RESUMO
Despite the considerable number of genetic markers published for Penaeus vannamei, the classification of these markers and their standardization in specific databases is still insufficient. As a consequence, access to these markers is difficult, hampering their application in genetic association studies. In this study, all previously described single nucleotide polymorphisms (SNPs) related to resistance for P. vannamei were revised, and 512 SNPs were identified and classified in detail. We observed that most of the SNPs occurred in the proteins including Toll like receptors 1 and 3, hemocyanin large and small subunits, and anti-lipopolysaccharide factors 1 and 2, allowing to propose to use them as targets in association studies involving resistance in P. vannamei. Additionally, the potential effects of the most frequent non-synonymous coding SNPs in the secondary structure of the main target proteins were evaluated using an in silico approach. These data can serve as the starting point for the development of new genetic and computational tools as well as for the design of new association studies that involve resistance in P. vannamei.
Assuntos
Proteínas de Artrópodes/genética , Penaeidae/genética , Polimorfismo de Nucleotídeo Único , Animais , Proteínas de Artrópodes/metabolismo , Penaeidae/microbiologia , Penaeidae/parasitologia , Penaeidae/virologiaRESUMO
White spot syndrome virus (WSSV) is one of the major challenges faced by global shrimp farming in recent decades. The characterization of WSSV genetic variability has been used to determine viral dispersion and is a promising method to determine the association between genotype and virulence. The major variable regions that have been used as markers to differentiate the WSSV genomes include the VNTR loci inside ORF94, ORF75, ORF125, and insertions/deletions interspersing ORF14/15 and ORF23/24. The primers used to amplify these regions were described at least 10â¯years ago, but some of them do not work efficiently to identify new WSSV variants. The objective of this work was to develop improved PCR primers for WSSV genotyping based on sequence alignments that include new sequences described in recent years. We validated these new primers in a pilot study to verify the genetic variability of the WSSV in Rio Grande do Norte state (northeast Brazil), and efficiency was compared to that of other previously described primers. We confirmed that the primers we developed were more efficient for genotype Brazilian WSSV isolates, enabling us to genotype a larger number of samples. In addition, our results also introduce new data about the genetic characterization of the WSSV isolates that occur in the northeastern region of Brazil.
Assuntos
Primers do DNA , Penaeidae/virologia , Viroses/diagnóstico , Vírus da Síndrome da Mancha Branca 1 , Animais , Brasil , Genoma Viral , Técnicas de Genotipagem , Repetições Minissatélites , Patologia Molecular , Reação em Cadeia da Polimerase/métodos , Vírus da Síndrome da Mancha Branca 1/genéticaRESUMO
The global aquaculture has shown an impressive growth in the last decades contributing with a major part of total food fish supply. However, it also helps in the spread of diseases that in turn, causes great economic losses. The White Spot Syndrome Virus (WSSV) is one of the major viral pathogen for the shrimp aquaculture industry. Several attempts to eliminate the virus in the shrimp have been addressed without achieving a long-term effectiveness. In this work, we determine the capacity of the commercial non-toxic PVP-coated silver nanoparticles to promote the response of the immune system of WSSV-infected shrimps with or without an excess of iron ions. Our results showed that a single dose of metallic silver in the nanomolar range (111 nmol/shrimp), which is equivalent to 12â¯ng/mL of silver nanoparticles, produces 20% survival of treated infected shrimps. The same concentration administered in healthy shrimps do not show histological evidence of damage. The observed survival rate could be associated with the increase of almost 2-fold of LGBP expression levels compared with non-treated infected shrimps. LGBP is a key gene of shrimp immunological response and its up-regulation is most probably induced by the recognition of silver nanoparticles coating by specific pathogen-associated molecular pattern recognition proteins (PAMPs) of shrimp. Increased LGBP expression levels was observed even with a 10-fold lower dose of silver nanoparticles (1.2 ng/shrimp, 0.011â¯nmol of metallic silver/shrimp). The increase in LGBP expression levels was also observed even in the presence of iron ion excess, a condition that favors virus proliferation. Those results showed that a single dose of a slight amount of silver nanoparticles were capable to enhance the response of shrimp immune system without toxic effects in healthy shrimps. This response could be enhanced by administration of other doses and might represent an important alternative for the treatment of a disease that has still no cure, white spot syndrome virus.
Assuntos
Nanopartículas Metálicas , Penaeidae/imunologia , Substâncias Protetoras/farmacologia , Prata/farmacologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Imunidade Inata , Longevidade , Penaeidae/virologiaRESUMO
We provide a global overview of the intestinal bacteriome of Litopenaeus vannamei in two rearing systems and after an oral challenge by the White spot syndrome virus (WSSV). By using a high-throughput 16S rRNA gene sequencing technology, we identified and compared the composition and abundance of bacterial communities from the midgut of shrimp reared in the super-intensive biofloc technology (BFT) and clear seawater system (CWS). The predominant bacterial group belonged to the phylum Proteobacteria, followed by the phyla Bacteroidetes, Actinobacteria, and Firmicutes. Within Proteobacteria, the family Vibrionaceae, which includes opportunistic shrimp pathogens, was more abundant in CWS than in BFT-reared shrimp. Whereas the families Rhodobacteraceae and Enterobacteriaceae accounted for almost 20% of the bacterial communities of shrimp cultured in BFT, they corresponded to less than 3% in CWS-reared animals. Interestingly, the WSSV challenge dramatically changed the bacterial communities in terms of composition and abundance in comparison to its related unchallenged group. Proteobacteria remained the dominant phylum. Vibrionaceae was the most affected in BFT-reared shrimp (from 11.35 to 20.80%). By contrast, in CWS-reared animals the abundance of this family decreased from 68.23 to 23.38%. Our results provide new evidence on the influence of both abiotic and biotic factors on the gut bacteriome of aquatic species of commercial interest.
RESUMO
Argemone mexicana called as Mexican prickly poppy is a species of poppy found in Mexico and now widely naturalized in many parts of the world with broad range of bioactivities including anthelmintic, cures lepsory, skin-diseases, inflammations and bilious fevers. Plant parts of A. mexicana were serially extracted with hexane, ethyl acetate, methanol and performed antiviral and immunostimulant screening against WSSV and Vibrio harveyi respectively. The control groups succumbed to death 100% within three days, whereas the mortality was significantly (Pâ¯<â¯0.5) reduced to 17.43 and 7.11 in the ethyl acetate extracts of stem and root treated shrimp group respectively. The same trend was reflected in the immunostimulant screening also. Different diets were prepared by the concentrations of 100 (AD-1), 200 (AD-2), 300 (AD-3) and 400 (AD-4) mg kg-1 using A. mexicana stem and root ethyl acetate extracts and fed to Pacific white leg shrimp Litopenaeus vannamei weighed about 9.0⯱â¯0.5â¯g for 30 days. The control groups fed with the normal diets devoid of A. mexicana extracts. The antiviral screening results revealed that, the ethyl acetate extract of the stem and root were effectively suppressed the WSSV and it reflected in the lowest cumulative mortality of treated shrimps. After termination of feeding trials, group of shrimps from control and each experimental group were challenged with virulent WSSV by intramuscular (IM) injection and studied cumulative mortality, molecular diagnosis by quantitative real time PCR (qRT-PCR), biochemical, haematological and immunological parameters. Control group succumbed to 100% death within four days, whereas the survival was significantly (Pâ¯<â¯0.001) increased to 30, 45, 75 and 79% in AD1, AD-2, AD-4 and AD-5 diets fed shrimp groups respectively. qRT PCR results with positive correlation analysis revealed that, the WSSV copies were gradually decreased when increasing the A. mexicana extracts in the diets. The highest concentrations (300 and 400â¯mgâ¯g-1) of A. mexicana extracts in the diets helped to reduce the protein level significantly (Pâ¯<â¯0.05) after WSSV challenge. The diets AD-3 and AD-4 also helped to decrease the coagulation time of maximum 64-67% from control groups and maintained the normal level of total haemocyte, oxyhaemocyanin level after WSSV challenge. The proPO level was significantly increased (Column: F = 35.93; Pâ¯≤â¯0.001 and Row: F = 37.14; Pâ¯≤â¯0.001) in the AD1-AD-4 diet fed groups from the control diet fed groups. The lowest intra-agar lysozyme activity of 1.63â¯mm found in control diet fed group and the activity were significantly (Pâ¯<â¯0.05) increased to 4.86, 7.89, 9.12 and 10.45â¯mm of zone of inhibition respectively in AD1 to AD4 diet fed groups.
Assuntos
Argemone/classificação , Imunidade Inata , Penaeidae/imunologia , Extratos Vegetais/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus da Síndrome da Mancha Branca 1/fisiologia , Adjuvantes Imunológicos/farmacologia , Ração Animal/análise , Animais , Antivirais/farmacologia , Dieta , Suplementos Nutricionais/análise , Imunidade Inata/efeitos dos fármacos , Penaeidae/efeitos dos fármacosRESUMO
Lactate dehydrogenase (LDH) is key for anaerobic glycolysis. LDH is induced by the hypoxia inducible factor -1 (HIF-1). HIF-1 induces genes involved in glucose metabolism and regulates cellular oxygen homeostasis. HIF-1 is formed by a regulatory α-subunit (HIF-1α) and a constitutive ß-subunit (HIF-1ß). The white spot syndrome virus (WSSV) induces anaerobic glycolysis in shrimp hemocytes, associated with lactate accumulation. Although infection and lactate production are associated, the LDH role in WSSV-infected shrimp has not been examined. In this work, the effects of HIF-1 silencing on the expression of two LDH subunits (LDHvan-1 and LDHvan-2) in shrimp infected with the WSSV were studied. HIF-1α transcripts increased in gills, hepatopancreas, and muscle after WSSV infection, while HIF-1ß remained constitutively expressed. The expression for both LDH subunits increased in each tissue evaluated during the WSSV infection, translating into increased enzyme activity. Glucose concentration increased in each tissue evaluated, while lactate increased in gills and hepatopancreas, but not in muscle. Silencing of HIF-1α blocked the increase of LDH expression and enzyme activity, along with glucose (all tissues) and lactate (gills and hepatopancreas) concentrations produced by WSSV infection. These results demonstrate that HIF-1 up regulates the expression of LDH subunits during WSSV infection, and that this induction contributes to substrate metabolism in energetically active tissues of infected shrimp.
Assuntos
Regulação da Expressão Gênica/imunologia , Fator 1 Induzível por Hipóxia/genética , Imunidade Inata/genética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/imunologia , Penaeidae/genética , Penaeidae/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Fator 1 Induzível por Hipóxia/metabolismo , L-Lactato Desidrogenase/química , Filogenia , Alinhamento de Sequência , Vírus da Síndrome da Mancha Branca 1/fisiologiaRESUMO
White spot disease (WSD), caused by the white spot syndrome virus, is currently one of the primary causes of mortality and economic losses in the shrimp farming industry worldwide. In Mexico, shrimp production is one of the most important primary activities generating an annual income of USD 711 million. However, WSD introduction in 1999 had a devastating impact for the Mexican shrimp industry. The aim of this study was to characterize the WSD spatio-temporal patterns and to identify the primary risk factors contributing to WSD occurrence from 2005 to 2011 in Sinaloa, Mexico. We used data collected by the 'Comité Estatal de Sanidad Acuícola de Sinaloa' from 2005 to 2011 regarding WSD outbreaks as well as environmental, production and husbandry factors at farm level. The spatio-temporal patterns of WSD were described using space-time scan statistics. The effect of 52 variables on the time to WSD outbreak occurrence was assessed using a multivariable Cox proportional hazards model. Results reveal that WSD risk and survival time were not homogeneously distributed as suggested by the significant clusters obtained using the space-time permutation model and the space-time exponential model, respectively. The Cox model revealed that the first production cycle [hazard ratio (HR) = 11.31], changes from 1 to 1.4°C of temperature oscillation caused by 'El Niño'/'La Niña' events (HR = 1.44) and high average daily growths (HR = 1.26) were significantly associated with lower survival (i.e. shorter time to WSD outbreak) on farm. Conversely, shrimp weight at the moment of the outbreak (HR = 0.159), changes from -0.9 to -0.5°C of temperature oscillation caused by 'El Niño'/'La Niña' events (HR = 0.540), high superficial water temperature during the pound stocking (HR = 0.823) and high (>100) number of days of culture (HR = 0.830) were factors associated with higher survival. Results are expected to inform the design of risk-based, intervention strategies to minimize the impact of WSD in Mexico.
Assuntos
Aquicultura , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , México , Fatores de RiscoRESUMO
Nucleotide phosphorylation is a key step in DNA replication and viral infections, since suitable levels of nucleotide triphosphates pool are required for this process. Deoxythymidine monophosphate (dTMP) is produced either by de novo or salvage pathways, which is further phosphorylated to deoxythymidine triphosphate (dTTP). Thymidyne monophosphate kinase (TMK) is the enzyme in the junction of both pathways, which phosphorylates dTMP to yield deoxythymidine diphosphate (dTDP) using adenosine triphosphate (ATP) as a phosphate donor. White spot syndrome virus (WSSV) genome contains an open reading frame (ORF454) that encodes a thymidine kinase and TMK domains in a single polypeptide. We overexpressed the TMK ORF454 domain (TMKwssv) and its specific activity was measured with dTMP and dTDP as phosphate acceptors. We found that TMKwssv can phosphorylate dTMP to yield dTDP and also is able to use dTDP as a substrate to produce dTTP. Kinetic parameters K M and k cat were calculated for dTMP (110 µM, 3.6 s(-1)), dTDP (251 µM, 0.9 s(-1)) and ATP (92 µM, 3.2 s(-1)) substrates, and TMKwssv showed a sequential ordered bi-bi reaction mechanism. The binding constants K d for dTMP (1.9 µM) and dTDP (10 µM) to TMKwssv were determined by Isothermal Titration Calorimetry. The affinity of the nucleotidic analog stavudine monophosphate was in the same order of magnitude (K d 3.6 µM) to the canonical substrate dTMP. These results suggest that nucleotide analogues such as stavudine could be a suitable antiviral strategy for the WSSV-associated disease.
Assuntos
Núcleosídeo-Fosfato Quinase/química , Fases de Leitura Aberta , Proteínas Virais/química , Vírus da Síndrome da Mancha Branca 1/enzimologia , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Núcleosídeo-Fosfato Quinase/genética , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Vírus da Síndrome da Mancha Branca 1/genéticaRESUMO
The white spot syndrome virus (WSSV) is a lethal and contagious pathogen for penaeid shrimp and a growing number of other crustacean species. To date, there are no effective prophylactic or therapeutic treatments commercially available to interfere with the occurrence and spread of the disease. In addition, the significance of alternative vectors on the dispersal of this disease has been largely ignored and therefore the ecological dynamics of the WSSV is still poorly understood and difficult to ascertain. Thus, an important issue that should be considered in sanitary programmes and management strategies is the identification of species susceptible to infection by WSSV. The results obtained provide the first direct evidence of ongoing WSSV replication in experimentally infected specimens of the tidepool shrimp Palaemon ritteri. Viral replication was detected using a validated set of primers for the amplification by RT-PCR of a 141 bp fragment of the transcript encoding the viral protein VP28. It is therefore conceivable that this shrimp may play a significant role in the dispersal of WSSV.
Assuntos
Especificidade de Hospedeiro/fisiologia , Palaemonidae/virologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Interações Hospedeiro-Patógeno , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Replicação Viral/fisiologiaRESUMO
In this study thirty shrimp samples from commercial marine shrimp (L. vannamei) farms of southern region of Brazil were obtained. Hepatopancreas and shell scrapings fragments collected in these animals were processed by transmission electron microscopy using negative staining (rapid preparation), immunoelectron microscopy and immunocytochemistry (immunolabelling with colloidal gold particles) techniques. On the transmission electron microscopy a great number of white spot virus particles, ovoid or bacilliform-to-ellipsoid, measured 230-290 nm in length and 80-160 nm in diameter with intra-nuclear projections were visualized by the negative staining technique in 27 (90 percent) out of 30 samples examined. Using immunoelectron microscopy technique, the anti-VP 664 serum agllutinated a large number of particles formed by antigen-antibody interaction. In the immunocytochemistry technique, the antigen-antibody reaction was styrongly marked by the particles of colloidal gold over the virus. Notably, this is the first report, to our knowledge, describing use of these microscopy techniques to study Brazilian L. vannamei marine shrimp samples; moreover, this methodology also appears to be a viable complementary tool for diagnosing the presence of the white spot virus within shrimp tissues. Importantly, these are the first photoelectron micrographs of the WSSV in Brazil.
Se obtuvieron para el estudio 30 muestras de camarones marinos comerciales (L. vannamei) de las granjas de la región sur de Brasil. Fueron procesados fragmentos de hepatopáncreas y raspados internos del cefalotórax recogidos en estos animales por microscopía electrónica de transmisión con tinción negativa (preparación rápida), inmunomicroscopía y técnicas de inmunocitoquímica (inmunomarcación con partículas de oro coloidal). En la microscopía electrónica de transmisión de un gran número de partículas de virus de la mancha blanca, ovoide o elipsoidal a baciliformes, medían 230-290 nm de longitud y 80-160 nm de diámetro. En 27 (90 por ciento) de las 30 muestras examinadas intra-nuclear proyecciones se visualizaron mediante la técnica de tinción negativa. Utilizando una técnica de inmunomicroscopía electrónica, el anti-suero VP 664 reunió a un gran número de partículas formadas por la interacción antígeno-anticuerpo. En la técnica de inmunocitoquímica, la reacción antígeno-anticuerpo fue fuertemente reforzada por las partículas de oro coloidal en los virus. En particular, en Brasil este es el primer informe, a nuestro entender, que describe el uso de estas técnicas de microscopía en muestras de camarón marino L. vanamei. Además, esta metodología también parece ser una herramienta complementaria viable para diagnosticar la presencia del virus de la mancha blanca en tejidos de camarón. Es importante destacar que estas son las primeras fotos en microscopia electrónica del WSSV obtenidas en Brasil.
Assuntos
Animais , Infecções por Vírus de DNA/patologia , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1 , Brasil , Decápodes/virologia , Coloide de Ouro , Imuno-Histoquímica/métodos , Microscopia Eletrônica , Coloração NegativaRESUMO
Proliferating cell nuclear antigen (PCNA) is the eukaryotic sliding clamp that tethers DNA polymerase to DNA during replication. The full-length cDNA of the Pacific white shrimp Litopenaeus vannamei PCNA (LvPCNA) was cloned and encoded a protein of 260 amino acids that is highly similar to other Crustacean PCNAs. The theoretical shrimp PCNA structure has all the domains that are necessary for its interaction with template DNA and DNA polymerase. RT-PCR analysis showed that LvPCNA is expressed mainly in muscle and hemocytes and much less in hepatopancreas and gills. LvPCNA mRNA levels are not statistically different in muscle from healthy and challenged shrimp with the white spot syndrome virus (WSSV). In contrast, the mRNA levels of the viral DNA polymerase show a biphasic pattern with expression at 6 h post-infection and later at 24 and 48 h. These results suggest that in shrimp muscle LvPCNA levels are steadily kept to allow viral replication and that WSSV DNA polymerase (WSSV-DNApol) is more responsive towards later stages of infection. More knowledge of the DNA replication machinery would result in a better understanding of the mechanism and components of viral replication, since the WSSV genome does not have all the components required for assembly of a fully functional replisome.