Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cancer Genomics Proteomics ; 21(3): 272-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670586

RESUMO

BACKGROUND/AIM: Constitutional chromosomal aberrations are rare in hematologic malignancies and their pathogenetic role is mostly poorly understood. We present a comprehensive molecular characterization of a novel constitutional chromosomal translocation found in two siblings - sisters - diagnosed with myelodysplastic syndrome (MDS). MATERIALS AND METHODS: Bone marrow and blood cells from the two patients were examined using G-banding, RNA sequencing, PCR, and Sanger sequencing. RESULTS: We identified a balanced t(17;19)(q21;p13) translocation in both siblings' bone marrow, blood cells, and phytohemagglutinin-stimulated lymphocytes. The translocation generated a MYO1F::WNK4 chimera on the der(19)t(17;19), encoding a chimeric serine/threonine kinase, and a VPS25::MYO1F on the der(17), potentially resulting in an aberrant VPS25 protein. CONCLUSION: The t(17;19)(q21;p13) translocation found in the two sisters probably predisposed them to myelodysplasia. How the MYO1F::WNK4 and/or VPS25::MYO1F chimeras, perhaps especially MYO1F::WNK4 that encodes a chimeric serine/threonine kinase, played a role in MDS pathogenesis, remains incompletely understood.


Assuntos
Síndromes Mielodisplásicas , Irmãos , Translocação Genética , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Feminino , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 19/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Fusão Oncogênica/genética , Pessoa de Meia-Idade
2.
BMC Nephrol ; 24(1): 217, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481568

RESUMO

BACKGROUND: Studies reported that kelch-like protein 3 (KLHL3)-Cullin3(CUL3) E3 ligase ubiquitinated with-no-lysine kinase 4 (WNK4). Impaired WNK4 ubiquitination plays a key role in Familial hyperkalemic hypertension (FHHt, also called pseudohypoaldosteronism type II) which results from overaction of thiazide-sensitive sodium chloride cotransport (NCC). In addition, researchers have also found that dietary potassium deficiency activates NCC along the renal distal convoluted tubule (DCT). However, the underlying mechanism remains unclear about the relationship between potassium and WNK4. METHODS: In the present study, we conducted in vitro and in vivo experiments to confirm that KLHL3-dependent WNK4 degradation is affected by potassium through the neddylation and autophagy pathway. In vitro, the WNK4 and KLHL3 plasmids were cotransfected into HEK293 cell lines by lipofectamine 2000, and then incubated with different potassium concentrations (1mmol/L and 10mmol/L) for 24 h, and further treated with MLN4924 or the autophagy inhibitor or both of MLN4924 and the autophagy inhibitor for another 24 h respectively. In vivo, we created mice that were fed with low or high potassium diets and then were injected MLN4924 in the experimental groups. The expression of WNK4, pWNK4, KLHL3, NEDD8, LC3 ,and P62 was detected by western blotting in vitro and vivo experiments. RESULTS: We found that the abundance and phosphorylation of WNK4 increase when neddylation is inhibited both in vitro and vivo. Furthermore, the abundance of pWNK4, WNK4, NEDD8, and KLHL3 was increased in the low potassium (LK) group. Inhibiting autophagy can ameliorate the effect of potassium on the abundance and activity of WNK4 to some extent. CONCLUSION: These findings suggest a complex regulation of potassium in the degradation of WNK4. Low potassium can activate WNK4, which may be related to neddylation and autophagy, but the mechanism needs to be further studied.


Assuntos
Autofagia , Potássio , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal , Células HEK293 , Túbulos Renais Distais , Proteínas dos Microfilamentos , Proteínas Serina-Treonina Quinases/genética
3.
Biochem Biophys Res Commun ; 670: 87-93, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37285722

RESUMO

Mutations in with-no-lysine [K] kinase 4 (WNK4) and kelch-like 3 (KLHL3) are linked to pseudohypoaldosteronism type 2 (PHAII, also known as familial hyperkalemic hypertension or Gordon's syndrome). WNK4 is degraded by a ubiquitin E3 ligase with KLHL3 as the substrate adaptor for WNK4. Several PHAII-causing mutations, e.g. those in the acidic motif (AM) of WNK4 and in the Kelch domain of KLHL3, impair the binding between WNK4 and KLHL3. This results in a reduction in WNK4 degradation and an increase in WNK4 activity, leading to PHAII. Although the AM is important in interacting with KLHL3, it is unclear whether this is the only motif in WNK4 responsible for KLHL3-interacting. In this study, a novel motif of WNK4 that is capable of mediating the degradation of the protein by KLHL3 was identified. This C-terminal motif (termed as CM) is located in amino acids 1051-1075 of WNK4 and is rich in negatively charged residues. Both AM and CM responded to the PHAII mutations in the Kelch domain of KLHL3 in a similar manner, but AM is dominant among the two motifs. The presence of this motif likely allows WNK4 protein to respond to the KLHL3-mediated degradation when the AM is dysfunctional due to a PHAII mutation. This may be one of the reasons why PHAII is less severe when WNK4 is mutated compared to KLHL3 is mutated.


Assuntos
Proteínas de Transporte , Pseudo-Hipoaldosteronismo , Humanos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Mutação , Ubiquitina/metabolismo , Pseudo-Hipoaldosteronismo/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo
4.
Endocr J ; 70(7): 723-729, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37081692

RESUMO

Pseudohypoaldosteronism (PHA) type II (PHA2) is a genetic disorder that leads to volume overload and hyperkalemic metabolic acidosis. PHA2 and PHA type I (PHA1) have been considered to be genetic and pediatric counterparts to type IV renal tubular acidosis (RTA). Type IV RTA is frequently found in adults with chronic kidney disease and is characterized by hyperchloremic hyperkalemic acidosis with normal anion gap (AG). However, we recently observed that PHA1 was not always identical to type IV RTA. In this study, we focused on the acid-base balance in PHA2. Through a literature search published between 2008-2020, 46 molecularly diagnosed cases with PHA2 were identified (median age of 14 years). They comprised 11 sets of familial and 16 sporadic cases and the pathology was associated with mutations in WNK 4 (n = 1), KLHL3 (n = 17), and CUL3 (n = 9). The mean potassium (K+) level was 6.2 ± 0.9 mEq/L (n = 46, range 4.0-8.6 mEq/L), whereas that of chloride (Cl-) was 110 ± 3.5 mEq/L (n = 41, 100-119 mEq/L), with 28 of 41 cases identified as hyperchloremic. More than half of the cases (18/35) presented with metabolic acidosis. Although AG data was obtained only in 16 cases, all but one cases were within normal AG range. Both Cl- and HCO3- levels showed significant correlations with K+ levels, which suggested that the degree of hyperchloremia and acidosis reflect the clinical severity, and is closely related to the fundamental pathophysiology of PHA2. In conclusion, our study confirmed that PHA2 is compatible with type IV RTA based on laboratory findings.


Assuntos
Acidose , Hiperpotassemia , Hipoaldosteronismo , Pseudo-Hipoaldosteronismo , Adulto , Humanos , Criança , Adolescente , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/complicações , Pseudo-Hipoaldosteronismo/diagnóstico , Hipoaldosteronismo/complicações , Acidose/complicações , Mutação , Hiperpotassemia/genética
5.
Braz. j. med. biol. res ; 56: e12392, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420750

RESUMO

Distal convoluted tubules (DCT), which contain the Na-Cl cotransporter (NCC) inhibited by thiazide diuretics, undergo complex modulation to preserve Na+ and K+ homeostasis. The lysine kinases 1 and 4 (WNK1 and WNK4), identified as hyperactive in the hereditary disease pseudohypoaldosteronism type 2, are responsible for activation of NCC and consequent hypokalemia and hypertension. WNK4, highly expressed in DCT, activates the SPAK/OSR1 kinases, which phosphorylate NCC and other regulatory proteins and transporters in the distal nephron. WNK4 works as a chloride sensor through a Cl- binding site, which acts as an on/off switch at this kinase in response to changes of basolateral membrane electrical potential, the driving force of cellular Cl- efflux. High intracellular Cl- in hyperkalemia decreases NCC phosphorylation and low intracellular Cl- in hypokalemia increases NCC phosphorylation and activity, which makes plasma K+ concentration a central modulator of NCC and of K+ secretion. The WNK4 phosphorylation by cSrc or SGK1, activated by angiotensin II or aldosterone, respectively, is another relevant mechanism of NCC, ENaC, and ROMK modulation in states such as volume reduction, hyperkalemia, and hypokalemia. Loss of NCC function induces upregulation of electroneutral NaCl reabsorption by type B intercalated cells through the combined activity of pendrin and NDCBE, as demonstrated in double knockout mice (KO) animal models, Ncc/pendrin or Ncc/NDCBE. The analysis of ks-Nedd-4-2 KO animal models introduced the modulation of NEDD4-2 by intracellular Mg2+ activity as an important regulator of NCC, explaining the thiazide-induced persistent hypokalemia.

6.
Pflugers Arch ; 474(8): 869-884, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35895103

RESUMO

Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl-, and HCO3-, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components-kinases, ubiquitin ligases, phosphatases, transcription factors, and others-have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl- cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.


Assuntos
Canais Epiteliais de Sódio , Túbulos Renais Distais , Aldosterona/metabolismo , Eletrólitos/metabolismo , Canais Epiteliais de Sódio/metabolismo , Homeostase , Transporte de Íons , Túbulos Renais Distais/metabolismo , Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
7.
Animals (Basel) ; 12(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35158718

RESUMO

Polyphasic skeletal muscle degeneration, necrosis and mineralization of skeletal muscle was diagnosed in eight juvenile free-ranging lions (Panthera leo), from five different litters in the Greater Kruger National Park area that were unable to walk properly. A detailed investigation was not possible in free-ranging lions, so the cause could not be determined. The cases resembled hypokalemic polymyopathy in domestic cats with muscle weakness. A candidate-gene approach previously identified a nonsense mutation in the gene coding for the enzyme lysine-deficient 4 protein kinase (WNK4) associated with the disease in Burmese and Tonkinese cats. In this study, we sequenced all 19 exons of the gene in one case, and two control samples, to identify possible mutations that may be associated with polymyopathy in free-ranging lions. Here, no mutations were detected in any of the exons sequenced. Our findings indicate that the WNK4 gene is not a major contributor to the condition in these lions. Further studies into the pathogenesis of this condition are needed to inform conservation policies for this vulnerable, iconic African species.

8.
Nephron ; 146(4): 418-428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35093948

RESUMO

INTRODUCTION: Pseudohypoaldosteronism type II (PHA II) is a Mendelian disorder, featuring hyperkalemic acidosis and low plasma renin levels, typically associated with hypertension. Mutations in WNK1, WNK4, CUL3, and KLHL3 cause PHA II, with dominant mutations in WNK1, WNK4, and CUL3 and either dominant or recessive mutations in KLHL3. Fourteen families with recessive KLHL3 mutations have been reported, with diagnosis at the age of 3 months to 56 years, typically in individuals with normal kidney function. METHODS: We performed clinical and genetic investigations in a patient with hyperkalemic hypertension and used molecular dynamics simulations, heterologous expression in COS7 cells, and Western blotting to investigate the effect of a KLHL3 candidate disease mutation on WNK4 protein expression. RESULTS: The patient, a 58-year-old woman from a consanguineous family, showed hypertension, persistent hyperkalemic acidosis associated with severe muscle pain, nephrolithiasis, chronic kidney disease (CKD), and coronary heart disease. Therapy with hydrochlorothiazide corrected hyperkalemia, hypertension, and muscle pain. Genetic analysis revealed a homozygous p.Arg431Trp mutation at a highly conserved KLHL3 position. Simulations suggested reduced stability of the mutant protein, which was confirmed by Western blot. Compared with wild-type KLHL3, cotransfection of p.Arg431Trp KLHL3 led to increased WNK4 protein levels, inferred to cause increased NaCl reabsorption via the thiazide-sensitive carrier and PHA II. CONCLUSIONS: Even in patients presenting late in life and in the presence of CKD, PHA II should be suspected if renin levels are low and hyperkalemic acidosis and hypertension are inadequate for CKD stage, particularly in the presence of a suspicious family history.


Assuntos
Acidose , Hipertensão , Pseudo-Hipoaldosteronismo , Insuficiência Renal Crônica , Proteínas Adaptadoras de Transdução de Sinal/genética , Feminino , Humanos , Hipertensão/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Mutação , Mialgia , Pseudo-Hipoaldosteronismo/genética , Renina/genética
9.
J Am Soc Nephrol ; 33(3): 584-600, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064051

RESUMO

BACKGROUND: Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) gene cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine (K) Kinase 4 (WNK4), inappropriately activating sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK), which then phosphorylates and hyperactivates the Na+Cl- cotransporter (NCC). The precise mechanism by which CUL3-Δ9 causes FHHt is unclear. We tested the hypothesis that reduced abundance of CUL3 and of Kelch-like 3 (KLHL3), the CUL3 substrate adaptor for WNK4, is mechanistically important. Because JAB1, an enzyme that inhibits CUL3 activity by removing the ubiquitin-like protein NEDD8, cannot interact with CUL3-Δ9, we also determined whether Jab1 disruption mimicked the effects of CUL3-Δ9 expression. METHODS: We used an inducible renal tubule-specific system to generate several mouse models expressing CUL3-Δ9, mice heterozygous for both CUL3 and KLHL3 (Cul3+/-/Klhl3+/- ), and mice with short-term Jab1 disruption (to avoid renal injury associated with long-term disruption). RESULTS: Renal KLHL3 was higher in Cul3-/- mice, but lower in Cul3-/-/Δ9 mice and in the Cul3+/-/Δ9 FHHt model, suggesting KLHL3 is a target for both WT and mutant CUL3. Cul3+/-/Klhl3+/- mice displayed increased WNK4-SPAK activation and phospho-NCC abundance and an FHHt-like phenotype with increased plasma [K+] and salt-sensitive blood pressure. Short-term Jab1 disruption in mice lowered the abundance of CUL3 and KLHL3 and increased the abundance of WNK4 and phospho-NCC. CONCLUSIONS: Jab1-/- mice and Cul3+/-/Klhl3+/- mice recapitulated the effects of CUL3-Δ9 expression on WNK4-SPAK-NCC. Our data suggest degradation of both KLHL3 and CUL3 plays a central mechanistic role in CUL3-Δ9-mediated FHHt.


Assuntos
Proteínas Culina , Hipertensão , Pseudo-Hipoaldosteronismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Culina/genética , Proteínas Culina/metabolismo , Feminino , Humanos , Hipertensão/genética , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
10.
Front Immunol ; 12: 720844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489970

RESUMO

Background: Ventilator-induced lung injury (VILI) is characterized by vascular barrier dysfunction and suppression of alveolar fluid clearance (AFC). Obesity itself leads to chronic inflammation, which may initiate an injurious cascade to the lungs and simultaneously induce a protective feedback. In this study, we investigated the protective mechanism of obesity on VILI in a mouse model. Methods: The VILI model was set up via 6-h mechanical ventilation with a high tidal volume. Parameters including lung injury score, STAT3/NFκB pathway, and AFC were assessed. Mice with diet-induced obesity were obtained by allowing free access to a high-fat diet since the age of 3 weeks. After a 9-week diet intervention, these mice were sacrificed at the age of 12 weeks. The manipulation of SOCS3 protein was achieved by siRNA knockdown and pharmaceutical stimulation using hesperetin. WNK4 knockin and knockout obese mice were used to clarify the pathway of AFC modulation. Results: Obesity itself attenuated VILI. Knockdown of SOCS3 in obese mice offset the protection against VILI afforded by obesity. Hesperetin stimulated SOCS3 upregulation in nonobese mice and provided protection against VILI. In obese mice, the WNK4 axis was upregulated at the baseline, but was significantly attenuated after VILI compared with nonobese mice. At the baseline, the manipulation of SOCS3 by siRNA and hesperetin also led to the corresponding alteration of WNK4, albeit to a lesser extent. After VILI, WNK4 expression correlated with STAT3/NFκB activation, regardless of SOCS3 status. Obese mice carrying WNK4 knockout had VILI with a severity similar to that of wild-type obese mice. The severity of VILI in WNK4-knockin obese mice was counteracted by obesity, similar to that of wild-type nonobese mice only. Conclusions: Obesity protects lungs from VILI by upregulating SOCS3, thus suppressing the STAT3/NFκB inflammatory pathway and enhancing WNK4-related AFC. However, WNK4 activation is mainly from direct NFκB downstreaming, and less from SOCS3 upregulation. Moreover, JAK2-STAT3/NFκB signaling predominates the pathogenesis of VILI. Nevertheless, the interaction between SOCS3 and WNK4 in modulating VILI in obesity warrants further investigation.


Assuntos
Obesidade/complicações , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteína 3 Supressora da Sinalização de Citocinas/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
11.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498219

RESUMO

K+ loading inhibits NKCC2 (Na-K-Cl cotransporter) and NCC (Na-Cl cotransporter) in the early distal tubules, resulting in Na+ delivery to the late distal convoluted tubules (DCTs). In the DCTs, Na+ entry through ENaC (epithelial Na channel) drives K+ secretion through ROMK (renal outer medullary potassium channel). WNK4 (with-no-lysine 4) regulates the NCC/NKCC2 through SAPK (Ste20-related proline-alanine-rich kinase)/OSR1 (oxidative stress responsive). K+ loading increases intracellular Cl-, which binds to the WNK4, thereby inhibiting autophosphorylation and downstream signals. Acute K+ loading-deactivated NCC was not observed in Cl--insensitive WNK4 mice, indicating that WNK4 was involved in K+ loading-inhibited NCC activity. However, chronic K+ loading deactivated NCC in Cl--insensitive WNK4 mice, indicating that other mechanisms may be involved. We previously reported that mammalian Ste20-like protein kinase 3 (MST3/STK24) was expressed mainly in the medullary TAL (thick ascending tubule) and at lower levels in the DCTs. MST3 -/- mice exhibited higher ENaC activity, causing hypernatremia and hypertension. To investigate MST3 function in maintaining Na+/K+ homeostasis in kidneys, mice were fed diets containing various concentrations of Na+ and K+. The 2% KCl diets induced less MST3 expression in MST3 -/- mice than that in wild-type (WT) mice. The MST3 -/- mice had higher WNK4, NKCC2-S130 phosphorylation, and ENaC expression, resulting in lower urinary Na+ and K+ excretion than those of WT mice. Lower urinary Na+ excretion was associated with elevated plasma [Na+] and hypertension. These results suggest that MST3 maintains Na+/K+ homeostasis in response to K+ loading by regulation of WNK4 expression and NKCC2 and ENaC activity.


Assuntos
Homeostase , Potássio na Dieta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sódio/metabolismo , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Eliminação Renal , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
12.
Kidney Int ; 99(2): 350-363, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32956652

RESUMO

NHA2 is a sodium/proton exchanger associated with arterial hypertension in humans, but the role of NHA2 in kidney function and blood pressure homeostasis is currently unknown. Here we show that NHA2 localizes almost exclusively to distal convoluted tubules in the kidney. NHA2 knock-out mice displayed reduced blood pressure, normocalcemic hypocalciuria and an attenuated response to the thiazide diuretic hydrochlorothiazide. Phosphorylation of the thiazide-sensitive sodium/chloride cotransporter NCC and its upstream activating kinase Ste20/SPS1-related proline/alanine rich kinase (SPAK), as well as the abundance of with no lysine kinase 4 (WNK4), were significantly reduced in the kidneys of NHA2 knock-out mice. In vitro experiments recapitulated these findings and revealed increased WNK4 ubiquitylation and enhanced proteasomal WNK4 degradation upon loss of NHA2. The effect of NHA2 on WNK4 stability was dependent from the ubiquitylation pathway protein Kelch-like 3 (KLHL3). More specifically, loss of NHA2 selectively attenuated KLHL3 phosphorylation and blunted protein kinase A- and protein kinase C-mediated decrease of WNK4 degradation. Phenotype analysis of NHA2/NCC double knock-out mice supported the notion that NHA2 affects blood pressure homeostasis by a kidney-specific and NCC-dependent mechanism. Thus, our data show that NHA2 as a critical component of the WNK4-NCC pathway and is a novel regulator of blood pressure homeostasis in the kidney.


Assuntos
Prótons , Sódio , Pressão Sanguínea , Rim/metabolismo , Fosforilação , Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
13.
Exp Ther Med ; 21(2): 133, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33376515

RESUMO

With no lysine 4 (WNK4) is a serine/threonine kinase, which is expressed in the kidney and associated with salt-sensitive hypertension. However, how salt regulates WNK4 remains unclear. In the present study, the C57BL/6 mice and HEK293 cells were treated with high salt and the expression of WNK4 protein and its ubiquitination and phosphorylation levels were detected. Western blotting demonstrated that WNK4 expression was significantly increased in high salt-treated mice and cells. Meanwhile, co-immunoprecipitation analysis demonstrated that the ubiquitination of WNK4 was decreased under high-salt simulation. It was also identified that the Lys-1023 site was the most important ubiquitination site for WNK4, and it was found that phosphorylation at the Ser-1022 site was a prerequisite for ubiquitination. These results suggested that there was crosstalk between phosphorylation and ubiquitination in the WNK4 protein, and high salt may downregulate its phosphorylation and, in turn, decrease its ubiquitination, leading to a decrease in WNK4 degradation. This eventually resulted in an increase in the abundance of WNK4 protein.

14.
Am J Physiol Cell Physiol ; 319(2): C371-C380, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579473

RESUMO

Cation-coupled chloride cotransporters (CCC) play a role in modulating intracellular chloride concentration ([Cl-]i) and cell volume. Cell shrinkage and cell swelling are accompanied by an increase or decrease in [Cl-]i, respectively. Cell shrinkage and a decrease in [Cl-]i increase the activity of NKCCs (Na-K-Cl cotransporters: NKCC1, NKCC2, and Na-Cl) and inhibit the activity of KCCs (K-Cl cotransporters: KCC1 to KCC4), wheras cell swelling and an increase in [Cl-]i activate KCCs and inhibit NKCCs; thus, it is unlikely that the same kinase is responsible for both effects. WNK1 and WNK4 are chloride-sensitive kinases that modulate the activity of CCC in response to changes in [Cl-]i. Here, we showed that WNK3, another member of the serine-threonine kinase WNK family with known effects on CCC, is not sensitive to [Cl-]i but can be regulated by changes in extracellular tonicity. In contrast, WNK4 is highly sensitive to [Cl-]i but is not regulated by changes in cell volume. The activity of WNK3 toward NaCl cotransporter is not affected by eliminating the chloride-binding site of WNK3, further confirming that the kinase is not sensitive to chloride. Chimeric WNK3/WNK4 proteins were produced, and analysis of the chimeras suggests that sequences within the WNK's carboxy-terminal end may modulate the chloride affinity. We propose that WNK3 is a cell volume-sensitive kinase that translates changes in cell volume into phosphorylation of CCC.


Assuntos
Tamanho Celular , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio/metabolismo , Proteínas de Xenopus/genética , Animais , Cloretos/química , Cloretos/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Humanos , Oócitos/química , Oócitos/metabolismo , Fosforilação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio/química , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
15.
Am J Physiol Renal Physiol ; 318(1): F216-F228, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31736353

RESUMO

K+ deficiency stimulates renal salt reuptake via the Na+-Cl- cotransporter (NCC) of the distal convoluted tubule (DCT), thereby reducing K+ losses in downstream nephron segments while increasing NaCl retention and blood pressure. NCC activation is mediated by a kinase cascade involving with no lysine (WNK) kinases upstream of Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive kinase-1 (OSR1). In K+ deficiency, WNKs and SPAK/OSR1 concentrate in spherical cytoplasmic domains in the DCT termed "WNK bodies," the significance of which is undetermined. By feeding diets of varying salt and K+ content to mice and using genetically engineered mouse lines, we aimed to clarify whether WNK bodies contribute to WNK-SPAK/OSR1-NCC signaling. Phosphorylated SPAK/OSR1 was present both at the apical membrane and in WNK bodies within 12 h of dietary K+ deprivation, and it was promptly suppressed by K+ loading. In WNK4-deficient mice, however, larger WNK bodies formed, containing unphosphorylated WNK1, SPAK, and OSR1. This suggests that WNK4 is the primary active WNK isoform in WNK bodies and catalyzes SPAK/OSR1 phosphorylation therein. We further examined mice carrying a kidney-specific deletion of the basolateral K+ channel-forming protein Kir4.1, which is required for the DCT to sense plasma K+ concentration. These mice displayed remnant mosaic expression of Kir4.1 in the DCT, and upon K+ deprivation, WNK bodies developed only in Kir4.1-expressing cells. We postulate a model of DCT function in which NCC activity is modulated by plasma K+ concentration via WNK4-SPAK/OSR1 interactions within WNK bodies.


Assuntos
Hipopotassemia/metabolismo , Rim/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Hipopotassemia/sangue , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Potássio/sangue , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
17.
Biochem Pharmacol ; 171: 113738, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786261

RESUMO

Dysregulation of alveolar macrophage activation has been recognized as the major mechanism in the pathogenesis of acute lung injury. The aim of the present study was to investigate the role of NKCC1 regulating mechanism in modulating macrophage activation. Knockout (SPAK-/- and WNK4-/-) and knockin (WNK4D561A/+) mice were used in this study. LPS induced expression of p-NKCC1 and activation of NFκB in the primary culture of alveolar macrophages. WNK4 or SPAK knockout suppressed p-NKCC1 expression and inflammation cascade activation, whereas WNK4 knockin enhanced these responses. Intrapulmonary administration of LPS induced in vivo expression and phosphorylation of NKCC1 in alveolar inflammation cells and caused a shift in the cell population from macrophage to neutrophil predominance. WNK4 or SPAK knockout attenuated the LPS-induced alveolar cell-population shifting, macrophage NKCC1 phosphorylation, and acute lung injury, whereas WNK4 knockin augmented the inflammatory response. In summary, our results demonstrated the presence of NKCC1 in alveolar macrophage, which is inducible by lipopolysaccharide. Our results also showed showed that the WNK4-SPAK-NKCC1 cascade plays an important role in modulating macrophage activation to regulate LPS-induced lung inflammation and lung injury.


Assuntos
NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/genética , Fosforilação/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/metabolismo , Proteínas Serina-Treonina Quinases/genética , Membro 2 da Família 12 de Carreador de Soluto/genética
18.
Genes (Basel) ; 10(12)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795491

RESUMO

Gordon syndrome is a rare inherited monogenic form of hypertension, which is associated with hyperkalaemia and metabolic acidosis. Since the recognition of this predominantly autosomal dominant condition in the 1960s, the study of families with Gordon syndrome has revealed four genes WNK1, WNK4, KLHL3, and CUL3 to be implicated in its pathogenesis after a phenotype-genotype correlation was realised. The encoded proteins Kelch-like 3 and Cullin 3 interact to form a ring-like complex to ubiquitinate WNK-kinase 4, which, in normal circumstances, interacts with the sodium chloride co-symporter (NCC), the epithelial sodium channel (ENaC), and the renal outer medullary potassium channel (ROMK) in an inhibitory manner to maintain normokalaemia and normotension. WNK-kinase 1 has an inhibitory action on WNK-kinase 4. Mutations in WNK1, WNK4, KLHL3, and CUL3 all result in the accumulation of WNK-kinase 4 and subsequent hypertension, hyperkalaemia, and metabolic acidosis. This review explains the clinical aspects, disease mechanisms, and molecular genetics of Gordon syndrome.


Assuntos
Artrogripose/genética , Fissura Palatina/genética , Pé Torto Equinovaro/genética , Predisposição Genética para Doença , Deformidades Congênitas da Mão/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
19.
Physiol Rep ; 7(17): e14195, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31496133

RESUMO

The distal nephron is essential for calcium homeostasis. This is evidenced by disordered calcium transport following disrupted distal nephron function occurring in salt-wasting tubulopathies or with diuretic use. A plethora of studies support a role for WNK4 in thick ascending limb (TAL) and distal convoluted tubule ion transport with most studies focusing on sodium transport. Little is known about the in vivo role of WNK4 in regulating calcium homeostsis. Here, we investigated the role of WNK4 in regulating distal nephron calcium transport using WNK4 knockout animals (WNK4-/- ). As has been shown previously, we found that baseline urinary calcium levels are normal following WNK4 deletion. Following acute treatment with the loop diuretic, furosemide, which causes hypercalciuria through TAL inhibition, WNK4-/- animals demonstrated increased calcium wasting compared with wild-type controls. WNK4-/- animals had decreased TRPV5 expression along DCT2 supporting a mechanistic role for this calcium channel in the increased calciuresis. As this supported the hypothesis that WNK4-/- animals have a tendency toward calcium wasting under stress, we tested the effects of a calcium-deplete diet on urinary calcium excretion. Urinary calcium excretion and plasma ionized calcium levels were not different between control and knockout animals following consumption of a calcium-deplete diet. Our data show that WNK4, via regulation of TRPV5, limits distal calcium losses following acute treatment with furosemide; however, WNK4 deletion does not affect the chronic renal response to dietary calcium depletion. Our data reveal an in vivo role for WNK4 in distal nephron calcium handling that is important for fine-tuning calcium reabsorption.


Assuntos
Cálcio da Dieta/urina , Túbulos Renais Proximais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Insuficiência Renal/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cálcio da Dieta/metabolismo , Diuréticos/toxicidade , Furosemida/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Eliminação Renal , Insuficiência Renal/etiologia , Sódio/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
20.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382627

RESUMO

Claudin-7 knockout (CLDN7-/-) mice display renal salt wasting and dehydration phenotypes. To address the role of CLDN7 in kidneys, we established collecting duct (CD) cell lines from CLDN7+/+ and CLDN7-/- mouse kidneys. We found that deletion of CLDN7 increased the transepithelial resistance (TER) and decreased the paracellular permeability for Cl- and Na+ in CLDN7-/- CD cells. Inhibition of transcellular Cl- and Na+ channels has no significant effect on TER or dilution potentials. Current-voltage curves were linear in both CLDN7+/+ and CLDN7-/- CD cells, indicating that the ion flux was through the paracellular pathway. The impairment of Cl- and Na+ permeability phenotype can be rescued by CLDN7 re-expression. We also found that WNK4 (its mutations lead to hypertension) expression, but not WNK1, was significantly increased in CLDN7-/- CD cell lines as well as in primary CLDN7-/- CD cells, suggesting that the expression of WNK4 was modulated by CLDN7. In addition, deletion of CLDN7 upregulated the expression level of the apical epithelial sodium channel (ENaC), indicating a potential cross-talk between paracellular and transcellular transport systems. This study demonstrates that CLDN7 plays an important role in salt balance in renal CD cells and modulating WNK4 and ENaC expression levels that are vital in controlling salt-sensitive hypertension.


Assuntos
Claudinas/genética , Canais Epiteliais de Sódio/genética , Hipertensão/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Permeabilidade da Membrana Celular , Cloretos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Rim/metabolismo , Rim/patologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/patologia , Camundongos , Camundongos Knockout , Sódio/metabolismo , Migração Transendotelial e Transepitelial , Proteína Quinase 1 Deficiente de Lisina WNK/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA