Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39317239

RESUMO

We demonstrate that substituting Bi for Sm in the pyrochlore Sm$_2$Ir$_2$O$_7$ induces an anomalous lattice contraction, with $\Delta a \sim -0.012$~\AA~observed at 10\% Bi substitution, where 'a' denotes the lattice constant. Beyond 10\% Bi substitution, the lattice expands according to Vegard's law. Within this anomalous substitution range, the resistivity shows a 1/T behavior up to 2\% Bi-substitution, while near 10\% substitution a -lnT dependence is observed. These resistivity behaviors suggest the possibility of a Weyl phase up to 2\% Bi substitution, which transforms to a semimetallic quadratic band touching (QBT) topological phase near 10\%. For the intermediate composition (Sm$_{0.95}$Bi$_{0.05}$)$_2$Ir$_2$O$_7$, the resistivity scales as $\rm 1/T^{1/4}$, possibly due to its proximity to a proposed quantum critical point at the Weyl-QBT phase boundary [Phys. Rev. X 4, 041027 (2014)]. The samples were characterized using synchrotron powder X-ray diffraction, X-ray near-edge fine structure (XANES), and Extended X-ray absorption fine structure (EXAFS) probes. Additionally, magnetic susceptibility and heat capacity measurements were conducted to provide further support.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39348857

RESUMO

The combination of antiferromagnetism and topological properties in Mn3X (X = Sn, Ge,Ga) offers a unique platform to explore novel spin-dependent phenomena and develop innovative spintronic devices. Here, we have systematically investigated the phase transition of Mn3Ga thin films on SiO2(001)/Si substrates under various growth parameters such as seeding layer structure, annealing conditions, and film thickness. The relatively thick Mn3Ga films grown with Ru seeding exhibit a variety of polycrystalline hexagonal phases, including (002), and (201). The addition of a Ta layer to the conventional Ru seeding layer promotes the formation of nearly single-crystal antiferromagnetic Mn3Ga(002) phase from the relatively thin Mn3Ga films after annealing at 773 K. The investigation of the growth mechanism of Mn3Ga polycrystalline thin films provides a reference strategy for exploring Mn-based antiferromagnetic spintronic devices. .

3.
Adv Sci (Weinh) ; : e2406882, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324642

RESUMO

Emerging from the intricate interplay of topology and magnetism, the giant anomalous Hall effect (AHE) is the most known topological property of the recently discovered kagomé ferromagnetic Weyl semimetal Co3Sn2S2 with the magnetic Co atoms arranged on a kagomé lattice. Here it is reported that the AHE in Co3Sn2S2 can be fine-tuned by an applied magnetic field orientated within ≈2° of the kagomé plane, while beyond this regime, it stays unchanged. Particularly, it can vanish in magnetic fields parallel to the kagomé plane and even decrease in magnetic fields collinear with the spin direction. This tunable AHE can be attributed to local spin switching enabled by the geometrical frustration of the magnetic kagomé lattice, revealing that spins in a kagomé ferromagnet change their switching behavior as the magnetic field approaches the kagomé plane. These results also suggest a versatile way to tune the properties of a kagomé magnet.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39270720

RESUMO

The non-trivial magnetic and electronic phases occurring in topological magnets are often entangled, thus leading to a variety of exotic physical properties. Recently, the BaAl4-type compounds have been extensively investigated to elucidate the topological features appearing in their real- and momentum spaces. In particular, the topological Hall effect and the spin textures, typical of the centrosymmetric Eu(Al,Ga)4family, have stimulated extensive experimental and theoretical research. In this topical review, we discuss the latest findings regarding the Eu(Al,Ga)4topological antiferromagnets and related materials, arising from a vast array of experimental techniques. We show that Eu(Al,Ga)4represents a suitable platform to explore the interplay between lattice-, charge-, and spin degrees of freedom, and associated emergent phenomena. Finally, we address some key questions open to future investigation.

5.
Adv Mater ; : e2406464, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140781

RESUMO

The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in all-vdW heterostructures, large unconventional SOT remains elusive and the robustness of the field-free switching against external magnetic field has not been examined, which hinders further applications. Here, the study demonstrates the field-free switching in an all-vdW heterostructure combining a type-II Weyl semimetal TaIrTe4 and above-room-temperature ferromagnet Fe3GaTe2. The fully field-free switching can be achieved at 2.56 × 1010 A m-2 at 300 K and a large SOT effective field efficiency of the out-of-plane polarized spin current generated by TaIrTe4 is determined to be 0.37. Moreover, it is found that the switching polarity cannot be changed until the external in-plane magnetic field reaches 252 mT, indicating a robust switching against the magnetic field. The numerical simulation suggests the large unconventional SOT reduces the switching current density and enhances the robustness of the switching. The work shows that all-vdW heterostructures are promising candidates for future highly efficient and stable SOT-based devices.

6.
Nano Lett ; 24(28): 8778-8783, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976362

RESUMO

Coupling Weyl quasiparticles and charge density waves (CDWs) can lead to fascinating band renormalization and many-body effects beyond band folding and Peierls gaps. For the quasi-one-dimensional chiral compound (TaSe4)2I with an incommensurate CDW transition at TC = 263 K, photoemission mappings thus far are intriguing due to suppressed emission near the Fermi level. Models for this unconventional behavior include axion insulator phases, correlation pseudogaps, polaron subbands, bipolaron bound states, etc. Our photoemission measurements show sharp quasiparticle bands crossing the Fermi level at T > TC, but for T < TC, these bands retain their dispersions with no Peierls or axion gaps at the Weyl points. Instead, occupied band edges recede from the Fermi level, opening a spectral gap. Our results confirm localization of quasiparticles (holes created by photoemission) is the key physics, which suppresses spectral weights over an energy window governed by incommensurate modulation and inherent phase defects of CDW.

7.
J Phys Condens Matter ; 36(39)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38906131

RESUMO

Considering the low-energy model of tilted Weyl semimetal, we study the electronic transmission through a periodically driven quantum well, oriented in the transverse direction with respect to the tilt. We adopt the formalism of Floquet scattering theory and investigate the emergence of Fano resonances as an outcome of matching between the Floquet sidebands and quasi-bound states. The Fano resonance energy changes linearly with the tilt strength suggesting the fact that tilt-mediated part of quasi-bound states energies depends on the above factor. Given a value of momentum parallel (perpendicular) to the tilt, we find that the energy gap between two Fano resonances, appearing for two adjacent values of transverse (collinear) momentum with respect to the tilt direction, is insensitive (sensitive) to the change in the tilt strength. Such a coupled (decoupled) behavior of tilt strength and the collinear (transverse) momentum can be understood from the tilt-mediated and normal parts of the quasi-bound state energies inside the potential well. We vary the other tilt parameters and chirality of the Weyl points to conclusively verify the exact form of the tilt-mediated part of the quasi-bound state energy that is the same as the tilt term in the static dispersion. The tilt orientation can significantly alter the transport in terms of evolution of Fano resoance energy with tilt momentum. We analytically find the explicit form of the bound state energy that further supports all our numerical findings. Our work paves the way to probe the tilt-mediated part of quasi-bound state energy to understand the complex interplay between the tilt and Fano resonance.

8.
J Phys Condens Matter ; 36(40)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38942000

RESUMO

The interaction between topology and magnetism can lead to novel topological materials including Chern insulators, axion insulators, and Dirac and Weyl semimetals. In this work, a family of van der Waals layered materials using MnTe and Sb2Te3or Bi2Te3superlattices as building blocks are systematically examined in a search for antiferromagnetic Weyl semimetals, preferably with a simple node structure. The approach is based on controlling the strength of the exchange interaction as a function of layer composition to induce the phase transition between the topological and the normal insulators. Our calculations, utilizing a combination of first-principles density functional theory and tight-binding analyses based on maximally localized Wannier functions, clearly indicate a promising candidate for a type-I magnetic Weyl semimetal. This centrosymmetric material, Mn10Sb8Te22(or (MnTe)m(Sb2Te3)nwithm = 10 andn = 4), shows ferromagnetic intralayer and antiferromagnetic interlayer interactions in the antiferromagnetic ground state. The obtained electronic bandstructure also exhibits a single pair of Weyl points in the spin-split bands consistent with a Weyl semimetal. The presence of Weyl nodes is further verified with Berry curvature, Wannier charge center, and surface state (i.e. Fermi arc) calculations. Other combinations of the MnSbTe-family materials are found to be antiferromagnetic topological or normal insulators on either side of the Mn:Sb ratio, respectively, illustrating the topological phase transition as anticipated. A similar investigation in the homologous (MnTe)m(Bi2Te3)nsystem produces mostly nontrivial antiferromagnetic insulators due to the strong spin-orbit coupling. When realized, the antiferromagnetic Weyl semimetals in the simplest form (i.e. a single pair of Weyl nodes) are expected to provide a promising candidate for low-power spintronic applications.

9.
J Phys Condens Matter ; 36(40)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38941987

RESUMO

In this study, we examine the topological character of spectral singularities by using transverse magnetic (TM) mode configuration in a Topological Weyl Semimetal (TWSM). TM mode configuration restrains the effect of Kerr/Faraday rotations and therefore does not allow an extra degree of freedom to occur. We find out that surface currents arise due to topological terms on the surface of TWSM slab where no Fermi arcs are localized. We also investigate the contribution of the Θ-term, which is the origin of axions in topological materials, and especially theb-term, to the topological properties. As a result of our study, we clearly reveal the topological character ofb-term for the first time and we demonstrate the Weyl degeneracy situation in an obvious manner. Our system produces circular currents in the plane of propagation, maintaining a cyclotron shape motion. The presence ofb-term causes the induced current to be topologically protected. Our findings verify that topological properties of TWSM containing two opposite chirality Weyl fermions are robust against external influences. With the findings of our study, the appropriate conditions for the construction of a topological laser and the values that the system parameters can take have been demonstrated.

10.
Proc Natl Acad Sci U S A ; 121(13): e2313488121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513104

RESUMO

Weyl semimetal showing open-arc surface states is a prominent example of topological quantum matter in three dimensions. With the bulk-boundary correspondence present, nontrivial surface-bulk hybridization is inevitable but less understood. Spectroscopies have been often limited to verifying the existence of surface Fermi arcs, whereas its spectral shape related to the hybridization profile in energy-momentum space is not well studied. We present an exactly solvable formalism at the surface for a wide range of prototypical Weyl semimetals. The resonant surface state and the bulk influence coexist as a surface-bulk hybrid and are treated in a unified manner. Directly accessible to angle-resolved photoemission spectroscopy, we analytically reveal universal information about the system obtained from the spectroscopy of resonant topological states. We systematically find inhomogeneous and anisotropic singular responses around the surface-bulk merging borderline crossing Weyl points, highlighting its critical role in the Weyl topology. The response in scanning tunneling spectroscopy is also discussed. The results will provide much-needed insight into the surface-bulk-coupled physical properties and guide in-depth spectroscopic investigation of the nontrivial hybrid in many topological semimetal materials.

11.
Proc Natl Acad Sci U S A ; 121(12): e2316910121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483985

RESUMO

Weyl semimetals resulting from either inversion (P) or time-reversal (T) symmetry breaking have been revealed to show the record-breaking large optical response due to intense Berry curvature of Weyl-node pairs. Different classes of Weyl semimetals with both P and T symmetry breaking potentially exhibit optical magnetoelectric (ME) responses, which are essentially distinct from the previously observed optical responses in conventional Weyl semimetals, leading to the versatile functions such as directional dependence for light propagation and gyrotropic effects. However, such optical ME phenomena of (semi)metallic systems have remained elusive so far. Here, we show the large nonlinear optical ME response in noncentrosymmetric magnetic Weyl semimetal PrAlGe, in which the polar structural asymmetry and ferromagnetic ordering break P and T symmetry. We observe the giant second harmonic generation (SHG) arising from the P symmetry breaking in the paramagnetic phase, being comparable to the largest SHG response reported in Weyl semimetal TaAs. In the ferromagnetically ordered phase, it is found that interference between this nonmagnetic SHG and the magnetically induced SHG emerging due to both P and T symmetry breaking results in the magnetic field switching of SHG intensity. Furthermore, such an interference effect critically depends on the light-propagating direction. The corresponding magnetically induced nonlinear susceptibility is significantly larger than the prototypical ME material, manifesting the existence of the strong nonlinear dynamical ME coupling. The present findings establish the unique optical functionality of P- and T-symmetry broken ME topological semimetals.

12.
Chemphyschem ; 25(7): e202300942, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270388

RESUMO

It is well known that magnetic field is one of the effective tools to improve the activity of hydrogen evolution reaction (HER), but considering the inconvenient application of an external magnetic field, it is essential to find a ferromagnetic material with high HER activity itself. Fortunately, recent study has shown that the two-dimmention (2D) Fe2Sn monolayer is a stable ferromagnetic topological Weyl semimetal material with high Tc of 433 K. Here, we report the Fe2Sn monolayer can be used as an alternative HER catalyst compared with expensive platinum (Pt). Our first-principles results show that the Gibbs free energy (ΔGH*) value of the spin polarized Fe2Sn monolayer is -0.06 eV, much better than that without considering spin polarization (-1.23 eV). Moreover, the kinetic analysis demonstrates that the HER occurs on the Fe2Sn monolayer according to the Volmer-Tafel mechanism with low energy barriers. Hence, our findings provide obvious evidence for spin-polarization-improved HER activity, paving a new way to design high-performance HER catalysts.

13.
J Phys Condens Matter ; 36(18)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215486

RESUMO

In this work we predict a family of noncentrosymmetric two-dimensional (2D) Weyl semimetals (WSMs) composed by porous Ge and SiGe structures. These systems are energetically stable graphenylene-like structures with a buckling, spontaneously breaking the inversion symmetry. The nontrivial topological phase for these 2D systems occurs just below the Fermi level, resulting in nonvanishing Berry curvature around the Weyl nodes. The emerged WSMs are protected byC3symmetry, presenting one-dimensional edge Fermi-arcs connecting Weyl points with opposite chiralities. Our findings complete the family of Weyl in condensed-matter physics, by predicting the first noncentrosymmetric class of 2D WSMs.

14.
Nano Lett ; 23(15): 6914-6919, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498076

RESUMO

Fluctuations in planar magnetotransport are ubiquitous in topological HgTe structures, in both tensile (topological insulator) and compressively strained layers (Weyl semimetal phase). We show that the common reason for the fluctuations is the presence of tilted Dirac cones combined with the formation of charge puddles. The origin of the tilted Dirac cones is the mix of the Zeeman term due to the in-plane magnetic field and quadratic contributions to the dispersion relation. We develop a network model that mimics the transport of tilted Dirac fermions in the landscape of charge puddles. The model captures the essential features of the experimental data. It should be relevant for the interpretation of planar magnetotransport in a variety of topological and small band gap materials.

15.
Nano Lett ; 23(15): 6951-6957, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37477708

RESUMO

Spin-orbit torque (SOT) is receiving tremendous attention from both fundamental and application-oriented aspects. Co2MnGa, a Weyl ferromagnet that is in a class of topological quantum materials, possesses cubic-based high structural symmetry, the L21 crystal ordering, which should be incapable of hosting anisotropic SOT in conventional understanding. Here we show the discovery of a gigantic anisotropy of self-induced SOT in Co2MnGa. The magnitude of the SOT is comparable to that of heavy metal/ferromagnet bilayer systems, despite the high inversion symmetry of the Co2MnGa structure. More surprisingly, a sign inversion of the self-induced SOT is observed for different crystal axes. This finding stems from the interplay of the topological nature of the electronic states and their strong modulation by external strain. Our research enriches the understanding of the physics of self-induced SOT and demonstrates a versatile method for tuning SOT efficiencies in a wide range of materials for topological and spintronic devices.

16.
J Phys Condens Matter ; 35(37)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37290451

RESUMO

Co3Sn2S2is believed to be a magnetic Weyl semimetal. It displays large anomalous Hall, Nernst and thermal Hall effects with a remarkably large anomalous Hall angle. Here, we present a comprehensive study of how substituting Co by Fe or Ni affects the electrical and thermoelectric transport. We find that doping alters the amplitude of the anomalous transverse coefficients. The maximum decrease in the amplitude of the low-temperature anomalous Hall conductivityσijAis twofold. Comparing our results with theoretical calculations of the Berry spectrum assuming a rigid shift of the Fermi level, we find that given the modest shift in the position of the chemical potential induced by doping, the experimentally observed variation occurs five times faster than expected. Doping affects the amplitude and the sign of the anomalous Nernst coefficient. Despite these drastic changes, the amplitude of theαijA/σijAratio at the Curie temperature remains close to≈0.5kB/e, in agreement with the scaling relationship observed across many topological magnets.

17.
ACS Appl Mater Interfaces ; 15(25): 30517-30523, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327253

RESUMO

B20-CoSi is a newly discovered Weyl semimetal that crystallizes into a noncentrosymmetric crystal structure. However, the investigation of B20-CoSi has so far been focused on bulk materials, whereas the growth of thin films on technology-relevant substrates is a prerequisite for most practical applications. In this study, we have used millisecond-range flash-lamp annealing, a nonequilibrium solid-state reaction, to grow B20-CoSi thin films. By optimizing the annealing parameters, we were able to obtain thin films with a pure B20-CoSi phase. The magnetic and transport measurements indicate the appearance of the charge density wave and chiral anomaly. Our work presents a promising method for preparing thin films of most binary B20 transition-metal silicides, which are candidates for topological Weyl semimetals.

18.
Adv Sci (Weinh) ; 10(22): e2301474, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37246266

RESUMO

Weyl semimetals (WSMs) have attracted great attentions that provide intriguing platforms for exploring fundamental physical phenomena and future topotronics applications. Despite the fact that numerous WSMs are achieved, WSMs with long-distance distribution of Weyl points (WPs) in given material candidates remain elusive. Here, the emergence of intrinsic ferromagnetic WSMs in BaCrSe2 with the nontrivial nature explicitly confirmed by the Chern number and Fermi arc surface states analysis is theoretically demonstrated. Remarkably, unlike previous WSMs for which opposite chirality WPs are located very close to each other, the WPs of BaCrSe2 host a long-distance distribution, as much as half of the reciprocal space vector, suggesting that the WPs are highly robust and difficult to be annihilated by perturbations. The presented results not only advance the general understanding of magnetic WSMs but also put forward potential applications in topotronics.

19.
Adv Sci (Weinh) ; 10(17): e2205609, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092581

RESUMO

Flexible photodetectors with ultra-broadband sensitivities, fast response, and high responsivity are crucial for wearable applications. Recently, van der Waals (vdW) Weyl semimetals have gained much attention due to their unique electronic band structure, making them an ideal material platform for developing broadband photodetectors from ultraviolet (UV) to the terahertz (THz) regime. However, large-area synthesis of vdW semimetals on a flexible substrate is still a challenge, limiting their application in flexible devices. In this study, centimeter-scale type-II vdW Weyl semimetal, Td -MoTe2 films, are grown on a flexible mica substrate by molecular beam epitaxy. A self-powered and flexible photodetector without an antenna demonstrated an outstanding ability to detect electromagnetic radiation from UV to sub-millimeter (SMM) wave at room temperature, with a fast response time of ≈20 µs, a responsivity of 0.53 mA W-1 (at 2.52 THz), and a noise-equivalent power (NEP) of 2.65 nW Hz-0.5 (at 2.52 THz). The flexible photodetectors are also used to image shielded items with high resolution at 2.52 THz. These results can pave the way for developing flexible and wearable optoelectronic devices using direct-grown large-area vdW semimetals.

20.
Nano Lett ; 23(8): 3394-3400, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043331

RESUMO

Magnetic Weyl semimetals (MWSMs) exhibit unconventional transport phenomena, such as large anomalous Hall (and Nernst) effects, which are absent in spatial inversion asymmetry WSMs. Compared with its nonmagnetic counterpart, the magnetic state of a MWSM provides an alternative way for the modulation of topology. Spin-orbit torque (SOT), as an effective means of electrically controlling the magnetic states of ferromagnets, may be used to manipulate the topological magnetic states of MWSMs. Here we confirm the MWSM state of high-quality Co2MnGa film by systematically investigating the transport measurements and demonstrating that the magnetization and topology of Co2MnGa can be electrically manipulated. The electrical and magnetic optical measurements further reveal that the current-induced SOT switches the topological magnetic state in a 180-degree manner by applying positive/negative current pulses and in a 90-degree manner by alternately applying two orthogonal current pulses. This work opens up more opportunities for spintronic applications based on topological materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA