-vaccination.

19.
Microorganisms ; 12(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674762

RESUMO

In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.

20.
Vaccines (Basel) ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675826

RESUMO

COVID-19 vaccine hesitancy and its enablers shape community uptake of non-covid vaccines such as the oral cholera vaccine (OCV) in the post-COVID-19 era. This study assessed the impact of COVID-19 vaccine hesitancy and its drivers on OCV hesitancy in a cholera-endemic region of the Democratic Republic of Congo. We conducted a community-based survey in Bukavu. The survey included demographics, intention to take OCV and COVID-19 vaccines, reasons for COVID-19 hesitancy, and thoughts and feelings about COVID-19 vaccines. Poisson regression analyses were performed. Of the 1708 respondents, 84.66% and 77.57% were hesitant to OCV alone and to both OCV and COVID-19, respectively. Hesitancy to COVID-19 vaccines rose OCV hesitancy by 12% (crude prevalence ratio, [cPR] = 1.12, 95%CI [1.03-1.21]). Independent predictors of OCV hesitancy were living in a semi-urban area (adjusted prevalence ratio [aPR] = 1.10, 95%CI [1.03-1.12]), religious refusal of vaccines (aPR = 1.06, 95%CI [1.02-1.12]), concerns about vaccine safety (aPR = 1.05, 95%CI [1.01-1.11]) and adverse effects (aPR = 1.06, 95%CI [1.01-1.12]), as well as poor vaccine literacy (aPR = 1.07, 95%CI [1.01-1.14]). Interestingly, the belief in COVID-19 vaccine effectiveness reduced OCV hesitancy by 24% (aPR = 0.76, 95%CI [0.62-0.93]). COVID-19 vaccine hesitancy and its drivers exhibited a significant domino effect on OCV uptake. Addressing vaccine hesitancy through community-based health literacy and trust-building interventions would likely improve the introduction of novel non-COVID-19 vaccines in the post-COVID-19 era.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...