Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 935: 173319, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777053

RESUMO

The historical climate variability in East Antarctica inferred from ice cores remains under debate owing to the vastness and complexity of the region. This study evaluates the potential climate variabilities in the Styx-M ice core records (δ18O, d-excess, and snow accumulation) from northern Victoria Land adjacent to the Ross Sea sector of East Antarctica during 1979-2014. Results show that the primary moisture source in this area is the Pacific Ocean sector. Although the annual mean δ18O values was limited to directly indicate the temperature changes, a weak relevance between the average δ18O values and the temperature signal during the austral summer season is detectable. δ18O, d-excess, and snow accumulation correlate with sea surface temperature and sea ice extent in the Ross Sea sector. A coupled influence of the SAM, ASL, and ENSO climate indices is expected, because the oceanic environment in this region is influenced by them. The pronounced intrusion of oceanic moisture coupled with atmospheric circulation patterns over the Ross Sea region makes the Styx-M ice core a promising record of the local oceanic conditions, with the snow accumulation rate being a direct proxy. Additionally, the analysis of trace elements from 1979 to 1999 revealed the presence of crustal dust sourced from the Transantarctic Mountains, as well as non-crustal sources, both intricately linked with atmospheric transport. These results demonstrate that the contributions of-and variations in-oceanic conditions associated with atmospheric circulation changes are detectable and dominant in the Styx-M ice core. This study serves as a basis for interpreting longer parts of the Styx-M ice core.

2.
Sci Total Environ ; 927: 172269, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583607

RESUMO

Despite the extensive research conducted on plant-soil-water interactions, the understanding of the role of plant water sources in different plant successional stages remains limited. In this study, we employed a combination of water isotopes (δ2H and δ18O) and leaf δ13C to investigate water use patterns and leaf water use efficiency (WUE) during the growing season (May to September 2021) in Hailuogou glacier forefronts in China. Our findings revealed that surface soil water and soil nutrient gradually increased during primary succession. Dominant plant species exhibited a preference for upper soil water uptake during the peak leaf out period (June to August), while they relied more on lower soil water sources during the post-leaf out period (May) or senescence (September to October). Furthermore, plants in late successional stages showed higher rates of water uptake from uppermost soil layers. Notably, there was a significant positive correlation between the percentage of water uptake by plants and available soil water content in middle and late stages. Additionally, our results indicated a gradual decrease in WUE with progression through succession, with shallow soil moisture utilization negatively impacting overall WUE across all succession stages. Path analysis further highlighted that surface soil moisture (0- 20 cm) and middle layer nutrient availability (20- 50 cm) played crucial roles in determining WUE. Overall, this research emphasizes the critical influence of water source selection on plant succession dynamics while elucidating underlying mechanisms linking succession with plant water consumption.


Assuntos
Ecossistema , Camada de Gelo , Solo , Água , China , Solo/química , Plantas , Folhas de Planta , Monitoramento Ambiental
3.
Environ Geochem Health ; 46(4): 133, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483667

RESUMO

Thermal waters in Topusko (Croatia), with temperatures of up to 65 °C, have been used for heating, health, and recreational tourism for the past fifty years. Hydrogeochemical monitoring can provide insights into deeper geological processes and indicate system changes from baseline levels. It helps to identify potential anthropogenic impacts, as well as natural changes. Hydrogeochemical, geothermometrical, and environmental isotope studies of thermal waters in Topusko were conducted to improve the existing conceptual model of the Topusko hydrothermal system (THS), providing a baseline for continuous monitoring of the thermal resource. 2-year thermal springs and precipitation monitoring took place from March 2021 until March 2023. Major anions and cations, stable and radioactive isotopes (i.e. 18O, 2H, SO42-, 3H and 14C) and geothermometers were used to assess the origin of thermal waters in Topusko and their interaction with thermal aquifer. The results indicate the meteoric origin of thermal water, which was recharged in colder climatic conditions around the late Pleistocene-Early Holocene. Thermal water was last in contact with the atmosphere before approximately 9.5 kyr. Ca-HCO3 hydrochemical facies suggests carbonate dissolution as the dominant process driving the solute content. Geothermometrical results indicate an equilibrium temperature in the reservoir of 90 °C.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Croácia , Água Subterrânea/química , Isótopos , Água , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 469: 134023, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492393

RESUMO

Chronic exposure to high fluoride (F-) levels in groundwater causes community fluorosis and non-carcinogenic health concerns in local people. This study described occurrence, dental fluorosis, and origin of high F-groundwater using δ2H and δ18O isotopes at semiarid Gilgit, Pakistan. Therefore, groundwater (n = 85) was collected and analyzed for F- concentrations using ion-chromatography. The lowest F- concentration was 0.4 mg/L and the highest 6.8 mg/L. F- enrichment is linked with higher pH, NaHCO3, NaCl, δ18O, Na+, HCO3-, and depleted Ca+2 aquifers. The depleted δ2H and δ18O values indicated precipitation and higher values represented the evaporation effect. Thermodynamic considerations of fluorite minerals showed undersaturation, revealing that other F-bearing minerals viz. biotite and muscovite were essential in F- enrichment in groundwater. Positive matrix factorization (PMF) and principal component analysis multilinear regression (PCAMLR) models were used to determine four-factor solutions for groundwater contamination. The PMF model results were accurate and reliable compared with those of the PCAMLR model, which compiled the overlapping results. Therefore, 28.3% exceeded the WHO permissible limit of 1.5 mg/L F-. Photomicrographs of granite rocks showed enriched F-bearing minerals that trigger F- in groundwater. The community fluorosis index values were recorded at > 0.6, revealing community fluorosis and unsuitability of groundwater for drinking.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Fluoretos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Minerais/análise , Água Subterrânea/química , Isótopos/análise
5.
Sci Total Environ ; 912: 168944, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042195

RESUMO

Coastal oceans are highly responsive to typhoons, making them one of the most affected regions. However, our understanding of the impact of typhoon intensity and movement path on marine dynamic processes and eco-environmental factors remains limited because there are very few on-site investigations, especially continuous field observations in the bay during typhoon events. This study investigated dual water isotopes through a continuous survey (with a 5-day interval) during ten cruises in Zhanjiang Bay, associated with two typhoons of varying intensities and landing tracks (left and right sides). After typhoons, the water mass mixing intensified and lasted for several weeks, depending on the intensity of typhoons. During the typhoon periods, there was a considerable increase in contributions from freshwater to nutrient loads; however, this contribution was higher from the stronger typhoon than the weaker one. The weaker Typhoon Lionrock, which landed on the left side of the bay, enhanced the ocean front due to onshore winds induced by the typhoon, causing intrusion of high-salinity seawater into the bay and retaining pollutants in the bay. However, when stronger Typhoon Chaba landed on the right side, offshore winds induced by counterclockwise wind stress during the typhoon resulted in more seawater flowing toward the lower and outer bay. This prevented the forming of an ocean front and played a dilution role in pollutants through its hydrodynamic process. This was primarily due to the fact that the landing trajectory of typhoons directly influenced the direction of seawater flow in Zhanjiang Bay, while the intensity of typhoons further amplifies these flow patterns. This study suggests that tracks of typhoon movement, rather than their intensity and terrestrial runoff, play a crucial role in governing marine dynamics and nutrient supplies in coastal bays during typhoon events.

6.
Mar Pollut Bull ; 199: 115959, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154169

RESUMO

In the extraordinary weather conditions of the austral summer of 2023, fossil mosses thawed out from under the Bellingshausen Ice Dome, King George Island, Southern Shetland Archipelago of maritime Antarctica. At the end of the austral summer, we directly measured greenhouse gas fluxes (CH4 and CO2) from the surface of fossil mosses. We showed that fossil mosses were strong emitters of CH4 and weak emitters of CO2. The real-time measured CH4 emissions reached 0.173 µmol m-2 s-1, which is comparable to CH4 efflux in water bodies or wet tundra in the Arctic.


Assuntos
Briófitas , Metano , Regiões Antárticas , Camada de Gelo , Dióxido de Carbono/análise , Fósseis
7.
Mar Environ Res ; 194: 106311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154195

RESUMO

Dual water isotopes were investigated to reveal the seasonal distribution of water masses and their impacts on nutrient supply in southern Beibu Gulf. In summer and winter, the South China Sea (SCS) water (61-69%) contributed the most to the seawater in the southern Beibu Gulf, followed by the diluted water (24-34%), and the west-Guangdong coastal current (WGCC) (5-7%) had the minimum contribution. However, the major nutrient source shifted from the diluted water in summer (39-73%) to the SCS water (57-90%) in winter. The WGCC's impact on nutrient loads was relatively small (2-10% in summer, 4-34% in winter). Our results highlight the control of nutrient supply was the SCS water (winter) and diluted water (summer), with limited influence from the WGCC, providing new insights into the impact of water mass transportation and its nutrient supply in the Beibu Gulf.


Assuntos
Poluentes Químicos da Água , Água , Estações do Ano , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água do Mar , China
8.
Sci Bull (Beijing) ; 69(3): 375-381, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103951

RESUMO

Understanding the impact of meltwater discharge during the final stage of the Laurentide Ice Sheet (LIS) has important implications for predicting sea level rise and climate change. Here we present a high-resolution ice-core isotopic record from the central Tibetan Plateau (TP), where the climate is sensitive to the meltwater forcing, and explore possible signals of the climate response to potential LIS meltwater discharges in the early to mid-Holocene. The record shows four abrupt large fluctuations during the 7-9 ka BP (kiloannum before present), reflecting large shifts of the mid-latitude westerlies and the Indian summer monsoon (ISM) over this period, and they corresponded to possible LIS freshwater events documented in other paleoclimate records. Our study suggests that multiple rapid meltwater discharge events might have occurred during the final stage of LIS. The finding implies the possibility of rapid sea level rise and unstable climate in the transition zone between the mid-latitude westerlies and the ISM due to fast polar ice retreat under the anthropogenic global warming.

9.
Sci Total Environ ; 903: 166853, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673256

RESUMO

Typhoons and rainstorms (rainfall >250 mm day-1) are extreme weather events that seriously impact coastal oceanography and biogeochemical cycles. However, changes in the mixing of water masses and nutrient supply induced by typhoons and rainstorms can hardly be identified and quantified by traditional methods owing to the complex hydrological conditions in coastal waters. In this study, we analysed a comparative data set of dual water isotopes (δD and δ18O), hydrological parameters, nutrients, and chlorophyll-a from three periods (normal summer, rainstorm, and typhoon periods) in Zhanjiang Bay, a typical semi-enclosed mariculture bay in South China, to address this issue. The results revealed a significant increase in contributions from freshwater during rainstorms and typhoons. Correspondingly, nutrient supplies from freshwater during these periods remarkably increased compared to the normal summer, indicating that heavy rainfall can transport substantial amounts of terrestrial nutrients into the bay. Furthermore, disparities in hydrodynamic processes between typhoon and rainstorm periods were notable due to inconsistencies in freshwater diffusion paths. During rainstorms, freshwater primarily diffuses towards the outer bay in the upper layer due to strong stratification and cannot form an ocean front. However, under intense external forces caused by the typhoon, high-salinity water intruded into the bay, and enhancement of vertical mixing disrupted stratification. The massive influx of freshwater column during the typhoon mixed with higher salinity seawater column in the bay led to the formation of an ocean front, which could retain contaminants. This study suggests that although both rainstorms and typhoons can discharge large quantities of terrestrial nutrients into Zhanjiang Bay, the front formed during the typhoon period impedes the contaminant transportation to open sea thereby deteriorating water quality and affecting mariculture activities within the bay.

10.
MethodsX ; 11: 102297, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577169

RESUMO

Precise and accurate measurements of the stable isotope composition from precipitation, land ice, runoff, and oceans provide critical information on Earth's water cycle. The analysis, post-processing, and calibration of raw analytical signals from laser spectrometers during sample analysis involves a number of critical procedures to counteract instrumental drift, inter-sample memory effects, and the quantification of total uncertainty. We present a new software tool for the post-processing and calibration named FLIIMP (FARLAB Liquid Water Isotope Measurement Processor). FLIIMP facilitates sample processing by (1) a graphical user interface that guides the user along the processing steps from corrections for memory effects, drift, and mixing ratio to calibration, and (2) allows to monitor long-term measurement system behaviour, currently for Picarro-brand water isotope analysers. Final data files are accompanied by a detailed calibration report. Being an open-source software for the major operating systems, users can adapt FLIIMP to their laboratory environment, and the community can contribute the software development. •FLIIMP facilitates post-processing, calibration and reporting for stable water isotope liquid sample analysis.•The stepwise, interactive graphical user interface reduces possibility of errors and shortens processing time.•Open source software enables future development of FLIIMP by the user community.

11.
J Environ Manage ; 344: 118364, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399619

RESUMO

Experimental (research-based) and non-research-based watershed monitoring programs often differ with respect to sampling frequency, monitored variables, and monitoring objectives. Isotopic variables, which are more commonly incorporated in research-based programs, can provide an indication of water sources and the transit time of water in a catchment. These variables may be a valuable complement to traditional water quality monitoring variables and have the potential to support improved hydrologic process-related insights from long term monitoring programs that typically have low resolution sampling. The purpose of this investigation is to explore the utility of incorporating isotopic variables (specifically δ18O, δ2H, and 222Rn) into routine monthly sampling regimes by comparing insights gained from these variables to monitoring only specific conductivity and chloride. A complete annual cycle of monthly groundwater and surface water monitoring data collected from the Upper Parkhill watershed in southwestern Ontario, Canada was used to characterize baseline watershed conditions, evaluate watershed resilience to climate change, and examine contamination vulnerability. Study results provide an improved understanding of appropriate tracer use in agricultural regions with isotopic variables able to provide important insights into the seasonality of hydrologic phenomena, such as the timing of groundwater recharge. A comparison of monitoring variables to present-day hydro-meteorological conditions suggests the importance of a winter dominated hydrologic regime and the potential influence of changes in precipitation on groundwater-surface water interactions. Estimated transit time dynamics indicate the likelihood for rapid contaminant transport through surface and shallow subsurface flow and highlight the possible effects of agricultural tile drainage. The sampling approach and data analysis methods adopted in this study provide the basis for improving routine watershed monitoring programs in agricultural regions.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Qualidade da Água , Agricultura , Ontário , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 57(11): 4668-4678, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36892554

RESUMO

Alpine river and lake systems on the Tibetan Plateau are highly sensitive indicators and amplifiers of global climate change and important components of the carbon cycle. Dissolved organic matter (DOM) encompasses organic carbon in aquatic systems, yet knowledge about DOM variation throughout the river-lake aquatic continuum within alpine regions is limited. We used optical spectroscopy, ultrahigh-resolution mass spectrometry (Fourier transform ion cyclotron resonance mass spectrometry), and stable water isotopic measurements to evaluate linkages between DOM composition and hydrological connection. We investigated glacial influences on DOM composition throughout the watershed of Selin Co, including upstream glacier-fed rivers and downstream-linked lakes. We found that the dissolved organic carbon concentration increased, whereas specific ultraviolet absorbance (SUVA254) decreased along the river-lake continuum. Relative to rivers, the downstream lakes had low relative abundances of polyphenolic and condensed aromatic compounds and humic-like substances but increased relative abundances of aliphatics and protein-like compounds. SUVA254 decreased while protein-like components increased with enriched stable water isotope δ2H-H2O, indicating that DOM aromaticity declined while autochthonous production increased along the flow paths. Glacier meltwater contributed to elevated relative abundances of aliphatic and protein-like compounds in headwater streams, while increased relative abundances of aromatics and humic-like DOM were found in glacier-fed lakes than downstream lakes. We conclude that changes in hydrological conditions, including glacier melt driven by a warming climate, will significantly alter DOM composition and potentially their biogeochemical function in surface waters on the Tibetan Plateau.


Assuntos
Matéria Orgânica Dissolvida , Hidrologia , Lagos , Matéria Orgânica Dissolvida/análise , Lagos/análise , Lagos/química , Tibet , Movimentos da Água , Rios , Congelamento , Espectrometria de Massas , Hidrogênio , Isótopos de Oxigênio , Volatilização
13.
Sci Total Environ ; 870: 161644, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36707005

RESUMO

Boreal regions are changing rapidly with anthropogenic global warming. In order to assess risks and impacts of this process, it is crucial to put these observed changes into a long-term perspective. Summer air temperature variability can be well reconstructed from conifer tree rings. While the application of stable isotopes can potentially provide complementary climatic information over different seasons. In this study, we developed new triple stable isotope chronologies in tree-ring cellulose (δ13Ctrc, δ18Otrc, δ2Htrc) from a study site in Canada. Additionally, we performed regional aggregated analysis of available stable isotope chronologies from 6 conifers' tree species across high-latitudinal (HL) and - altitudinal (HA) as well as Siberian (SIB) transects of the Northern Hemispheric boreal zone. Our results show that summer air temperature still plays an important role in determining tree-ring isotope variability at 11 out of 24 sites for δ13Ctrc, 6 out of 18 sites for δ18Otrc and 1 out of 6 sites for δ2Htrc. Precipitation, relative humidity and vapor pressure deficit are significantly and consistently recorded in both δ13Ctrc and δ18Otrc along HL. Summer sunshine duration is captured by all isotopes, mainly for HL and HA transects, indicating an indirect link with an increase in air and leaf temperature. A mixed temperature-precipitation signal is preserved in δ13Ctrc and δ18Otrc along SIB transect. The δ2Htrc data obtained for HL-transect provide information not only about growing seasonal moisture and temperature, but also capture autumn, winter and spring sunshine duration signals. We conclude that a combination of triple stable isotopes in tree-ring studies can provide a comprehensive description of climate variability across the boreal forest zone and improve ecohydrological reconstructions.

14.
Sci Total Environ ; 862: 160694, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481154

RESUMO

This work pursues the hydro-geochemical and isotopic characterization of the complex groundwater system of the Gioia Tauro Plain, one of the most important industrialized and agricultural coastal areas of southern Italy. The anthropic pressure exposes the water resources at risk of depletion and quality degradation making the plain groundwater a system of high scientific and social interest. The plain is characterized by a shallow aquifer, mostly recharged by local rains and a deep aquifer apparently less influenced by local precipitation. Both aquifers are mainly Ca-HCO3 waters except for localized sectors where Na-HCO3, Na-Cl and Ca-SO4 waters are present. In deep aquifer, both prolonged interaction with sedimentary rocks, mainly deriving from the erosion of crystalline rocks, and direct cation exchange represent the primary factors controlling the formation of Na-HCO3 waters. Mixing processes between these waters and either connate brine and/or deep thermal waters contribute to the formation of isolated high salinity Na-Cl-rich waters. In shallow aquifer, inputs of N-rich sewage and agriculture-related contaminants, and SOx emissions in proximity of the harbor are responsible of the increasing nitrate and sulphate concentrations, respectively. The Cl/Br and NO3/Cl ratios highlight contamination mainly linked to agricultural activities and contribution of wastewater. Along the northern boundary, the warmest groundwater (Na-Cl[SO4]) were found close to a bend of the main strike-slip fault system, locally favouring the rising of B- and Li-rich deep waters, testifying the influence of geological-structural features on deep water circulation. Despite the high-water demand, a direct marine intrusion is localized in a very restricted area, where we observed an incipient groundwater-seawater mixing (seawater contribution ≤7 %). The qualitative and quantitative conditions of the shallow aquifer still have acceptable levels because of the relatively high recharge inflow. A reliable hydrogeochemical conceptual model, able to explain the compositional variability of the studied waters, is proposed.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água Subterrânea/química , Água , Itália
15.
Sci Total Environ ; 864: 161026, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549543

RESUMO

Stable nitrate isotopes (δ15N-NO3 and δ18O-NO3) in conjunction with stable water isotopes (δ18O-H2O and δD-H2O) were used to identify nitrogen (N) sources and N-biogeochemical transformation in tap water sources sampled from 11 water purification plants across South Korea. The raw water sources are taken from rivers within the water supply basins, which indicates the quality of tap water is highly dependent on surrounding the land use type. We estimated the proportional contribution of the various N sources (AD: atmospheric deposition; SN: soil nitrogen; CF: chemical fertilizer; M&S: manure/sewage) using Bayesian Mixing Model. As a result, the contribution of N sources exhibited large seasonal and spatial differences, which were related to the type of land use in the water supply basins. Commonly, the M&S and SN were the dominant N source during the dry and wet seasons in almost regions, respectively. However, in the regions with high N loading ratios from urban and industrial sources, the M&S was the dominant N source during both the wet and dry seasons. In addition, the regions were characterized by high NO3- concentrations due to the decreased dilution effect of precipitation during the dry seasons. In contrast, the SN was the dominant N source in the regions with high N loading ratios from agricultural areas during both the wet and dry seasons. The NO3--N concentration during the wet season was significantly higher than those during the dry season in these regions due to the input of non-point sources with high concentrations. Meanwhile, denitrification and nitrification were observed in the watersheds. It is important to understand the isotope fractionation due to N-biogeochemical transformation for considering the potential misinterpretations of the origin and fate NO3-. Collectively, our findings provide a basis on N source control strategies to ensure tap water quality in complex land use areas.

16.
Geophys Res Lett ; 49(20): e2022GL099529, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36582355

RESUMO

The climate signal imprinted in the snow isotopic composition allows to infer past climate variability from ice core stable water isotope records. The concurrent evolution of vapor and surface snow isotopic composition between precipitation events indicates that post-depositional atmosphere-snow humidity exchange influences the snow and hence the ice core isotope signal. To date, however, this is not accounted for in paeleoclimate reconstructions from isotope records. Here we show that vapor-snow exchange explains 36% of the summertime day-to-day δ18O variability of the surface snow between precipitation events, and 53% of the δD variability. Through observations from the Greenland Ice Sheet and accompanying modeling we demonstrate that vapor-snow exchange introduces a warm bias on the summertime snow isotope value relevant for ice core records. In case of long-term variability in atmosphere-snow exchange the relevance for the ice core signal is also variable and thus paleoclimate reconstructions from isotope records should be revisited.

17.
Water Res ; 222: 118860, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35853332

RESUMO

In-stream water quality reflects the integrated results of hydrological mixing of different water sources and associated biogeochemical transformations. However, quantifying the relative importance of these controls is often challenging, particularly in riparian wetlands due to complex process interactions and marked spatio-temporal heterogeneity in environmental gradients. Here, we established a two-step method to differentiate the dominance of hydrological and biogeochemical controls on water quality in a riparian peatland in northern Germany. First, an isotope-based mixing model was developed for distributed modelling of in-stream water balance over a two-year period. The simulation showed the predominance of groundwater inflows for most of the time period, while lateral inflows and channel leakage became more influential in mid-summer, as stream-groundwater connectivity weakened due to declining groundwater levels. A moderate downstream shift from groundwater to lateral inflow was also observed due to the changing channel network geometries and inflow from field drains. The mixing model was then further applied to predict the in-stream concentrations of nutrients, major ions and trace elements. The predicted concentrations were assumed to be those resulting from hydrological mixing only, while influence of biogeochemical controls were reflected by the prediction deviation from observation. Accordingly, 15 water quality parameters were grouped based on their simulation performances into hydrologically-controlled (Cl-, Mg, Na, K, and Si), biogeochemically-controlled (DOC, SO42-, Mn, and Zn), or controlled-by-both (SRP, NO3-N, Ca, Fe, Al, and Cu). The mixing modelling not only reproduced the spatiotemporal in-stream water balance with finer process conceptualisation, but also provided a generic method to quantitatively disentangle the relative strength of hydrological and biogeochemical controls. Such a method can be employed as a robust learning tool before extending a hydrological model for water quality simulation, as when, where and how strong biogeochemical controls are exerted provides a strong indicator on which dominant processes need to be conceptualised.


Assuntos
Água Subterrânea , Qualidade da Água , Áreas Alagadas , Monitoramento Ambiental/métodos , Hidrologia
18.
Sci Total Environ ; 832: 154964, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367560

RESUMO

A reliable water supply in different Himalayan River basins is increasingly important for domestic, agriculture, and hydropower generation. These water resources are under serious threat due to climate change, with the potential to alter the economic stability of 237 million people living in the Indus River Basin alone. In the present study, we used new stable water isotope data set to identify and estimate the different sources of streamflow and their controlling factors in the Upper Indus River Basin (UIRB), India. The data set presented wide spatial and temporal variability without the distinct isotopic signature of various sources of river flow. However, variable but distinct signatures of sources of river/stream flow exist at the sub-basin or catchment scale. These variabilities are ascribed to changing physiographical, meteorological, and local climatic conditions. Further, the distinct microclimatic conditions including altitudinal variability, aspect slope, etc. govern the spatio-temporal variability of sources and streamflow, hence different lapse rates at sub-basin/catchment scale. The study suggested that the contribution of snowmelt and glacier melt to river flow varies spatially and temporally. The Bayesian mixing model results suggested that snowmelt contribution is higher in Indus (63 ± 1.2%) and Shyok (58 ± 1.7%) while as, glacier melt contribution is higher in Nubra 64 ± 2.3% and Suru 60 ± 2.7% sub-basins/catchments. The groundwater contribution (baseflow) sustains and regulates the flow in rivers/streams during winter and spring, which is very vital for the local water supply. The study suggests that the spatially diverse rugged topography and microclimate in UIRB dominantly control the differential contribution from various sources of river flow. The warming climate, which has resulted in a decrease in solid precipitation, continuous glacier mass loss, early melting of snow cover, etc., would have an inconsistent impact on the perennial flow of rivers with the potential to alter the economic and political stability in the region.


Assuntos
Hidrologia , Rios , Teorema de Bayes , Monitoramento Ambiental , Humanos , Isótopos , Neve
19.
Sci Total Environ ; 828: 154424, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278560

RESUMO

The integrated use of multi-isotopic (87Sr/86Sr, δ13C-DIC, δ2H-H2O, δ18O-H2O) and hydrochemical data was applied in the highly anthropized Guadalhorce river basin, southern Spain, to improve the knowledge about water contamination sources and processes and to achieve improved water resource management. The results obtained highlight the importance of the use of isotopes as tracers of pollutants. DIC, δ2H-H2O, δ18O-H2O and δ13C-DIC allowed differentiating two water recharge end members: direct rainwater, infiltrated into the upper and lower detritic aquifers of the sub-basins, and the Guadalhorce dam system, which act as a source in some groundwater and surface waters of the lower sub-basin. 87Sr/86Sr data supported the existing conclusions in relation to pollution sources in the study area. The Triassic basement (evaporites) of the carbonate and detritic aquifers of the basin generally controls the natural 87Sr/86Sr composition in waters of the upper sub-basin. Only one groundwater sample reflects the influence of a human organic source (sewage) in its composition. On the other hand, mixing of human inorganic (fertilizers and detergents) strontium sources is required to explain the 87Sr/86Sr contents of the lower sub-basin waters. Discriminating the use of domestic detergents as another anthropogenic source of strontium and sulphate in waters is a novel finding in this research. The conclusions reached can be extrapolated to other anthropized basins.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Detergentes , Monitoramento Ambiental/métodos , Água Subterrânea/química , Humanos , Rios/química , Espanha , Estrôncio , Água , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 830: 154711, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339560

RESUMO

Combustion-derived water vapor (CDV) has significant impacts on urban climate and environment. However, temporal variations of contribution of CDV (CCDV) to urban humidity are unclear due to lack of observations. This study examined the temporal variations of CCDV in Xi'an during winter from 2016 to 2019. We found that the diurnal variation of CCDV is mainly controlled by atmospheric stability, but the peak of CCDV at 9 am is due to the increasing water vapor emission by motor vehicles during the morning rush hour. In addition, the monthly variation of CCDV is related to fossil fuel consumption, but the low values of CCDV in late January and early February is due to substantial decrease of energy utility because of the massive outflow of population during the Spring Festival. Our findings may be helpful for urban pollution control because CDV can play an important role in the secondary conversion of pollutants.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Umidade , Estações do Ano , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...