Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. J. Biol. ; 83: 1-15, 2023. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-765398

RESUMO

Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T. cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.(AU)


O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T. cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.(AU)


Assuntos
Animais , Dano ao DNA , Trypanosoma cruzi/genética , Cruzamentos Genéticos , Expressão Gênica
2.
Braz. j. biol ; 83: 1-15, 2023. tab, ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468821

RESUMO

Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T. cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.


O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T. cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.


Assuntos
Animais , Cruzamentos Genéticos , Dano ao DNA , Expressão Gênica , Trypanosoma cruzi/genética
3.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469037

RESUMO

Abstract Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T.cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.


Resumo O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T.cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.

4.
Braz. j. biol ; 83: e243910, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1278525

RESUMO

Abstract Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T.cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.


Resumo O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T.cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.


Assuntos
Humanos , Animais , Trypanosoma cruzi/genética , Xeroderma Pigmentoso , Dano ao DNA/genética , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA/genética
5.
São Paulo; s.n; 2020. 99 p. figuras, tabelas.
Tese em Português | LILACS, Inca | ID: biblio-1102465

RESUMO

A síndrome do Xeroderma Pigmentoso (XP) ocorre frente à herança monogênica e bialélica de variantes germinativas patogênicas de perda ou redução de função em genes das vias de reparo por excisão de nucleotídeos ou síntese translesão. Consequentemente, é estabelecida deficiência na correção de lesões induzidas, principalmente por radiação ultravioleta, favorecendo alta sensibilidade à radiação solar e risco aumentado para o desenvolvimento de múltiplas lesões cutâneas pré-malignas e malignas. Visto que a heterogeneidade na manifestação clínica da síndrome é uma questão em discussão na literatura, para investigar este aspecto propusemos avaliar o perfil de variantes germinativas e variantes somáticas de tumores cutâneos e não cutâneos de indivíduos portadores de XP. Foi realizado o sequenciamento de alto desempenho utilizando a plataforma NextSeq (Illumina) para avaliar as regiões codificantes de 114 genes selecionados pela sua relevância em desordens dermatológicas, tumorigênese e fisiologia cutânea e resposta de dano ao DNA. Seis pacientes com fenótipo clínico da síndrome do XP e portadores de variantes germinativas clinicamente relevantes nos genes XPC ou POLH/XPV foram avaliados no estudo. Variantes germinativas de significado incerto foram identificadas, em heterozigose, no DNA de leucócito de cinco dos seis pacientes avaliados ocorrendo nos genes DNAH11, PCDHB3, RGS22, SLC27A5, TTN e UGT2B10 e nenhuma das variantes identificadas apresentou perda de heterozigose do alelo selvagem nos tecidos tumorais. O polimorfismo de risco para carcinoma basocelular de pele (CBC) rs3769823[A] no gene CASP8 não foi identificado em apenas um caso do estudo, o qual desenvolveu o menor número de tumores. O polimorfismo de risco rs1126809[A] no gene TYR foi detectado apenas no caso que apresentou o maior número de CBC. Amostras de DNA de nove CBCs de tecido armazenado em parafina e duas amostras de tumor gástrico de uma mesma peça cirúrgica, de tecido armazenado em parafina e congelado a fresco, foram avaliadas de forma pareada com o DNA de leucócito correspondente, para pesquisa de variantes somáticas. Variantes somáticas não foram identificadas na amostra de CBC da paciente XP-C com fenótipo menos agressivo da síndrome. O total de 235 variantes missense e 29 variantes de perda de função foram identificadas em 71 genes para sete amostras de CBC, mínimo de 11 e máximo de 127 variantes por amostra, com 85,2% destas apresentando frequência alélica ≥20%. Com exceção de um CBC, mais de 95% das variantes somáticas identificadas representam alterações tipicamente fotoinduzidas (C:G>T:A e G:C>T:A). Embora pacientes XP acumulem maior número de mutações devido deficiência no mecanismo de reparo, não observamos carga mutacional diferente do observado em CBCs esporádicos. Vinte e sete genes apresentaram variantes somáticas em mais de uma amostra de CBC. Nenhum gene foi compartilhado entre as sete amostras de CBC. Entre os genes alterados em maior número de tumores estão incluídos genes drivers de CBC (LATS1, NOTCH2, PTCH1, PTPN14 e TP53), bem como genes não clássicos na carcinogênese do CBC (APC, FLG e TTN). Uma variante driver em SMO foi recorrente em três CBCs de um mesmo paciente. Duas variantes somáticas foram identificadas no tumor gástrico de tecido congelado a fresco ocorrendo nos genes GLI3 e RB1, não sendo as mesmas detectadas no tecido armazenado em parafina. Nesse trabalho, ressalta-se a heterogeneidade na manifestação clínica da síndrome do XP e a identificação de dois polimorfismos de risco, bem como destaca-se o papel central das vias Sonic Hedgehog e Hippo na carcinogênese do CBC de pacientes XP (AU)


The Xeroderma Pigmentosum (XP) syndrome occurs on base of biallelic inheritance of pathogenic germline variants of loss of function or function reduction in genes that plays role in nucleotide excision repair and translesion synthesis. Consequently, patients are deficient in correct DNA lesions mainly induced by ultraviolet radiation, present high sensitivity to solar radiation and increased risk for the development of multiple premalignant and malignant skin lesions. Since the heterogeneity in the clinical manifestation is under constantly discussion in the literature, to investigate it we proposed to explore the profile of germline variants and somatic variants in skin and non-skin tumors from XP patients. High-performance sequencing using the NextSeq (Illumina) platform was performed to assess the coding regions of 114 genes selected for their relevance in dermatological disorders, skin carcinogenesis, cutaneous physiology and DNA damage response. Six patients with clinical phenotype of XP syndrome and carriers of clinically relevant germline variants in the XPC or POLH/XPV genes were evaluated in the study. Heterozygous germline variants of uncertain significance were identified in the leukocyte DNA from five of the six patients occurring in DNAH11, PCDHB3, RGS22, SLC27A5, TTN and UGT2B10 genes. None of the identified variants showed loss of heterozygosity of the wild allele in tumor tissues. The CASP8 risk polymorphism for basal cell carcinoma of the skin (BCC) rs3769823[A] was not identified in only one case of the study which developed the minor number of tumors. The TYR risk polymorphism rs1126809[A] was detected only in the case with the highest number of BCC. Somatic variants were investigated in DNA from nine samples of BCCs (tissue stored in paraffin) and two samples of gastric tumor from the same surgical (tissue stored in paraffin and fresh frozen), all paired with the corresponding leukocyte DNA. Somatic variants were not identified in the BCC sample of XP-C patient with a less aggressive syndrome phenotype. A total of 235 missense variants and 29 loss of function variants were identified in 71 genes for seven BCC samples. A minimum of 11 and a maximum of 127 variants per sample were detected, with 85.2% showing an allelic frequency ≥20%. Except for one BCC, more than 95% of the identified somatic variants represented typically photoinduced mutations (C:G>T:A and G:C>T:A). Although XP patients accumulate a greater number of mutations due to deficiency in the repair mechanism, we did not observe different mutational load compared with sporadic BCCs. Twenty-seven genes showed somatic variants in more than one BCC sample. Genes shared between the seven BCC samples were not found. Among the altered genes in a greater number of tumors, it was identified BCC driver genes (LATS1, NOTCH2, PTCH1, PTPN14 and TP53), as well as genes non-classical for BCC carcinogenesis (APC, FLG and TTN). A driver variant in SMO was recurrent in three BCCs from the same patient. Two somatic variants in GLI3 and RB1 genes were identified occurring only in the fresh frozen tissue of gastric tumor, not in the tissue stored in paraffin. In this work, the heterogeneous clinical manifestation of XP syndrome is highlighted, as well as the identification of two risk polymorphisms. In addition, this work emphasizes the central role of the Sonic Hedgehog and Hippo pathways in BCC carcinogenesis of XP patients.


Assuntos
Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Cutâneas , Neoplasias Gástricas , Xeroderma Pigmentoso , Carcinoma Basocelular , Reparo do DNA , Sequenciamento de Nucleotídeos em Larga Escala , Raios Ultravioleta
6.
São Paulo; s.n; s.n; 2018. 112 p. tab, graf.
Tese em Português | LILACS | ID: biblio-967941

RESUMO

A ausência de XPC, uma proteína canonicamente envolvida em reparo de DNA por excisão de nucleotídeos, está associada a vários fenótipos característicos de disfunção mitocondrial como o desequilíbrio entre os complexos da cadeia transportadora de elétrons (CTE), redução no consumo de oxigênio, maior produção de peróxido de hidrogênio, e maior sensibilidade a agentes que causam estresse mitocondrial. Contudo, uma descrição mecanística da relação entre deficiência de XPC e disfunção mitocondrial ainda não está bem estabelecida. Aqui mostramos que a deficiência de XPC está associada ao aumento na expressão do supressor de tumor p53. Essa alteração é acompanhada pelo aumento da expressão de diversas proteínas que participam em importantes funções mitocondriais. A inibição de p53 reverte a superexpressão de algumas dessas proteínas. O tratamento com o inibidor do Complexo III da CTE antimicina A induz aumento da expressão de p53 de forma mais acentuada na linhagem Xpc-/-, enquanto o tratamento com o antioxidante N-acetilcisteína diminue a produção basal de H2O2, expressão de p53 e sensibilidade aumentada ao tratamento com antimicina A. Em conjunto, nossos resultados suportam a hipótese de que o aumento da produção de H2O2 em células Xpc-/- tem um papel causal na regulação da expressão de p53 e na disfunção mitocondrial


Although XPC has been initially implicated in the nucleotide excision DNA repair pathway, its deficiency is associated with mitochondrial dysfunction, including unbalanced electron transport chain (ETC) activity, lower oxygen consumption, increased hydrogen peroxide production, and greater sensitivity to mitochondrial stress. However, a mechanistic understanding of the role of XPC in regulating mitochondrial function is still not well established. Here we show that XPC deficiency is associated with increased expression of the tumor suppressor p53, which is accompanied by increased expression of several proteins that participate in important mitochondrial functions. Inhibition of p53 reverses the overexpression of some of these proteins. In addition, treatment with the ETC inhibitor antimycin A induces p53 expression more robustly in the Xpc-/- cells, while treatment with the antioxidant N-acetylcysteine decreases basal H2O2 production, p53 expression and sensitivity to antimycin A treatment. Together, our results support a model in which increased H2O2 production in Xpc-/- causes upregulation of p53 expression and mitochondrial dysfunction


Assuntos
Xeroderma Pigmentoso/classificação , Proteína Supressora de Tumor p53/farmacocinética , Proteínas Mitocondriais , Peróxido de Hidrogênio/análise , Genes p53/fisiologia , Antimicina A/efeitos adversos
7.
DNA Repair (Amst) ; 42: 33-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27135788

RESUMO

Mitoxantrone (MXT) is an anticancer drug structurally related to anthracyclines, such as doxorubicin (DOX). Here we report that cells deficient in nucleotide excision repair (NER) are very sensitive to MXT. However, cells deficient in each of the NER sub-pathways - transcription coupled repair (deficient in CSB protein) and global genome repair (deficient in XPC protein) - demonstrate a difference in sensitivity from each other and also show different responses in cell cycle profile, DNA synthesis and topo II DNA complex formation upon MXT treatment. XPC-deficient cells are slightly more resistant than CSB-deficient cells, and in the same way as MRC5 NER-proficient cells, show G2/M arrest, normal DNA synthesis rate and a pattern of formation of complexes similar to proficient cells, whereas CSB-deficient cells show accumulation in S phase, reduced DNA synthesis and a more intense signal of topo II DNA complexes, indicating that they remain longer in these cells. Complementation of CSB mutant cells with CSB rescue MXT-induced sensitivity and also a decrease in the signal intensity of the complexes, suggest that resolution of these lesions would take place. Taken together, our results indicate that NER proteins are implicated in the response to MXT and that CSB protein has a key role in processing MXT-induced topo II DNA complexes.


Assuntos
Antineoplásicos/farmacologia , Reparo do DNA/efeitos dos fármacos , Mitoxantrona/farmacologia , Inibidores da Topoisomerase II/farmacologia , DNA/biossíntese , DNA/química , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Proteínas de Ligação a Poli-ADP-Ribose
8.
Mutat Res ; 784-785: 25-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26811994

RESUMO

Oxidative DNA damage is considered to be a major cause of neurodegeneration and internal tumors observed in syndromes that result from nucleotide excision repair (NER) deficiencies, such as Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS). Recent evidence has shown that NER aids in removing oxidized DNA damage and may interact with base excision repair (BER) enzymes. Here, we investigated APE1 and OGG1 expression, localization and activity after oxidative stress in XPC-deficient cells. The endogenous APE1 and OGG1 mRNA levels were lower in XPC-deficient fibroblasts. However, XPC-deficient cells did not show hypersensitivity to oxidative stress compared with NER-proficient cells. To confirm the impact of an XPC deficiency in regulating APE1 and OGG1 expression and activity, we established an XPC-complemented cell line. Although the XPC complementation was only partial and transient, the transfected cells exhibited greater OGG1 expression and activity compared with XPC-deficient cells. However, the APE1 expression and activity did not significantly change. Furthermore, we observed a physical interaction between the XPC and APE1 proteins. Together, the results indicate that the responses of XPC-deficient cells under oxidative stress may not only be associated with NER deficiency per se but may also include new XPC functions in regulating BER proteins.


Assuntos
DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Cultivadas , DNA Glicosilases/genética , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Imunoprecipitação , Oxidantes/farmacologia , Estresse Oxidativo , RNA Mensageiro/metabolismo , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia
9.
São Paulo; s.n; s.n; 2015. 173 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-847442

RESUMO

Espécies reativas de oxigênio (EROs) são normalmente e continuamente geradas em mitocôndrias, majoritariamente na cadeia de transporte de elétrons (CTE). Harman (1956, 1972 e 1992) teorizou que os radicais livres gerados nas mitocôndrias seriam a principal causa do envelhecimento. De fato, durante o envelhecimento é observado um desequilíbrio entre formação e remoção de EROs, que resulta em estresse redox. Essa condição favorece a formação de lesões oxidadas no DNA, acarretando em mutagênese ou morte celular. Diversos mecanismos moleculares cooperam para o reparo de DNA. Duas vias de reparo de DNA lidam com a maioria das lesões: o reparo por excisão de base (BER) e o reparo por excisão de nucleotídeos (NER). A via BER corrige pequenas modificações de bases que surgem de reações de desaminação, alquilação e oxidação. A via NER é mais versátil, reconhecendo lesões que distorcem a dupla hélice de DNA, como danos induzidos por luz UV e adutos volumos. Pacientes xeroderma pigmentoso (XP-A a XP-G) herdam mutações em um de sete genes que codificam proteínas envolvidas na via NER, ou em um gene que codifica uma polimerase translesão (XP-V). A doença é caracterizada por fotosensibilidade e incidência elevada de neoplasias cutâneas. A proteína XPC atua na etapa de reconhecimento da lesão de DNA na subvia de reparo global do genoma (GG-NER), e sua mutação dá origem aos sintomas clássicos de XP. Novas funções de XPC foram recentemente descritas: i) atuando como cofator na via BER auxiliando as DNA glicosilases OGG1, TDG e SMUG; ii) atuando como cofator transcricional de elementos responsivos a Oct4/Sox2, RXR e PPARα; e iii) na adaptação metabólica na transformação de queratinócitos. Então, propusemo-nos a investigar as relações entre XPC e a manutenção da integridade do DNA mitocondrial, a sensibilidade celular a estresse redox mitocondrial e possíveis alterações bioenergéticas e redox. Para tal, padronizamos um ensaio in vitro de cinética de incisão em DNA plasmidial a fim de investigarmos o possível papel de XPC no reparo de lesões oxidadas em mtDNA. Porém, nossos dados revelaram que XPC não se encontra em mitocôndrias. Apesar disso, células XP-C são mais sensíveis ao tratamento com azul de metileno (AM), antimicina A (AA) e rotenona (ROT), que geram estresse redox mitocondrial. A sensibilidade à AA foi completamente revertida em células corrigidas. Células XP-C apresentaram alterações quanto ao uso dos complexos mitocondriais, com diminuição da taxa de consumo de oxigênio (OCR) via complexo I e um aumento da OCR via complexo II, dependente da presença de XPC. Ademais, a linhagem XP-C apresentou um desequilíbrio redox mitocondrial com maior produção de EROs e menor atividade de GPx. O DNA mitocondrial de células XP-C apresentou níveis elevados de lesão e deleção, que no entanto não retornaram aos níveis encontrados em células selvagens na linhagem XP-C corrigida. Observamos uma acentuada diminuição da expressão de PPARGC1A, um importante regulador de biogênese mitocondrial. Contudo, não foi possível determinar o mecanismo de supressão da expressão de PPARGC1A. Por fim, identificamos que o tipo de mutação em XPC pode estar associado a expressão de PPARGC1A. Esse estudo abre novas possibilidade na investigação do papel de proteína XPC, à parte da instabilidade genômica, na adaptação metabólica e desequilíbrio redox em direção da progressão tumoral


Mitochondria continuously produce reactive oxygen species (ROS), mainly at the electron transport chain. Harman (1956, 1972 e 1992) proposed that normal aging is driven by increased mitochondrially generated free radicals. Indeed, during the course of aging there is an increased imbalance between formation and removal of ROS, leading to redox stress. This condition favours the formation of oxidized DNA lesions, given rise to mutations and cell death. Several molecular mechanisms cooperates to repair the DNA. Two DNA repair pathways deal with the majority of lesions: base excision repair (BER) and nucleotide excision repair (NER). The BER pathway corrects small base modifications that arise from deamination, alkylation and oxidation reactions. The NER pathway is more versitile, recognizing helix-distorting lesions, such as UV-induced damage and bulky adducts. Xeroderma pigmentosum (XP-A to XP-G) patients inherit mutations in one of seven protein-coding genes involved in NER pathway, or in a gene coding a translesion DNA polymerase (XP-V). Photosensitivity and a thousand-fold increased in the risk of developing cutaneous neoplasms are the main clinical features of XP. XPC protein functions in the recognition step of global genome NER (GG-NER) sub-pathway, and mutations in this gene lead to classical XP symptoms. Recently, it has been described that XPC acts: i) as a cofactor in BER pathway through functional interaction with DNA glycosylases OGG1, TDG and SMUG1; ii) as coactivator in transcription at Oct4/Sox2, RXR and PPARα responsive elements; iii) in metabolic shift during keratinocytes transformation. Thus, we sought to investigate a possible role for XPC in the maintenance of mtDNA integrity, cellular sensitivity to mitochondrial redox stress and eventual bioenergetic and redox changes. For this purpose, we established an in vitro plasmid incision assay to investigate the possible role of XPC in the repair of oxidized lesions in mitochondrial DNA. However, our data revealed that XPC did not localized in mitochondria. Nonetheless, XP-C cells are more sensitive to methylene blue, antimycin A (AA) and rotenone treatment, which induce mitochondrial redox stress. The XP-C sensitivity to AA was completely reverted in XPC-corrected cells. XP-C cells presented altered usage of mitochondrial complexes, with decreased oxygen consumption rate (OCR) via complex I and increased OCR through complex II, an XPC-dependent phenomenon. Furthermore, the XP-C cell line showed mitochondrial redox imbalance with increased ROS production and decrease GPx activity. MtDNA from XP-C cells accumulate lesions and deletions, which, however, were found at similar levels in the corrected cell line. We identified a sharp decrease in the expression of PPARGC1A, a master regulator of mitochondrial biogenesis. Nevertheless, it was not possible to determine the mechanism of suppression of PPARGC1A expression. Finally, our results suggest a possible link between the type of XPC mutation and PPARGC1A expression. This study unfolds new possible roles for XPC, aside from its established roles in genomic instability, in metabolic adaptation and redox imbalance towards tumour progression


Assuntos
Transporte de Elétrons/genética , Oxirredução/efeitos dos fármacos , Linhagem Celular , Dano ao DNA/genética , DNA Mitocondrial/genética , Fibroblastos , Proteínas de Choque Térmico/farmacologia , Oxirredução , Xeroderma Pigmentoso
10.
Free Radic Biol Med ; 61: 343-56, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23567189

RESUMO

The nucleotide excision repair (NER) mechanism is well known to be involved in the removal of UV-induced lesions. Nevertheless, the involvement of this pathway in the repair of lesions generated after DNA oxidation remains controversial. The effects of visible-light-excited methylene blue (MB), known to generate reactive oxygen species (ROS), were examined directly in xeroderma pigmentosum (XP)-A and XP-C NER-deficient human fibroblasts. Initially, MB was confirmed as being incorporated in similar amounts by the cells and that its photoexcitation induces the generation of (1)O2 within cells. The analysis of cell survival indicated that NER-deficient cells were hypersensitive to photoactivated MB. This sensitivity was confirmed with cells silenced for the XPC gene and by host-cell reactivation (HCR) of plasmid exposed to the photosensitizing effects of photoexcited MB. The sensitivity detected by HCR was restored in complemented cells, confirming the participation of XPA and XPC proteins in the repair of DNA lesions induced by photosensitized MB. Furthermore, DNA damage (single- and double-strand breaks and alkali-sensitive sites) was observed in the nuclei of treated cells by alkaline comet assay, with higher frequency of lesions in NER-deficient than in NER-proficient cells. Likewise, NER-deficient cells also presented more γ-H2AX-stained nuclei and G2/M arrest after photoactivated MB treatment, probably as a consequence of DNA damage response. Notwithstanding, the kinetics of both alkali- and FPG-sensitive sites repair were similar among cells, thereby demonstrating not only that MB photoexcitation generates nuclear DNA damage, but also that the removal of these lesions is NER-independent. Therefore, this work provides further evidence that XPA and XPC proteins have specific roles in cell protection and repair/tolerance of ROS-induced DNA damage. Moreover, as XPC-deficient patients do not present neurodegeneration, premature aging, or developmental clinical symptoms, the results indicate that defects in the repair/tolerance of oxidatively generated DNA lesions are not sufficient to explain these severe clinical features of certain XP patients.


Assuntos
Dano ao DNA , Reparo do DNA , Azul de Metileno/farmacologia , Células Cultivadas , Histonas/análise , Humanos , Fosforilação , Raios Ultravioleta , Xeroderma Pigmentoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA