Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.032
Filtrar
1.
bioRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39282375

RESUMO

Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (MKPs) directly dephosphorylate and inactivate the MAPKs. Although the catalytic mechanism of dephosphorylation of the MAPKs by the MKPs is established, a complete molecular picture of the regulatory interplay between the MAPKs and MKPs still remains to be fully explored. Here, we sought to define the molecular mechanism of MKP5 regulation through an allosteric site within its catalytic domain. We demonstrate using crystallographic and NMR spectroscopy approaches that residue Y435 is required to maintain the structural integrity of the allosteric pocket. Along with molecular dynamics simulations, these data provide insight into how changes in the allosteric pocket propagate conformational flexibility in the surrounding loops to reorganize catalytically crucial residues in the active site. Furthermore, Y435 contributes to the interaction with p38 MAPK and JNK, thereby promoting dephosphorylation. Collectively, these results highlight the role of Y435 in the allosteric site as a novel mode of MKP5 regulation by p38 MAPK and JNK.

2.
J Inorg Biochem ; 261: 112707, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39217822

RESUMO

Tryptophan dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO) belong to a unique class of heme-based enzymes that insert dioxygen into the essential amino acid, L-tryptophan (Trp), to generate N-formylkynurenine (NFK), a critical metabolite in the kynurenine pathway. Recently, the two dioxygenases were recognized as pivotal cancer immunotherapeutic drug targets, which triggered a great deal of drug discovery targeting them. The advancement of the field is however hampered by the poor understanding of the structural properties of the two enzymes and the mechanisms by which the structures dictate their functions. In this review, we summarize recent findings centered on the structure, function, and dynamics of the human isoforms of the two enzymes.


Assuntos
Heme , Indolamina-Pirrol 2,3,-Dioxigenase , Triptofano Oxigenase , Humanos , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/química , Heme/química , Heme/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Cinurenina/metabolismo , Cinurenina/química , Triptofano/química , Triptofano/metabolismo , Animais
3.
Proteins ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324284

RESUMO

Domains of unknown function (DUFs) continue to comprise a significant portion of bacterial proteomes, with more than 20% of bacterial proteins remaining annotated as DUFs. The characterization of their molecular structure can provide valuable insight that is not captured by the primary sequence analysis, thus providing a segue into the identification of the molecular function of DUF representatives. Here, we present the crystal structure of KPN_02352 from Klebsiella pneumoniae subsp. pneumoniae, a DUF1480 domain-containing protein, which was determined to be 1.75 Å resolution. Representatives of the DUF1480 family are found broadly across Enterobacterales and have been previously shown to contribute to the antibiotic response. Our structural analysis suggests that DUF1480 is comprised of a six-stranded split barrel fold featuring a small alpha helix that is positioned to cap one end of the split barrel. DUF1480 was found to be monomeric in solution, and harbors structural similarity to response regulators. The crystal structure of DUF1480 is the first experimental insight into the molecular structure of this conserved protein family, revealing several conserved features that may be functionally relevant.

4.
Biochem Biophys Res Commun ; 733: 150721, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39307113

RESUMO

Lactate dehydrogenase A (LDHA) is a key enzyme in Warburg's effect, a characteristic of cancer cells. LDHA is a target of anticancer agents that inhibit the metabolism of cancer cells. Gossypol is a known cancer therapeutic agent that inhibits LDHA by competitive inhibition. However, the mechanisms of inhibition of LDHA by gossypol is unknown. Here, we elucidate the binding of gossypol and LDHA using biochemical and biophysical methods. The crystal structure of the complex between LDHA and gossypol is presented. The binding of gossypol affects LDHA activity by a conformational change in the active-site loop. Our research contributes to the structural insight into LDHA with gossypol and approaches gossypol as a novel therapeutic candidate targeting the metabolic pathways for cancer cells.

5.
J Mol Biol ; : 168801, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39321866

RESUMO

Sialic acid esterase (SIAE) catalyzes the removal of O-acetyl groups from sialic acids found on cell surface glycoproteins to regulate cellular processes such as B cell receptor signalling and apoptosis. Loss-of-function mutations in SIAE are associated with several common autoimmune diseases including Crohn's, ulcerative colitis, and arthritis. To gain a better understanding of the function and regulation of this protein, we determined crystal structures of SIAE from three mammalian homologs, including an acetate bound structure. The structures reveal that the catalytic domain adopts the fold of the SGNH hydrolase superfamily. The active site is composed of a catalytic dyad, as opposed to the previously reported catalytic triad. Attempts to determine a substrate-bound structure yielded only the hydrolyzed product acetate in the active site. Rigid docking of complete substrates followed by molecular dynamics simulations revealed that the active site does not form specific interactions with substrates, rather it appears to be broadly specific to accept sialoglycans with diverse modifications. Based on the acetate bound structure, a catalytic mechanism is proposed. Structural mapping of disease mutations reveals that most are located on the surface of the enzyme and would only cause minor disruptions to the protein fold, suggesting that these mutations likely affect binding to other factors. These results improve our understanding of SIAE biology and may aid in the development of therapies for autoimmune diseases and cancer.

6.
Comput Struct Biotechnol J ; 23: 3258-3269, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39286527

RESUMO

Peptidyl arginine deiminase 6 (PADI6 or PAD6) is vital for early embryonic development in mice and humans, yet its function remains elusive. PADI6 is less conserved than other PADIs and it is currently unknown whether it has a catalytic function. Here we show that human PADI6 dimerises like hPADIs 2-4, however, does not bind Ca2+ and is inactive in in vitro assays against standard PADI substrates. By determining the crystal structure of hPADI6, we show that hPADI6 is structured in the absence of Ca2+ where hPADI2 and hPADI4 are not, and the Ca-binding sites are not conserved. Moreover, we show that whilst the key catalytic aspartic acid and histidine residues are structurally conserved, the cysteine is displaced far from the active site centre and the hPADI6 active site pocket appears closed through a unique evolved mechanism in hPADI6, not present in the other PADIs. Taken together, these findings provide insight into how the function of hPADI6 may differ from the other PADIs based on its structure and provides a resource for characterising the damaging effect of clinically significant PADI6 variants.

7.
Methods Enzymol ; 704: 59-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39300657

RESUMO

This Chapter describes methods for the biosynthetic substitution of the mononuclear, non-heme iron in plant and animal lipoxygenases (LOXs). Substitution of this iron center for a manganese ion results in an inactive, yet faithful structural surrogate of the LOX enzymes. This metal ion substitution permits structural and dynamical studies of enzyme-substrate complexes in solution and immobilized on lipid membrane surfaces. Representative procedures for two LOXs, soybean lipoxygenase (SLO) from plants and human epithelial 15-lipoxygenase-2 (15-LOX-2) from mammals, are described as examples.


Assuntos
Araquidonato 15-Lipoxigenase , Glycine max , Ferro , Humanos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/química , Glycine max/enzimologia , Ferro/química , Ferro/metabolismo , Lipoxigenase/química , Lipoxigenase/metabolismo , Animais , Lipoxigenases/metabolismo , Lipoxigenases/química , Manganês/química , Manganês/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-39325582

RESUMO

Porphyromonas gingivalis is a major pathogenic oral bacterium that is responsible for periodontal disease. It is linked to chronic periodontitis, gingivitis and aggressive periodontitis. P. gingivalis exerts its pathogenic effects through mechanisms such as immune evasion and tissue destruction, primarily by secreting various factors, including cysteine proteases such as gingipain K (Kgp), gingipain R (RgpA and RgpB) and PrtH (UniProtKB ID P46071). Virulence proteins comprise multiple domains, including the pro-peptide region, catalytic domain, K domain, R domain and DUF2436 domain. While there is a growing database of knowledge on virulence proteins and domains, there was no prior evidence or information regarding the structure and biological function of the well conserved DUF2436 domain. In this study, the DUF2436 domain of PrtH from P. gingivalis (PgDUF2436) was determined at 2.21 Šresolution, revealing a noncanonical ß-jelly-roll sandwich topology with two antiparallel ß-sheets and one short α-helix. Although the structure of PgDUF2436 was determined by the molecular-replacement method using an AlphaFold model structure as a template, there were significant differences in the positions of ß1 between the AlphaFold model and the experimentally determined PgDUF2436 structure. The Basic Local Alignment Search Tool sequence-similarity search program showed no sequentially similar proteins in the Protein Data Bank. However, DaliLite search results using structure-based alignment revealed that the PgDUF2436 structure has structural similarity Z-scores of 5.9-5.4 with the C-terminal domain of AlgF, the D4 domain of cytolysin, IglE and the extracellular domain structure of PepT2. This study has elucidated the structure of the DUF2436 domain for the first time and a comparative analysis with similar structures has been performed.

9.
FEBS J ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325669

RESUMO

Human 5'-3' exonuclease PLD3, a member of the phospholipase D family of enzymes, has been validated as a therapeutic target for treating Alzheimer's disease. Here, we have determined the crystal structure of the luminal domain of the enzyme at 2.3 Å resolution, revealing a bilobal structure with a catalytic site located between the lobes. We then compared the structure with published crystal structures of other human PLD family members which revealed that a number of catalytic and lipid recognition residues, previously shown to be key for phospholipase activity, are not conserved or, are absent. This led us to test whether the enzyme is actually a phospholipase. We could not measure any phospholipase activity but the enzyme shows robust nuclease activity. Finally, we have mapped key single nucleotide polymorphisms onto the structure which reveals plausible reasons as to why they have an impact on Alzheimer's disease.

10.
Int J Biol Macromol ; : 136021, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326622

RESUMO

Adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) is one of the key enzymes that participate in the biosynthesis of cobalamin, specifically lining the lower ligand 5,6-dimethylbenzimidazole in the α-position of cyclic tetrapyrrolidine. During this process, CobU exhibits two distinct activities: kinase and nucleotidyl transferase, using two nucleoside triphosphates. A structural study of CobU from Salmonella typhimurium showed that guanosine triphosphate binding induces a conformational rearrangement of helix 2. This rearrangement decreases the distance between the phosphate binding loop (P-loop) and helix 2, which is important for the subsequent guanylylation step of the reaction. However, these findings provide only partial insights into the mechanism of CobU at the structural level, and the precise molecular details of this mechanism have not yet been studied. As a first step towards elucidating the molecular mechanisms and sequence of events involved in the phosphorylation and guanylylation steps, we report the high-resolution crystal structures of phosphorylated -MpaCobU (1.8 Å), the C91S mutant (1.5 Å), the guanosine diphosphate complex (1.9 Å), and the adenosylcobinamide-phosphate complex (2.6 Å) from Methylocapsa palsarum for the first time. High-resolution structures revealed the crucial elements governing the catalytic steps of MpaCobU, thereby contributing to understanding the catalytic mechanism of CobU at the molecular level.

11.
Toxins (Basel) ; 16(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39330864

RESUMO

ABC toxin complexes are a class of protein toxin translocases comprised of a multimeric assembly of protein subunits. Each subunit displays a unique composition, contributing to the formation of a syringe-like nano-machine with natural cargo carrying, targeting, and translocation capabilities. Many of these toxins are insecticidal, drawing increasing interest in agriculture for use as biological pesticides. The A subunit (TcA) is the largest subunit of the complex and contains domains associated with membrane permeation and targeting. The B and C subunits, TcB and TcC, respectively, package into a cocoon-like structure that contains a toxic peptide and are coupled to TcA to form a continuous channel upon final assembly. In this review, we outline the current understanding and gaps in the knowledge pertaining to ABC toxins, highlighting seven published structures of TcAs and how these structures have led to a better understanding of the mechanism of host tropism and toxin translocation. We also highlight similarities and differences between homologues that contribute to variations in host specificity and conformational change. Lastly, we review the biotechnological potential of ABC toxins as both pesticides and cargo-carrying shuttles that enable the transport of peptides into cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Animais , Humanos , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Tropismo ao Hospedeiro
12.
J Biol Chem ; 300(10): 107738, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233230

RESUMO

Membrane asymmetry is critical for maintenance of several different processes such as cell signaling, apoptosis, and vesicular transport in various eukaryotic systems. Flippases of the P4-ATPase family are associated with flipping phospholipids from the luminal or exoplasmic leaflet to the cytosolic leaflet. P4-ATPases belong to the P-type ATPase family, which are activated by phosphorylation and couple ATPase activity to substrate translocation. These proteins possess a transmembrane domain responsible for substrate transport, while the cytosolic machinery performs the necessary ATP hydrolysis for this process. Several high-resolution structures of human or yeast P4-ATPases have recently been resolved, but a comprehensive overview of the changes for reaction cycle in different members was crucial for future research. In this review, we have compiled available data reflecting the reaction cycle-associated changes in conformation of P4-ATPases. Together, this will provide an improved understanding of the similarities and differences between these members, which will drive further structural, functional, and computational studies to understand the mechanisms of these flippases.

13.
Heliyon ; 10(18): e37385, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309844

RESUMO

The research investigates the cytotoxic effects of the stable NH-form of a resorcinol-based Schiff base (HL) and its metal complexes (Zn(II), Cd(II), Cu(II), Ni(II)) on MCF-7 breast cancer cells. The structural characterization was conducted utilizing diverse analytical techniques, including mass spectrometry, elemental analysis, molar conductance, magnetic moment, UV-Vis, IR and ESR. The crystalline state analysis of HL through X-ray crystallography disclosed a hybrid structure comprising two canonical forms, specifically the quinoid and zwitterion, that contribute to resonance and diverse interactions, resulting in the development of a three-dimensional form. NMR, IR and ESR analyses showed that the HL was bidentate, using the oxygen of the hydroxyl and the nitrogen atom of azomethine, bonded to the metal center during complexation. The study explored the cytotoxic effects of HL and the various metal complexes on MCF-7 human breast cancer cells. All complexes display significant cytotoxicity (IC50 < 38.37 µM). The activity of the complexes was greater than that of the free ligand, with the Cu(II) complex followed by Zn(II) demonstrated superior cytotoxicity compared to Cd(II), and Ni(II) complexes. Notably, the Cu(II) and Zn(II) complex exhibited approximately 13.2 and 12.9 times greater cytotoxicity than the 5-F Uracil (5-FU) cancer drug. An MTT assay corroborated the antiproliferative activity. The molecular docking study has been performed for all compounds with the aromatase cytochrome P450 receptor protein associated with breast cancer (PDB code = 3eqm). ADME drug likeness model has been done.

14.
J Biol Chem ; : 107797, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39305959

RESUMO

Microbial rhodopsins are photoreceptive membrane proteins found in microorganisms with an all-trans-retinal chromophore. The function of many microbial rhodopsins is determined by three residues in the third transmembrane helix called motif residues. Here, we report a group of microbial rhodopsins with a novel Thr-Thr-Gly (TTG) motif. The ion-transport assay revealed that they function as light-driven inward anion pumps similar to halorhodopsins previously found in archaea and bacteria. Based on the characteristic glycine residue in their motif and light-driven anion-pumping function, these new rhodopsins are called glycylhalorhodopsins (GHRs). X-ray crystallographic analysis found large cavities on the cytoplasmic side, which are produced by the small side-chain volume of the glycine residue in the motif. The opened structure of GHR on the cytoplasmic side is related to the anion releasing process to the cytoplasm during the photoreaction compared to canonical halorhodopsin from Natronomonas pharaonis (NpHR). GHR also transports SO42- and the extracellular glutamate residue plays an essential role in extracellular SO42- uptake. In summary, we have identified TTG motif-containing microbial rhodopsins that display an anion-releasing mechanism.

15.
bioRxiv ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39282304

RESUMO

YcjN is a putative substrate-binding protein expressed from a cluster of genes involved in carbohydrate import and metabolism in Escherichia coli. Here, we determine the crystal structure of YcjN to a resolution of 1.95 Å, revealing that its three-dimensional structure is similar to substrate binding proteins in subcluster D-I, which includes the well-characterized maltose binding protein (MBP). Furthermore, we found that recombinant overexpression of YcjN results in the formation of a lipidated form of YcjN that is posttranslationally diacylated at cysteine 21. Comparisons of size-exclusion chromatography profiles and dynamic light scattering measurements of lipidated and non-lipidated YcjN proteins suggest that lipidated YcjN aggregates in solution via its lipid moiety. Additionally, bioinformatic analysis indicates that YcjN-like proteins may exist in both Bacteria and Archaea, potentially in both lipidated and non-lipidated forms. Together, our results provide a better understanding of the aggregation properties of recombinantly expressed bacterial lipoproteins in solution and establish a foundation for future studies that aim to elucidate the role of these proteins in bacterial physiology.

16.
Methods Enzymol ; 704: 27-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39300651

RESUMO

Rieske non-heme iron oxygenases are ubiquitously expressed in prokaryotes. These enzymes catalyze a wide variety of reactions, including cis-dihydroxylation, mono-hydroxylation, sulfoxidation, and demethylation. They contain a Rieske-type [2Fe-2S] cluster and an active site with a mono-nuclear iron bound to a 2-His carboxylate triad. Naphthalene 1,2 dioxygenase, a representative of this family, catalyzes the conversion of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. This transformation requires naphthalene, two electrons, and an oxygen molecule. The first structure of the terminal oxygenase component of a Rieske non-heme iron oxygenase to be determined was naphthalene 1,2 dioxygenase (NDO-O). In this article, we describe in detail the methods used to recombinantly express and purify NDO-O in rich and minimal salts media, the crystallization of NDO-O for structure determination by X-ray crystallography, the challenges faced, and the methods used for the preparation of enzyme ligand complexes. The methods used here resulted in the determination of several NDO-O complexes with aromatic substrates, nitric oxide, oxygen molecule, and products, leading to an initial understanding of the mechanism of enzyme catalysis and the molecular determinants of the regio- and stereo-specificity of this class of enzymes.


Assuntos
Dioxigenases , Dioxigenases/química , Dioxigenases/metabolismo , Dioxigenases/genética , Cristalografia por Raios X/métodos , Naftalenos/química , Naftalenos/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Domínio Catalítico , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Cristalização/métodos , Modelos Moleculares , Complexos Multienzimáticos
17.
J Biol Chem ; : 107770, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270823

RESUMO

Dynamic ADP-ribosylation signalling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species and infection. In some pathogenic microbes the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterise the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.

18.
Front Plant Sci ; 15: 1451839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224855

RESUMO

Tetrahydrofolate and its derivatives participate in one-carbon transfer reactions in all organisms. The cellular form of tetrahydrofolate (THF) is modified by multiple glutamate residues and polyglutamylation plays a key role in organellar and cellular folate homeostasis. In addition, polyglutamylation of THF is known to increase the binding affinity to enzymes in the folate cycle, many of which can utilize polyglutamylated THF as a substrate. Here, we use X-ray crystallography to provide a high-resolution view of interactions between the enzyme serine hydroxymethyltransferase (SHMT), which provides one carbon precursors for the folate cycle, and a polyglutamylated form of THF. Our 1.7 Å crystal structure of soybean SHMT8 in complex with diglutamylated 5-formyl-THF reveals, for the first time, a structural rearrangement of a loop at the entrance to the folate binding site accompanied by the formation of novel specific interactions between the enzyme and the diglutamyl tail of the ligand. Biochemical assays show that additional glutamate moieties on the folate ligand increase both enzyme stability and binding affinity. Together these studies provide new information on SHMT structure and function and inform the design of anti-folate agents.

19.
Protein Sci ; 33(10): e5152, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39275999

RESUMO

γ-Hydroxybutyric acid (GHB) analogs are small molecules that bind competitively to a specific cavity in the oligomeric CaMKIIα hub domain. Binding affects conformation and stability of the hub domain, which may explain the neuroprotective action of some of these compounds. Here, we describe molecular details of interaction of the larger-type GHB analog 2-(6-(4-chlorophenyl)imidazo[1,2-b]pyridazine-2-yl)acetic acid (PIPA). Like smaller-type analogs, PIPA binding to the CaMKIIα hub domain promoted thermal stability. PIPA additionally modulated CaMKIIα activity under sub-maximal CaM concentrations and ultimately led to reduced substrate phosphorylation. A high-resolution X-ray crystal structure of a stabilized CaMKIIα (6x mutant) hub construct revealed details of the binding mode of PIPA, which involved outward placement of tryptophan 403 (Trp403), a central residue in a flexible loop close to the upper hub cavity. Small-angle X-ray scattering (SAXS) solution structures and mass photometry of the CaMKIIα wild-type hub domain in the presence of PIPA revealed a high degree of ordered self-association (stacks of CaMKIIα hub domains). This stacking neither occurred with the smaller compound 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA), nor when Trp403 was replaced with leucine (W403L). Additionally, CaMKIIα W403L hub was stabilized to a larger extent by PIPA compared to CaMKIIα hub wild type, indicating that loop flexibility is important for holoenzyme stability. Thus, we propose that ligand-induced outward placement of Trp403 by PIPA, which promotes an unforeseen mechanism of hub domain stacking, may be involved in the observed reduction in CaMKIIα kinase activity. Altogether, this sheds new light on allosteric regulation of CaMKIIα activity via the hub domain.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Domínios Proteicos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Espalhamento a Baixo Ângulo , Triptofano/química , Triptofano/metabolismo , Piridazinas/química , Piridazinas/metabolismo , Fosforilação
20.
J Inorg Biochem ; 262: 112730, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39276716

RESUMO

Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in mitochondria. It catalyzes the four-electron reduction of O2 to H2O and harnesses the redox energy to drive unidirectional proton translocation against a proton electrochemical gradient. A great deal of research has been conducted to comprehend the molecular properties of CcO. However, the mechanism by which the oxygen reduction reaction is coupled to proton translocation remains poorly understood. Here, we review the chemical properties of a variety of key oxygen intermediates of bovine CcO (bCcO) revealed by time-resolved resonance Raman spectroscopy and the structural features of the enzyme uncovered by serial femtosecond crystallography, an innovative technique that allows structural determination at room temperature without radiation damage. The implications of these data on the proton translocation mechanism are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA