Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Crit Care ; 28(1): 142, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689313

RESUMO

RATIONALE: End-expiratory lung volume (EELV) is reduced in mechanically ventilated patients, especially in pathologic conditions. The resulting heterogeneous distribution of ventilation increases the risk for ventilation induced lung injury. Clinical measurement of EELV however, remains difficult. OBJECTIVE: Validation of a novel continuous capnodynamic method based on expired carbon dioxide (CO2) kinetics for measuring EELV in mechanically ventilated critically-ill patients. METHODS: Prospective study of mechanically ventilated patients scheduled for a diagnostic computed tomography exploration. Comparisons were made between absolute and corrected EELVCO2 values, the latter accounting for the amount of CO2 dissolved in lung tissue, with the reference EELV measured by computed tomography (EELVCT). Uncorrected and corrected EELVCO2 was compared with total CT volume (density compartments between - 1000 and 0 Hounsfield units (HU) and functional CT volume, including density compartments of - 1000 to - 200HU eliminating regions of increased shunt. We used comparative statistics including correlations and measurement of accuracy and precision by the Bland Altman method. MEASUREMENTS AND MAIN RESULTS: Of the 46 patients included in the final analysis, 25 had a diagnosis of ARDS (24 of which COVID-19). Both EELVCT and EELVCO2 were significantly reduced (39 and 40% respectively) when compared with theoretical values of functional residual capacity (p < 0.0001). Uncorrected EELVCO2 tended to overestimate EELVCT with a correlation r2 0.58; Bias - 285 and limits of agreement (LoA) (+ 513 to - 1083; 95% CI) ml. Agreement improved for the corrected EELVCO2 to a Bias of - 23 and LoA of (+ 763 to - 716; 95% CI) ml. The best agreement of the method was obtained by comparison of corrected EELVCO2 with functional EELVCT with a r2 of 0.59; Bias - 2.75 (+ 755 to - 761; 95% CI) ml. We did not observe major differences in the performance of the method between ARDS (most of them COVID related) and non-ARDS patients. CONCLUSION: In this first validation in critically ill patients, the capnodynamic method provided good estimates of both total and functional EELV. Bias improved after correcting EELVCO2 for extra-alveolar CO2 content when compared with CT estimated volume. If confirmed in further validations EELVCO2 may become an attractive monitoring option for continuously monitor EELV in critically ill mechanically ventilated patients. TRIAL REGISTRATION: clinicaltrials.gov (NCT04045262).


Assuntos
Capnografia , Estado Terminal , Medidas de Volume Pulmonar , Humanos , Masculino , Feminino , Estado Terminal/terapia , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso , Medidas de Volume Pulmonar/métodos , Capnografia/métodos , Respiração Artificial/métodos , COVID-19 , Tomografia Computadorizada por Raios X/métodos , Adulto
2.
BMC Pulm Med ; 24(1): 27, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200483

RESUMO

BACKGROUND: Pulmonary air embolism (AE) and thromboembolism lead to severe ventilation-perfusion defects. The spatial distribution of pulmonary perfusion dysfunctions differs substantially in the two pulmonary embolism pathologies, and the effects on respiratory mechanics, gas exchange, and ventilation-perfusion match have not been compared within a study. Therefore, we compared changes in indices reflecting airway and respiratory tissue mechanics, gas exchange, and capnography when pulmonary embolism was induced by venous injection of air as a model of gas embolism or by clamping the main pulmonary artery to mimic severe thromboembolism. METHODS: Anesthetized and mechanically ventilated rats (n = 9) were measured under baseline conditions after inducing pulmonary AE by injecting 0.1 mL air into the femoral vein and after occluding the left pulmonary artery (LPAO). Changes in mechanical parameters were assessed by forced oscillations to measure airway resistance, lung tissue damping, and elastance. The arterial partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) were determined by blood gas analyses. Gas exchange indices were also assessed by measuring end-tidal CO2 concentration (ETCO2), shape factors, and dead space parameters by volumetric capnography. RESULTS: In the presence of a uniform decrease in ETCO2 in the two embolism models, marked elevations in the bronchial tone and compromised lung tissue mechanics were noted after LPAO, whereas AE did not affect lung mechanics. Conversely, only AE deteriorated PaO2, and PaCO2, while LPAO did not affect these outcomes. Neither AE nor LPAO caused changes in the anatomical or physiological dead space, while both embolism models resulted in elevated alveolar dead space indices incorporating intrapulmonary shunting. CONCLUSIONS: Our findings indicate that severe focal hypocapnia following LPAO triggers bronchoconstriction redirecting airflow to well-perfused lung areas, thereby maintaining normal oxygenation, and the CO2 elimination ability of the lungs. However, hypocapnia in diffuse pulmonary perfusion after AE may not reach the threshold level to induce lung mechanical changes; thus, the compensatory mechanisms to match ventilation to perfusion are activated less effectively.


Assuntos
Embolia Aérea , Embolia Pulmonar , Tromboembolia , Animais , Ratos , Dióxido de Carbono , Hipocapnia , Perfusão , Brônquios , Broncoconstrição
3.
Am J Vet Res ; 85(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857347

RESUMO

OBJECTIVE: To evaluate the agreement between the Tafonius large animal ventilator-integrated volumetric capnography (vCap) software and the Respironics NICO noninvasive cardiac output monitor reference system. ANIMALS: Data were collected from 56 healthy adult horses undergoing general anesthesia. METHODS: Animals were placed under general anesthesia and connected to the Tafonius large animal ventilator circle system. A flow partitioning device with CO2 and flow sensors was utilized to couple the endotracheal tube to the NICO monitor. Tafonius CO2 and flow sensors are incorporated into the Y-piece of the breathing circuit. Arterial blood samples were collected to determine the partial pressure of arterial carbon dioxide (PaCO2) immediately before data collection. The PaCO2 was input into the Tafonius and NICO monitor, and dead space ventilation (%Vd), end-tidal CO2 partial pressure (ETco2), mixed-expired CO2 partial pressure (Peco2), and expired tidal volume (Vt) were calculated over a single breath. Multiple measurements were completed for each patient, with a total of 200 paired data points collected for analysis. Data were assessed for normality, and Bland-Altman analysis was performed. Bias and 95% limits of agreement were calculated. RESULTS: The limits of agreement for %Vd of the ventilator-derived measurements fell within ± 10% of the NICO monitor reference method. CLINICAL RELEVANCE: Our results indicate that, when compared to the NICO monitor method, the Tafonius-integrated vCap software provides clinically acceptable values of Peco2, Vt, and %Vd in healthy adult horses.


Assuntos
Capnografia , Dióxido de Carbono , Cavalos , Animais , Capnografia/veterinária , Capnografia/métodos , Espaço Morto Respiratório/fisiologia , Volume de Ventilação Pulmonar , Respiração Artificial/veterinária , Ventiladores Mecânicos
4.
Paediatr Anaesth ; 34(3): 251-258, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38055609

RESUMO

BACKGROUND: Capnodynamic lung function monitoring generates variables that may be useful for pediatric perioperative ventilation. AIMS: Establish normal values for end-expiratory lung volume CO2 in healthy children undergoing anesthesia and to compare these values to previously published values obtained with alternative end-expiratory lung volume methods. The secondary aim was to investigate the ability of end-expiratory lung volume CO2 to react to positive end-expiratory pressure-induced changes in end-expiratory lung volume. In addition, normal values for associated volumetric capnography lung function variables were examined. METHODS: Fifteen pediatric patients with healthy lungs (median age 8 months, range 1-36 months) undergoing general anesthesia were examined before start of surgery. Tested variables were recorded at baseline positive end-expiratory pressure 3 cmH2 O, 1 and 3 min after positive end-expiratory pressure 10 cmH2 O and 3 min after returning to baseline positive end-expiratory pressure 3 cmH2 O. RESULTS: Baseline end-expiratory lung volume CO2 was 32 mL kg-1 (95% CI 29-34 mL kg-1 ) which increased to 39 mL kg-1 (95% CI 35-43 mL kg-1 , p < .0001) and 37 mL kg-1 (95% CI 34-41 mL kg-1 , p = .0003) 1 and 3 min after positive end-expiratory pressure 10 cmH2 O, respectively. End-expiratory lung volume CO2 returned to baseline, 33 mL kg-1 (95% CI 29-37 mL kg-1 , p = .72) 3 min after re-establishing positive end-expiratory pressure 3 cmH2 O. Airway dead space increased from 1.1 mL kg-1 (95% CI 0.9-1.4 mL kg-1 ) to 1.4 (95% CI 1.1-1.8 mL kg-1 , p = .003) and 1.5 (95% CI 1.1-1.8 mL kg-1 , p < .0001) 1 and 3 min after positive end-expiratory pressure 10 cmH2 O, respectively, and 1.2 mL kg-1 (95% CI 0.9-1.4 mL kg-1 , p = .08) after 3 min of positive end-expiratory pressure 3 cmH2 O. Additional volumetric capnography and lung function variables showed no major changes in response to positive end-expiratory pressure variations. CONCLUSIONS: Capnodynamic noninvasive and continuous end-expiratory lung volume CO2 values assessed during anesthesia in children were in close agreement with previously reported end-expiratory lung volume values generated by alternative methods. Furthermore, positive end-expiratory pressure changes resulted in physiologically expected end-expiratory lung volume CO2 responses in a timely manner, suggesting that it can be used to trend end-expiratory lung volume changes during anesthesia.


Assuntos
Dióxido de Carbono , Respiração , Humanos , Criança , Lactente , Pré-Escolar , Medidas de Volume Pulmonar , Respiração com Pressão Positiva , Pulmão , Anestesia Geral , Volume de Ventilação Pulmonar
5.
Acta Anaesthesiol Scand ; 67(7): 936-942, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354078

RESUMO

BACKGROUND: Patients with Covid-19 respiratory failure present with hypoxemia, often in combination with hypercapnia. In this prospective, observational study we examined the effect of removing external dead space (DS) on CO2 -homeostasis in mechanically ventilated Covid-19 patients. In addition, volumetric capnography was validated for its ability to estimate external DS volume using in vitro measured DS volumes as reference. METHODS: In total, 10 patients with acute respiratory distress syndrome from Covid-19 were included. Volumetric capnography, mechanical ventilation, and arterial blood gas data were analyzed before and after removal of external DS and analyzed for potentially significant changes in response to DS removal. Measurements of external DS were obtained in circuit using volumetric capnography and compared to actual measured DS volumes off the circuit. RESULTS: After the removal of external DS, the alveolar minute ventilation and CO2 elimination improved, notwithstanding unchanged respiratory rate and tidal volumes. The increase in CO2 elimination was associated with a decrease in arterial CO2 partial pressure (PaCO2 ). The volumetric capnography method for assessment of external DS showed a low bias of -9 mL (lower limit of agreement -40, 95% CI -60 to -20 mL, upper limit of agreement 21 mL, 95% CI: 1-40 mL) and a percentage error of 48% compared to absolute values measured in vitro. CONCLUSION: Removal of external DS increased alveolar minute ventilation and CO2 elimination in Covid-19 patients with respiratory failure in the current study. This was associated with a decrease in PaCO2 . This may indicate a decreased CO2 production due to decreased work of breathing and more effective gas-exchange in response to DS removal. In addition, volumetric capnography appears to be a clinically feasible method for continuous measurement of external DS in the current study and may be of value in optimizing ventilator treatment.


Assuntos
COVID-19 , Insuficiência Respiratória , Humanos , Adulto , Dióxido de Carbono , Espaço Morto Respiratório/fisiologia , Respiração Artificial , Estudos Prospectivos , COVID-19/terapia , Capnografia/métodos , Volume de Ventilação Pulmonar , Insuficiência Respiratória/terapia
6.
Front Pediatr ; 11: 1094855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009267

RESUMO

Background: Infants born extremely preterm often suffer from respiratory disease and are invasively ventilated. We aimed to test the hypothesis that gas exchange in ventilated extremely preterm infants occurs both at the level of the alveoli and via mixing of fresh deadspace gas in the airways. Methods: We measured the normalised slopes of phase II and phase III of volumetric capnography and related them with non-invasive measurements of ventilation to perfusion ratio (VA/Q) and right-to-left shunt in ventilated extremely preterm infants studied at one week of life. Cardiac right-to-left shunt was excluded by concurrent echocardiography. Results: We studied 25 infants (15 male) with a median (range) gestational age of 26.0 (22.9-27.9) weeks and birth weight of 795 (515-1,165) grams. The median (IQR) VA/Q was 0.52 (0.46-0.56) and shunt was 8 (2-13) %. The median (IQR) normalised slope of phase II was 99.6 (82.7-116.1) mmHg and of phase III was 24.6 (16.9-35.0) mmHg. The VA/Q was significantly related to the normalised slope of phase III (ρ = -0.573, p = 0.016) but not to the slope of phase II (ρ = 0.045, p = 0.770). The right-to-left shunt was not independently associated with either the slope of phase II or the slope of phase III after adjusting for confounding parameters. Conclusions: Abnormal gas exchange in ventilated extremely preterm infants was associated with lung disease at the alveolar level. Abnormal gas exchange at the level of the airways was not associated with quantified indices of gas exchange impairment.

7.
Vet Anaesth Analg ; 50(4): 363-371, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37055259

RESUMO

OBJECTIVE: To evaluate the impact of a 30% end-inspiratory pause (EIP) on alveolar tidal volume (VTalv), airway (VDaw) and physiological (VDphys) dead spaces in mechanically ventilated horses using volumetric capnography, and to evaluate the effect of EIP on carbon dioxide (CO2) elimination per breath (Vco2br-1), PaCO2, and the ratio of PaO2-to-fractional inspired oxygen (PaO2:FiO2). STUDY DESIGN: Prospective research study. ANIMALS: A group of eight healthy research horses undergoing laparotomy. METHODS: Anesthetized horses were mechanically ventilated as follows: 6 breaths minute-1, tidal volume (VT) 13 mL kg-1, inspiratory-to-expiratory time ratio 1:2, positive end-expiratory pressure 5 cmH2O and EIP 0%. Vco2br-1 and expired tidal volume (VTE) of 10 consecutive breaths were recorded 30 minutes after induction, after adding 30% EIP and upon EIP removal to construct volumetric capnograms. A stabilization period of 15 minutes was allowed between phases. Data were analyzed using a mixed-effect linear model. Significance was set at p < 0.05. RESULTS: The EIP decreased VDaw from 6.6 (6.1-6.7) to 5.5 (5.3-6.1) mL kg-1 (p < 0.001) and increased VTalv from 7.7 ± 0.7 to 8.6 ± 0.6 mL kg-1 (p = 0.002) without changing the VTE. The VDphys to VTE ratio decreased from 51.0% to 45.5% (p < 0.001) with EIP. The EIP also increased PaO2:FiO2 from 393.3 ± 160.7 to 450.5 ± 182.5 mmHg (52.5 ± 21.4 to 60.0 ± 24.3 kPa; p < 0.001) and Vco2br-1 from 0.49 (0.45-0.50) to 0.59 (0.45-0.61) mL kg-1 (p = 0.008) without reducing PaCO2. CONCLUSIONS AND CLINICAL RELEVANCE: The EIP improved oxygenation and reduced VDaw and VDphys, without reductions in PaCO2. Future studies should evaluate the impact of different EIP in healthy and pathological equine populations under anesthesia.


Assuntos
Pulmão , Respiração com Pressão Positiva , Cavalos/cirurgia , Animais , Estudos Prospectivos , Respiração com Pressão Positiva/veterinária , Volume de Ventilação Pulmonar/fisiologia , Dióxido de Carbono , Respiração Artificial/veterinária
8.
Arq. gastroenterol ; 59(3): 383-389, July-Sept. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403491

RESUMO

ABSTRACT Background: Capnography and carbon dioxide (CO2) insufflation during gastrointestinal endoscopy under sedation are associated with safety and comfort improvements, respectively. Capnography can provide early detection of apnea and hypoxemia, whereas CO2 insufflation causes lower periprocedural discomfort. This is the first study to report the application of volumetric capnography in colonoscopy. Objective: This study aimed to evaluate the use of volumetric capnography with room air (RA) and CO2 insufflation during routine colonoscopy. Methods: In this prospective cohort study, 101 patients who underwent routine colonoscopy under sedation with volumetric capnography monitoring were included. Insufflation with RA was used to distend the intestinal lumen in group 1 (n=51), while group 2 (n=50) used CO2 insufflation. The primary endpoints were episodes of hypoxia, alveolar hypoventilation, and end-tidal CO2 (EtCO2). The secondary endpoints were tidal volume per minute, consumption of sedation medications, and post-procedure pain using the Gloucester modified pain scale. Results: The number of episodes of hypoxia (SpO2<90%) was similar between the groups: four episodes in Group 1 and two episodes in Group 2. The duration of hypoxia was significantly longer in group 2 (P=0.02). Hypoalveolar ventilation (EtCO2) occurred more frequently in Group 2 than in Group 1 (27 vs 18 episodes, P=0.05). Regarding EtCO2, Group 2 showed higher values in cecal evaluation (28.94±4.68 mmHg vs 26.65±6.12 mmHg, P=0.04). Regarding tidal volume per minute, Group 2 had significantly lower values at the cecal interval compared to Group 1 (2027.53±2818.89 vs 970.88±1840.25 L/min, P=0.009). No episodes of hypercapnia (EtCO2 > 60 mmHg) occurred during the study. There was no difference in the consumption of sedation medications between the groups. Immediately after colonoscopy, Group 2 reported significantly less pain than Group 1 (P=0.05). Conclusion: In our study, volumetric capnography during colonoscopy was feasible and effective for monitoring ventilatory parameters and detecting respiratory complications. CO2 insufflation was safe and associated with less pain immediately after colonoscopy.


RESUMO Contexto: A capnografia e a insuflação de gás carbônico (CO2) durante endoscopia digestiva sob sedação são associados à maior segurança e conforto do paciente, respectivamente. A capnografia pode detectar precocemente a apneia e hipoxemia, enquanto a insuflação de CO2 causa menor desconforto periprocedimento. Relatos da aplicação da capnografia volumétrica em colonoscopias são escassos. Objetivo: Avaliar o uso de capnograifa volumétrica durante colonoscopia diagnóstica com insuflação de ar comprimido e CO2. Métodos: Em estudo prospectivo de coorte, foram incluídos um total de 101 pacientes submetidos a colonoscopia diagnóstica sob sedação com monitoração respiratória por meio de capnografia volumétrica. Insuflação com ar comprimido foi usado para distender o lúmen intestinal no Grupo 1 (n=51), enquanto o Grupo 2 (n=50) utilizou CO2 para insuflação. Objetivos primários foram avaliar episódios de hipóxia, hipoventilação alveolar e CO2 expirado (EtCO2). Objetivos secundários foram avaliar o volume alveolar por minuto, consumo de sedativos e a dor pós-colonoscopia por meio da Escala de Dor Modificada de Gloucester. Resultados: O número de episódios de hipóxia (SpO2 <90%) foi semelhante entre os grupos: quatro episódios no Grupo 1 e dois episódios no Grupo 2. A duração da hipóxia foi significativamente maior no Grupo 2 (P=0,02). A hipoventilação alveolar (EtCO2 ≥25% do valor basal) ocorreu mais frequentemente no Grupo 2 quando comparado ao Grupo 1 (27 vs 18 episódios, P=0,05). Em relação ao EtCO2, o Grupo 2 apresentou valores maiores no momento de aferição cecal (28.94±4.68 vs 26.65±6.12 mmHg, P=0,04). Quanto ao volume alveolar por minuto, o Grupo 2 apresentou valores significativamente menores no momento de aferição cecal quando comparado ao Grupo 1 (2027.53±2818.89 vs 970.88±1840.25 L/min, P=0,009). Não houve ocorrência de hipercapnia durante o estudo (EtCO2 >60 mmHg). Não houve diferença em relação ao consumo de sedativos entre os dois grupos. Imediatamente após a colonoscopia, o Grupo 2 apresentou significativamente menos dor que o Grupo 1 (P=0,05). Conclusão: Em nosso estudo, a capnografia volumétrica durante colonoscopia foi factível e eficaz para monitorar parâmetros ventilatórios e detectar complicações respiratórias, e a insuflação com CO2 foi segura e associada a menor dor imediatamente pós-colonoscopia.

9.
J Crit Care ; 71: 154095, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724445

RESUMO

PURPOSE: To determine whether VDPhys/VT is associated with coagulation activation and outcomes. MATERIALS AND METHODS: We enrolled patients with COVID-19 pneumonia who were supported by invasive mechanical ventilation and were monitored using volumetric capnography. Measurements were performed during the first 24 h of mechanical ventilation. The primary endpoint was the likelihood of being discharge alive on day 28. RESULTS: Sixty patients were enrolled, of which 25 (42%) had high VDPhys/VT (>57%). Patients with high vs. low VDPhys/VT had higher APACHE II (10[8-13] vs. 8[6-9] points, p = 0.002), lower static compliance of the respiratory system (35[24-46] mL/cmH2O vs. 42[37-45] mL/cmH2O, p = 0.005), and higher D-dimer levels (1246[1050-1594] ng FEU/mL vs. 792[538-1159] ng FEU/mL, p = 0.001), without differences in P/F ratio (157[112-226] vs. 168[136-226], p = 0.719). Additionally, D-dimer levels correlated with VDPhys/VT (r = 0.530, p < 0.001), but not with the P/F ratio (r = -0.103, p = 0.433). Patients with high VDPhys/VT were less likely to be discharged alive on day 28 (32% vs. 71%, aHR = 3.393[1.161-9.915], p = 0.026). CONCLUSIONS: In critically ill COVID-19 patients, increased VDPhys/VT was associated with high D-dimer levels and a lower likelihood of being discharged alive. Dichotomic VDPhys/VT could help identify a high-risk subgroup of patients neglected by the P/F ratio.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , COVID-19/terapia , Capnografia , Humanos , Respiração Artificial , Espaço Morto Respiratório/fisiologia , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar/fisiologia
10.
Physiol Meas ; 43(3)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322796

RESUMO

Objective. A linear relationship between impedance change (ΔZ) measured by thoracic electrical impedance tomography (EIT) and tidal volume (VT) has been demonstrated. This study evaluated the agreement between the displayed VT calculated by the EIT software (VTEIT) and spirometry (VTSPIRO) after an indirect two-point calibration.Approach.The EIT software was programmed to execute a bedside two-point calibration from the subject-specific, linear equation defining the relationship between ΔZand VTSPIROand displaying VTEITbreath-by-breath in 20 neutered male, juvenile pigs. After EIT calibration VTs of 8, 12, 16 and 20 ml kg-1were applied to the lungs. VTEITand VTSPIROwere recorded and analysed using Bland-Altman plot for multiple subject measurements. Volumetric capnography (VCap) and spirometry data were explored as components of variance using multiple regression.Main results.A mean relative difference (bias) of 0.7% with 95% confidence interval (CI) of -10.4% to 10.7% were found between VTEITand VTSPIROfor the analysed data set. The variance in VTEITcould not be explained by any of the measured VCap or spirometry variables.Significance.The narrow CI estimated in this study allows the conclusion that EIT and its software can be used to measure and accurately convert ΔZinto mililitre VT at the bedside after applying an indirect two-point calibration.


Assuntos
Tomografia , Animais , Calibragem , Impedância Elétrica , Medidas de Volume Pulmonar/métodos , Masculino , Suínos , Volume de Ventilação Pulmonar , Tomografia/métodos
11.
BJA Open ; 3: 100020, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37588587

RESUMO

Background: The effect of inverse inspiration:expiration (I:E) ratio on functional residual capacity (FRC) during pneumoperitoneum is unclear. We hypothesised that volume-targeted pressure-controlled inverse ratio ventilation (vtPC-IRV) would increase FRC by increasing the level of auto-PEEP in low respiratory compliance situations. Methods: During robot-assisted laparoscopic radical prostatectomy, 20 obese patients were sequentially ventilated with four different settings for 30 min in each setting: (1) control, I:E ratio of 1:2 and baseline airway pressure (BAP) of 5 cm H2O; (2) IRV2, I:E ratio of 2:1 and BAP off; (3) IRV3, I:E ratio of 3:1 and BAP off; and (4) IRV4, I:E ratio of 4:1 and BAP off. The changes in FRC were identified and compared among these settings. Results: The FRC significantly increased as the I:E ratio increased. The FRC values expressed as median (inter-quartile range) during control, IRV2, IRV3, and IRV4 were 1149 (898-1386), 1485 (1018-1717), 1602 (1209-1775), and 1757 (1337-1955) ml, respectively. Auto-PEEP increased significantly as the I:E ratio increased and correlated with FRC (rho=0.303; P=0.006). Shunt and physiological dead space were significantly lower in all IRV groups than in the control group; however, there were no significant differences among the IRV groups. Conclusions: vtPC-IRV with shortened expiratory time and increased auto-PEEP effectively increases FRC during robot-assisted laparoscopic radical prostatectomy in obese patients. FRC increases progressively as the I:E ratio increases from 1:2 to 4:1; however, an I:E ratio higher than 2:1 does not further improve the dead space. Clinical trial registration: UMIN000038989.

12.
J Clin Monit Comput ; 36(2): 325-334, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33492490

RESUMO

Electrical impedance tomography (EIT) is used in lung physiology monitoring. There is evidence that EIT is linearly associated with global tidal volume (VT) in clinically healthy patients where no positive end-expiratory pressure (PEEP) is applied. This linearity has not been challenged by altering lung conditions. The aim of this study was to determine the effect of PEEP on VT estimation, using EIT technology and spirometry, and observe the stability of the relationship under changing lung conditions. Twelve male castrated cattle (Steer), mean age 7.8 months (SD ± 1.7) were premedicated with xylazine followed by anaesthesia induction with ketamine and maintenance with halothane in oxygen via an endotracheal tube. An EIT belt was applied around the thorax at the level of the fifth intercostal space. Volume controlled ventilation was used. PEEP was increased in a stepwise manner from 0 to 5, 10 and 15 cmH2O. At each PEEP, the VT was increased stepwise from 5 to 10 and 15 mL kg-1. After a minute of stabilisation, total impedance change (VTEIT), using EIT and VT measured by a spirometer connected to a flow-partitioning device (VTSpiro) was recorded for the following minute before changing ventilator settings. Data was analysed using linear regression and multi variable analysis. There was a linear relationship between VTEIT and VTSpiro at all levels of PEEP with an R2 of 0.71, 0.68, 0.63 and 0.63 at 0, 5, 10 and 15 cmH2O, respectively. The variance in VTEIT was best described by peak inspiratory pressure (PIP) and PEEP (adjusted R2 0.82) while variance in VTSpiro was best described by PIP and airway deadspace (adjusted R2 0.76). The relationship between VTEIT and VTSpiro remains linear with changes in tidal volume, and stable across altered lung conditions. This may have application for monitoring and assessment in vivo.


Assuntos
Respiração com Pressão Positiva , Tomografia , Animais , Bovinos , Impedância Elétrica , Humanos , Masculino , Respiração com Pressão Positiva/métodos , Volume de Ventilação Pulmonar , Tomografia/métodos , Tomografia Computadorizada por Raios X
13.
J Clin Monit Comput ; 36(1): 199-207, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33511562

RESUMO

We aimed to evaluate a volumetric capnography (Vcap)-derived parameter, the volume of CO2 eliminated per minute and per kg body weight (VCO2/kg), as an indicator of the quality of chest compression (CC) and to predict the return to spontaneous circulation (ROSC) under stable ventilation status. Twelve male domestic pigs were utilized for the randomized crossover study. After 4 min of untreated ventricular fibrillation (VF), mechanical cardiopulmonary resuscitation and ventilation were administered. Following 5-min washout periods, each animal underwent two sessions of experiments: three types of CC quality for 5 min stages in the first session, followed by advanced life support, consecutively in two sessions. Different CC quality had a significant effect on the partial pressure of end-tidal carbon dioxide (PetCO2), VCO2/kg, aortic pressure (mean), aortic systolic pressure, aortic diastolic pressure, right atrial pressure (mean), and carotid blood flow (P < 0.05). With the improvement in CC quality, the values of PetCO2 and VCO2/kg also increased, and the difference between the groups was statistically significant (P < 0.05). The Spearman rank test revealed a significant correlation between the Vcap-derived parameters and hemodynamics. PetCO2 and VCO2/kg have similar capabilities for discriminating survivors from non-survivors, and the area under the curve for both was 0.97. VCO2/kg had similar performance as PetCO2 in reflecting the quality of CC and prediction of achieving ROSC under stable ventilation status in a porcine model of VF-related cardiac arrest. However, VCO2/kg requires a longer time to achieve a stable state after adjusting for quality of CC than PetCO2.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Masculino , Capnografia , Dióxido de Carbono , Estudos Cross-Over , Parada Cardíaca/terapia , Retorno da Circulação Espontânea , Sus scrofa , Suínos
14.
Lung India ; 39(6): 502-509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36629228

RESUMO

Background: Bronchiectasis is frequently identified in patients with COPD, especially in severe patients, but the relevance of this finding remains unclear. We aimed to investigate the factors that would increase the chance of having bronchiectasis in patients with severe COPD. Methods: This is an analytical, observational, cross-sectional study. Patients with severe COPD with (BC group) and without bronchiectasis (NBC group) were clinically evaluated and performed spirometry, 6-minute walk test (6MWT), volumetric capnography (VCap) and high resolution computed tomography (CT). CT was scored for the findings, and multiple linear regression was performed to identify variables related to the score's severity and logistic regression in order to identify factors that could be associated with the presence of bronchiectasis. Results: There was no significant difference between BC and NBC groups regarding clinical variables, except in the smoking load, which was lower in the BC group. In functional evaluation, NBC patients walked shorter distances in 6MWT (P < 0.005). In the BC group the distribution of CT findings was mostly bilateral and in lower lobes. Using the multiple linear regression analysis within the BC group, we found that the higher the bronchiectasis score, the higher ΔSpO2 during the 6MWT and the lower the FVC. The chance of having bronchiectasis was 4.78 times higher in the presence of positive isolates (sputum) (CI 1.35-16.865; P = 0.023). The higher the distance covered (6MWT) and Slp3 (VCap), (OR 1.01, CI 1.004; 1.0202, P = 0.0036; OR 1.04, CI 1.003; 1.077; P = 0.036), the greater are likelihood of bronchiectasis. Conclusions: In patients with COPD and bronchiectasis, higher CT scores were associated with worse lung function and a greater drop in oxygenation during exercise.

15.
Hematol., Transfus. Cell Ther. (Impr.) ; 43(4): 443-452, Oct.-Dec. 2021. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1350818

RESUMO

ABSTRACT Introduction: Inspiratory muscle training (IMT) has been shown to be an efficient method of improving exercise tolerance and inspiratory and expiratory muscle strength in several diseases. The effects of IMT on patients with sickle cell anemia (SCD) are relatively unknown. Our study aimed to evaluate the effects of IMT on adult SCD patients, regarding respiratory muscle strength (RMS) variables, lung function, exercise tolerance, blood lactation concentration, limitation imposed by dyspnea during daily activities and impact of fatigue on the quality of life. Methods: This was a randomized single-blind study, with an IMT design comprising true load (TG) and sham load (SG) groups. Initial assessment included spirometry, volumetric capnography (VCap) and measurement of RMS by maximal inspiratory and expiratory pressure (PImax and PEmax). The Medical Research Council dyspnea scale and modified fatigue impact scale were also applied and blood lactate concentration was measured before and after the 6-minute walk test. After this initial assessment, the patient used the IMT device at home daily, returning every 6 weeks for RMS reassessment. Both groups used the same device and were unaware of which group they were in. After a period totaling 18 weeks, patients underwent the final evaluation, as initially performed. Results: Twenty-five patients in total participated until the end of the study (median age 42 years). There were no significant differences between TG and SG based on age, sex, body mass index or severity of genotype. At the end of the training, both groups showed a significant increase in PEmax and PImax, improvement in Vcap and in exercise tolerance and dyspnea reduction while performing daily life activities. The same was observed in patients grouped according to disease severity (HbSS and HbSβ0 vs HbSC and HbSβ+), without differences between groups. Conclusion: Home-based inspiratory muscle training benefits outpatients with SCD, including the sham load group. Trial registration:http://www.ensaiosclinicos.gov.br; registration number: RBR-6g8n92.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Exercícios Respiratórios , Anemia Falciforme , Capacidade Inspiratória , Tolerância ao Exercício , Capnografia , Pressões Respiratórias Máximas
16.
Animals (Basel) ; 11(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068514

RESUMO

This study explores the application of electric impedance tomography (EIT) to estimate tidal volume (VT) by measuring impedance change per breath (∆Zbreath). Seventeen healthy horses were anaesthetised and mechanically ventilated for elective procedures requiring dorsal recumbency. Spirometric VT (VTSPIRO) and ∆Zbreath were recorded periodically; up to six times throughout anaesthesia. Part 1 assessed these variables at incremental delivered VT of 10, 12 and 15 mL/kg. Part 2 estimated VT (VTEIT) in litres from ∆Zbreath at three additional measurement points using a line of best fit obtained from Part 1. During part 2, VT was adjusted to maintain end-tidal carbon dioxide between 45-55 mmHg. Linear regression determined the correlation between VTSPIRO and ∆Zbreath (part 1). Estimated VTEIT was assessed for agreement with measured VTSPIRO using Bland Altman analysis (part 2). Marked variability in slope and intercepts was observed across horses. Strong positive correlation between ∆Zbreath and VTSPIRO was found in each horse (R2 0.9-0.99). The agreement between VTEIT and VTSPIRO was good with bias (LOA) of 0.26 (-0.36-0.88) L. These results suggest that, in anaesthetised horses, EIT can be used to monitor and estimate VT after establishing the individual relationship between these variables.

17.
São Paulo med. j ; 139(5): 505-510, May 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1290253

RESUMO

ABSTRACT BACKGROUND: The mechanism of exercise limitation in idiopathic pulmonary arterial hypertension (IPAH) is not fully understood. The role of hemodynamic alterations is well recognized, but mechanical, ventilatory and gasometric factors may also contribute to reduction of exercise capacity in these individuals. OBJECTIVE: To investigate whether there is an association between ventilatory pattern and stress Doppler echocardiography (SDE) variables in IPAH patients. DESIGN AND SETTING: Single-center prospective study conducted in a Brazilian university hospital. METHODS: We included 14 stable IPAH patients and 14 age and sex-matched controls. Volumetric capnography (VCap), spirometry, six-minute walk test and SDE were performed on both the patients and the control subjects. Arterial blood gases were collected only from the patients. The IPAH patients and control subjects were compared with regard to the abovementioned variables. RESULTS: The mean age of the patients was 38.4 years, and 78.6% were women. The patients showed hypocapnia, and in spirometry 42.9% presented forced vital capacity (FVC) below the lower limit of normality. In VCap, IPAH patients had higher respiratory rates (RR) and lower elimination of CO2 in each breath. There was a significant correlation between reduced FVC and the magnitude of increases in tricuspid regurgitation velocity (TRV). In IPAH patients, VCap showed similar tidal volumes and a higher RR, which at least partially explained the hypocapnia. CONCLUSIONS: The patients with IPAH showed hypocapnia, probably related to their higher respiratory rate with preserved tidal volumes; FVC was reduced and this reduction was positively correlated with cardiac output.


Assuntos
Humanos , Feminino , Adulto , Hipertensão Arterial Pulmonar , Estudos Transversais , Estudos Prospectivos , Ecocardiografia sob Estresse , Teste de Esforço , Hipertensão Pulmonar Primária Familiar , Pulmão/diagnóstico por imagem
18.
Pediatr Pulmonol ; 56(7): 2102-2107, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866691

RESUMO

BACKGROUND: Ventilated neonates with hypoxemic respiratory failure (HRF) may show a ventilation-perfusion (V/Q) mismatch. OBJECTIVE: To evaluate the difference between the Bohr (Vd, Bohr ) and Enghoff (Vd, Enghoff ) dead spaces in infants by using volumetric capnography based on ventilator graphics and capnograms. METHODS: This study enrolled 46 ventilated infants (mean birth weight, 2239 ± 640 g; mean gestational age, 35.5 ± 3.3 weeks). We performed volumetric capnography and calculated Vd, Bohr and Vd, Enghoff when arterial blood sampling was necessary for treatment. According to the oxygenation index (OI) based on the Montreux definition of neonatal acute respiratory distress syndrome, each measurement was classified into the HRF (OI ≥ 4) or control (OI < 4) group. Then, a regression analysis was performed to evaluate the correlation between the OI and the difference between Vd, Enghoff and Vd, Bohr . RESULTS: The median Vd, Enghoff /tidal volume (VT ) was significantly higher in the HRF group (0.55 [interquartile range, 0.47-0.68]) than in the control group (0.46 [0.37-0.57]). The HRF group showed a larger difference between Vd, Enghoff /VT and Vd, Bohr /VT than the control group (median, 0.22 [0.15-0.29] vs. 0.10 [0.06-0.14], respectively). Moreover, the regression analysis of the relationship between OI and Vd, Enghoff /VT - Vd, Bohr /VT showed a positive correlation (r = .60, p < .001). CONCLUSION: Ventilated neonates with hypoxemic respiratory failure showed a large difference between Vd, Enghoff and Vd, Bohr , possibly reflecting a low V/Q mismatch and right-to-left shunting.


Assuntos
Espaço Morto Respiratório , Insuficiência Respiratória , Capnografia , Dióxido de Carbono , Humanos , Lactente , Recém-Nascido , Respiração Artificial , Insuficiência Respiratória/terapia , Volume de Ventilação Pulmonar
19.
J Pediatr Intensive Care ; 10(1): 31-37, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33585059

RESUMO

The aim of this study was to examine the use of volumetric capnography monitoring to assess cardiopulmonary resuscitation (CPR) effectiveness by correlating it with cardiac output (CO), and to evaluate the effect of epinephrine boluses on both end-tidal carbon dioxide (EtCO 2 ) and the volume of CO 2 elimination (VCO 2 ) in a swine ventricular fibrillation cardiac arrest model. Planned secondary analysis of data collected to investigate the use of noninvasive monitors in a pediatric swine ventricular fibrillation cardiac arrest model was performed. Twenty-eight ventricular fibrillatory arrests with open cardiac massage were conducted. During CPR, EtCO 2 and VCO 2 had strong correlation with CO, measured as a percentage of baseline pulmonary blood flow, with correlation coefficients of 0.83 ( p < 0.001) and 0.53 ( p = 0.018), respectively. However, both EtCO 2 and VCO 2 had weak and nonsignificant correlation with diastolic blood pressure during CPR 0.30 ( p = 0.484) (95% confidence interval [CI], -0.51-0.83) and 0.25 ( p = 0.566) (95% CI, -0.55-0.81), respectively. EtCO 2 and VCO 2 increased significantly after the first epinephrine bolus without significant change in CO. The correlations between EtCO 2 and VCO 2 and CO were weak 0.20 ( p = 0.646) (95% CI, -0.59-0.79), and 0.27 ( p = 0.543) (95% CI, -0.54-0.82) following epinephrine boluses. Continuous EtCO 2 and VCO 2 monitoring are potentially useful metrics to ensure effective CPR. However, transient epinephrine administration by boluses might confound the use of EtCO 2 and VCO 2 to guide chest compression.

20.
Front Physiol ; 12: 785014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992549

RESUMO

Mechanical ventilation (MV) is a lifesaving supportive intervention in the management of acute respiratory distress syndrome (ARDS), buying time while the primary precipitating cause is being corrected. However, MV can contribute to a worsening of the primary lung injury, known as ventilation-induced lung injury (VILI), which could have an important impact on outcome. The ARDS lung is characterized by diffuse and heterogeneous lung damage and is particularly prone to suffer the consequences of an excessive mechanical stress imposed by higher airway pressures and volumes during MV. Of major concern is cyclic overdistension, affecting those lung segments receiving a proportionally higher tidal volume in an overall reduced lung volume. Theoretically, healthier lung regions are submitted to a larger stress and cyclic deformation and thus at high risk for developing VILI. Clinicians have difficulties in detecting VILI, particularly cyclic overdistension at the bedside, since routine monitoring of gas exchange and lung mechanics are relatively insensitive to this mechanism of VILI. Expired CO2 kinetics integrates relevant pathophysiological information of high interest for monitoring. CO2 is produced by cell metabolism in large daily quantities. After diffusing to tissue capillaries, CO2 is transported first by the venous and then by pulmonary circulation to the lung. Thereafter diffusing from capillaries to lung alveoli, it is finally convectively transported by lung ventilation for its elimination to the atmosphere. Modern readily clinically available sensor technology integrates information related to pulmonary ventilation, perfusion, and gas exchange from the single analysis of expired CO2 kinetics measured at the airway opening. Current volumetric capnography (VCap), the representation of the volume of expired CO2 in one single breath, informs about pulmonary perfusion, end-expiratory lung volume, dead space, and pulmonary ventilation inhomogeneities, all intimately related to cyclic overdistension during MV. Additionally, the recently described capnodynamic method provides the possibility to continuously measure the end-expiratory lung volume and effective pulmonary blood flow. All this information is accessed non-invasively and breath-by-breath helping clinicians to personalize ventilatory settings at the bedside and minimize overdistension and cyclic deformation of lung tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...