Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ChemSusChem ; : e202401279, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107238

RESUMO

Aromatic components of C8-C15 are playing indispensable roles in multi-functional properties of jet fuel. Here, we reported the controllable alkylation of benzene with mixed olefins of ethylene and propylene toward C8-C15 aromatic hydrocarbons for jet fuels over the bifunctional Ga/ZSM-5 catalyst. The resultant 2Ga/ZSM-5 exhibited a superior selectivity of 86.4% (yield of 55.5%) to C8-C15 range aromatics, at benzene conversion of 40.3%, ethylene and propylene conversion of 99.5% and 99.2%, respectively. The incorporation of Ga species could effectively weaken the strong acid sites of ZSM-5 and endow 2Ga/ZSM-5 catalyst with appropriate acidity, therefore facilitating the benzene alkylation process and suppressing the undesired hydrogen transfer or aromatization side reactions as well, thus improving the yield of desired C8-C15aromatics for jet fuels. This work provided insight into the development of promising bifunctional catalyst for the oriented transformation of biomass-derived chemicals to aviation fuels.

2.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062966

RESUMO

Membrane-based pervaporation (PV) for organic solvent dehydration is of great significance in the chemical and petrochemical industries. In this work, high-aluminum ZSM-5 zeolite membranes were synthesized by a fluoride-assisted secondary growth on α-alumina tubular supports using mordenite framework inverted (MFI) nanoseeds (~110 nm) and a template-free synthesis solution with a low Si/Al ratio of 10. Characterization by XRD, EDX, and SEM revealed that the prepared membrane was a pure-phase ZSM-5 zeolite membrane with a Si/Al ratio of 3.8 and a thickness of 2.8 µm. Subsequently, two categories of PV performance parameters (i.e., flux versus separation factor and permeance versus selectivity) were used to systematically examine the effects of operating conditions on the PV dehydration performance of different organic solvents (methanol, ethanol, n-propanol, and isopropanol), and their PV mechanisms were explored. Employing permeance and selectivity effectively disentangles the influence of operating conditions on PV performance, thereby elucidating the inherent contribution of membranes to separation performance. The results show that the mass transfer during PV dehydration of organic solvents was mainly dominated by the adsorption-diffusion mechanism. Furthermore, the diffusion of highly polar water and methanol molecules within membrane pores had a strong mutual slowing-down effect, resulting in significantly lower permeance than other binary systems. However, the mass transfer process for water/low-polar organic solvent (ethanol, n-propanol, and isopropanol) mixtures was mainly controlled by competitive adsorption caused by affinity differences. In addition, the high-aluminum ZSM-5 zeolite membrane exhibited superior PV dehydration performance for water/isopropanol mixtures.


Assuntos
Membranas Artificiais , Solventes , Zeolitas , Zeolitas/química , Solventes/química , Água/química , 2-Propanol/química , Alumínio/química , Etanol/química
3.
J Mol Model ; 30(8): 285, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060819

RESUMO

CONTEXT: The mechanisms for the formation of the first C - C bond and lower olefins on methanol to olefins (MTO) conversion on H-ZSM-5 had been focused in dispute. In this paper, density functional theory has been used to study the reaction mechanisms of methanol to olefins on ZSM-5. The configurations of reactants, intermediates, products and transition state of the numerous reactions involved in such a process have been optimized, as well as the elementary reactions related to these configurations were determined by the calculation of corresponding activation energy barriers and reaction heats. Here, two different kinds of the mechanisms were proposed for the formation of dimethyl ether (DME), one involving an associative interaction of two methanol molecules with the zeolite Brønsted acid sites and the other occurring via a surface methoxy species and a methanol molecule. A critical intermediate of the methoxy methyl cation was theoretically verified by the reaction of the methoxy species and dimethyl ether. Besides, it was found that the first intermediates containing a C - C bond were 1,2-dimethoxyethane and 2-methoxy-ethanolare, in which the former was formed from methoxy species with dimethyl ether and the latter was formed from methanol by onium ions((CH3)2O+CH2CH2OCH3), respectively. For the whole reaction mechanism, the results in this paper indicated that the ethene formation is more favorable than propylene formation due to the low activation energy barrier for ethene formation (123.49 vs. 162.09 kJ.mol-1). From these calculations, it would be concluded that ethene is the first alkene product that induces the occurrence of the hydrocarbon pool mechanism. METHODS: All the periodic density function theory (DFT) calculations were performed by the Vienna Ab Initio Simulation package (VASP). The interaction between nucleus and valence electron was described using the pseudopotentials found in the projector augmented wave (PAW) method. PBE-D3 was used in the whole DFT calculations and CI-NEB was used to locate transition state.

4.
Environ Sci Technol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058552

RESUMO

The impact of water on catalyst activity remains inconclusive due to its dependence on the specific reaction environment. To maximize the exploitation of water's promoting effect, we employed ammonia selective catalytic reduction (NH3-SCR) as a probe reaction and proposed a phosphorus modification strategy for Cu-ZSM-5 catalysts. The objective of this approach was to construct water-adaptive microstructures through directional arrangement. To investigate the effect of phosphorus on the transformation of framework copper sites in humid environments, we conducted comprehensive characterizations and density functional theory calculation. Results reveal that water molecules cleave the oxygen bridges between phosphorus oxide and copper, leading to the formation of active isolated [Cu(OH)]+ groups and phosphate. The phosphate species weaken the interaction between exchanged Cu2+ groups and the zeolite framework, leading to the generation of highly migratory hydrated Cu2+ species. This work will potentially guide the rational design of water-adaptive catalysts for gas pollution abatement in a humid environment.

5.
ACS Appl Mater Interfaces ; 16(26): 33590-33600, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899403

RESUMO

Metal single-site catalysts have recently played an essential role in catalysis due to their enhanced activity, selectivity, and precise reaction control compared to those of conventional metal cluster catalysts. However, the rational design and catalytic application of metal single-site catalysts are still in the early stages of development. In this contribution, we report the rational design of Fe single sites incorporated in a hierarchical ZSM-5 via atomic layer deposition (ALD). The designer catalysts demonstrated highly dispersed Fe species, predominantly stabilized by oxygen atoms in the zeolite framework at terminal, isolated, and vicinal silanol groups within the micropores and external surfaces of the zeolite. The successful incorporation of highly thermally stable and uniform Fe single sites into hierarchical zeolite through ALD represents a significant advancement in few-walled carbon nanotube production. The inner and outer diameters of produced CNTs are approximately 4.4 ± 2.4 and 8.6 ± 1.8 nm, respectively, notably smaller than those produced via traditional impregnated catalysts. This example emphasizes the concept of rational design of a single Fe site dispersed on a hierarchical ZSM-5 surface, which is anticipated to be a promising catalyst for advancing catalytic applications.

6.
Polymers (Basel) ; 16(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891549

RESUMO

Solid polymer electrolytes (SPEs) are the key components of lithium metal batteries to overcome the obstacle of insecurity in conventional liquid electrolytes; however, the trade-off between their ionic conductivity and mechanical properties remains a significant challenge. In this work, two-dimensional ZSM-5 nanosheets as fillers are incorporated into a poly(ethylene oxide) (PEO) matrix and lithium salts to obtain composite polymer electrolytes (CPEs). The improved physicochemical and electrochemical properties of the CPE membranes are characterized in full detail. Stripping/plating measurements in symmetric Li/Li cells and cyclic charge/discharge tests are performed to investigate the cyclability and stability of the CPEs. All-solid-state LiFePO4/Li batteries deliver excellent cycling performance with an initial discharge capacity of 152.3 mAh g-1 and 91.4% capacity retention after 200 cycles at 0.2 C, with a discharge specific capacity of 118.8 mAh g-1 remaining after 350 cycles at 0.5 C. Therefore, CPEs containing ZSM-5 nanosheets are a promising option for all-solid-state lithium-ion batteries.

7.
Environ Res ; 258: 119360, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852830

RESUMO

The aggregation and limited activity of nanoscale zero-valent iron (NZVI) in aqueous media hinder its practical application. In this study, a cost-effective, environmentally friendly, robust, and efficient synthesis method for NZVI-based composite was developed. NZVI@Chitin-modified ZSM-5 (NZVI@C-ZSM) composite was facilely and greenly synthesized by loading NZVI into alkali-modified ZSM-5 molecular sieves after modifying with chitin as a surfactant and binder. NZVI@C-ZSM exhibited remarkable efficacy in TC removal, achieving a removal efficiency of 97.72% within 60 min. Compared with pristine NZVI, NZVI@C-ZSM demonstrated twice the removal efficiency, indicating that NZVI@C-ZSM effectively improved the dispersion and stability of NZVI. This enhancement provided more reactive sites for generating reactive oxygen species (ROS), significantly boosting catalytic activity and durability while reducing the potential risk of secondary pollution. An improved two-parameter pseudo-first-order kinetic model was used to effectively characterize the reaction kinetics. The mechanism for TC removal primarily involved an adsorption process and chemical oxidation-reduction reactions induced by hydroxyl radicals (•OH) and superoxide radicals (•O2-). Three potential degradation pathways for TC were suggested. Furthermore, NZVI@C-ZSM exhibited good resistance to interference, suggesting its broad potential for practical applications in complex environmental conditions. This study offers a viable material and method for addressing the issue of antibiotic-contaminated water, with potential applications in water resource management.


Assuntos
Quitina , Ferro , Oxirredução , Tetraciclina , Poluentes Químicos da Água , Quitina/química , Poluentes Químicos da Água/química , Ferro/química , Tetraciclina/química , Química Verde/métodos , Antibacterianos/química , Zeolitas/química
8.
Environ Res ; 258: 119474, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38914253

RESUMO

In this study, we studied the conversion of Jatropha curcas oil to biodiesel by using three distinct reactor systems: microchannel, fixed bed, and microwave reactors. ZSM-5 was used as the catalyst for this conversion and was thoroughly characterized. X-ray diffraction was used to identify the crystalline structure, Brunauer-Emmett-Teller analysis to determine surface area, and temperature-programmed desorption to evaluate thermal stability and acidic properties. These characterizations provided crucial insights into the catalyst's structural integrity and performance under reaction conditions. The microchannel reactor exhibited superior biodiesel yield compared to the fixed bed and microwave reactors, and achieved peak efficiency at 60 °C, delivering high FAEE yield (99.7%) and conversion rates (99.92%). Ethanol catalyst volume at 1% was optimal, while varying flow rates exhibited trade-offs, emphasizing the need for nuanced control. Comparative studies against microwave and fixed-bed reactors consistently favored the microchannel reactor, emphasizing its remarkable FAME percentages, high conversion rates, and adaptability to diverse operating conditions. The zig-zag configuration enhances its efficiency, making it the optimal choice for biodiesel production and showcasing promising prospects for advancing sustainable biofuel synthesis technologies.


Assuntos
Biocombustíveis , Jatropha , Micro-Ondas , Óleos de Plantas , Biocombustíveis/análise , Jatropha/química , Óleos de Plantas/química , Catálise , Zeolitas/química , Difração de Raios X , Reciclagem
9.
Environ Res ; 258: 119486, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38925464

RESUMO

This present study enlightens the eco-friendly green synthesis of ZSM-5 from natural clay montmorillonite, and its proper incorporation with 'Ni'. Nickle (Ni) was wet impregnated onto HZSM-5 and the resulting catalyst was characterized by various techniques including XRD, BET, N2 Sorption Studies, TPD, SEM and TEM techniques. The SEM images revealed the uniform distribution of Ni over HZSM-5 zeolite catalyst and the XRD results indicated the undistorted crystalline structure of HZSM-5 even after impregnation of Ni. The latter part of the work concentrates on the strength of the catalyst in cracking oil derived from discarded fish parts. Discarded fish waste was pyrolyzed to obtain the fish oil, which was then used for cracking studies. The fish oil was efficiently converted (99% conversion) by Ni/ZSM5 (50 wt %) and yielded 70% liquid fractions, which formed gasoline (78.6%), kerosene (12.3%) and diesel (9.1%). The research is a complete parcel to examine the working potential of the produced biofuel in pre-existing engines. The quality of gasoline fraction was tested according to ASTM standards, which showed that the heating value was slightly lower compared to fossil gasoline. The torque and brake fuel consumption were also examined and it indicated that the fish oil derived gasoline fuel may need to be mixed with the commercial gasoline to optimize its performance.


Assuntos
Biocombustíveis , Óleos de Peixe , Pirólise , Zeolitas , Biocombustíveis/análise , Zeolitas/química , Catálise , Óleos de Peixe/química , Níquel/química , Níquel/análise , Animais
10.
Front Chem ; 12: 1368595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835725

RESUMO

Naphtha, as the primary raw material in the production of light olefins, could well accommodate their increasing demand through the energy-efficient process of catalytic cracking with ZSM-5. In the current work, different amounts of lanthanum and phosphorous were loaded on ZSM-5 using the wet impregnation method to tune the acidic properties of ZSM-5 for selective catalytic cracking of n-hexane to produce light olefins. Various characterization techniques such as X-ray diffraction (XRD), Al nuclear magnetic resonance (NMR), temperature-programmed desorption of NH3 (NH3-TPD), Py-Fourier transform infra-red (Py-FTIR), inductively coupled plasma optical emission spectroscopy (ICP-OES), N2 adsorption-desorption, X-ray photoelectron spectra (XPS), and scanning electron microscopy were adopted to investigate the modified zeolites. It was found that adding La to ZSM-5 (0.25 wt% to 1 wt%) improved the catalytic life and increased the n-hexane conversion (to 99.7%), while the further addition had a negative impact, reducing the conversion rate and deviating the product selectivity towards a substantial, undesired benzene, toluene, and xylene (BTX) fraction (33%). On the other hand, a 64% selectivity for light olefins was achieved on phosphorous-doped ZSM-5 (at a loading amount of 1 wt%) while reducing the BTX fraction (2.3%) and converting 69% of the n-hexane. A dual metal-modified ZSM-5 with optimal loading amount, 1P0.25LaZ5 (phosphorus 1 wt% and La 0.25 wt%), helped boost the light olefin selectivity to 62% in the tuned Lewis acid sites at an n-hexane conversion of about 77% while decreasing the undesired BTX selectivity to 3% by reducing the number of Brønsted sites. Thus, the current study reveals that tuning the acidic sites of ZMS-5 by dual metal augmentation with P.La is an effective way of controlling the amount of undesirable BTX produced at a stable n-hexane conversion rate and substantial olefin selectivity.

11.
Technol Health Care ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38875062

RESUMO

BACKGROUND: The rapid growth of cities has been accompanied by problems with urban air quality, making air pollution challenging to manage. In this situation, people focus on indoor building materials to improve air quality. OBJECTIVE: In this paper, a novel bola-type surfactant was synthesized and used as a template, using ethyl orthosilicate and sodium meta-aluminate as the silicon and aluminum source, in the ratio of n(NaOH): n(NaAIO2): n(SiO2): n(SDA): n(H2O) as 30:2.5:120:5:4800. METHODS: Hydrothermal preparation of ZSM-5 molecular sieves with a nanosheet structure (H-ZSM-5) was accomplished. The manufactured lamellar ZSM-5 molecular sieves were examined using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and adsorption and desorption techniques. RESULTS: Traditional microporous ZSM-5 had a considerably lower static adsorption of formaldehyde molecules. The findings demonstrated that the nano-lamellar H-ZSM-5 molecular sieve can purify and eliminate larger molecular VOCs inside because it has the ability to adsorb larger molecular diameter VOCs. Additionally, the effectiveness of the adsorption was assessed using toluene vapour molecules with higher molecular diameters. CONCLUSION: The findings demonstrate that the nanosheet H-ZSM-5 molecular sieve can remove bigger molecule VOCs from indoor air and can be utilised to purify indoor spaces. This study offers a fresh approach to indoor environmental cleanup by demonstrating the capability of nano-lamellar H-ZSM-5 molecular sieves for molecular adsorption.

12.
J Environ Manage ; 362: 121349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833929

RESUMO

The use of Ni-based catalysts is a common method for eliminating tar through catalytic cracking. Carbon deposition is the main cause of deactivation in Ni/ZSM-5 catalysts, with filamentous MWCNTs being the primary form of carbon deposits. This study investigates the formation and evolution of CNTs during the catalytic process of biomass tar to explore the mechanism behind carbon deposition. The effect of the 9Ni/10MWCNTs/81ZSM-5 on toluene reforming was investigated through a vertical furnace. Gases produced by tar catalysis were evaluated through GC analysis. The physicochemical structure, properties and catalytic performance of the catalyst were also tested. TG analysis was used to assess the accumulation and oxidation reactivity of carbon on the catalyst surface. An analysis was conducted on the mechanism of carbon deposition during catalyst deactivation in tar catalysis. The results showed that the 9Ni/91ZSM-5 had a superior toluene conversion of 60.49%, but also experienced rapid and substantial carbon deposition up to 52.69%. Carbon is mainly deposited as curved filaments on both the surface and pore channels of the catalyst. In some cases, tip growth occurs where both carbon deposition and Ni coexist. Furthermore, specific surface area and micropore volume are reduced to varying degrees due to carbon deposition. With the time increased, the amount of carbon deposited on the catalyst surface increased to 62.81%, which gradually approached saturation, and the overall performance of the catalyst was stabilized. This situation causes toluene molecules to detach from the active sites within the catalyst, hindering gas release, which leads to reduced catalytic activity and further carbon deposition. It provides both a basis for the development of new catalysts and an economically feasible solution for practical tar reduction and removal.


Assuntos
Nanotubos de Carbono , Níquel , Catálise , Nanotubos de Carbono/química , Níquel/química , Alcatrões/química , Carbono/química , Tolueno/química , Oxirredução
13.
Environ Sci Technol ; 58(27): 12082-12090, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38888120

RESUMO

Selective catalytic reduction using CO as a reducing agent (CO-SCR) has exhibited its application potential in coal-fired, steel, and other industrial sectors. In comparison to NH3-SCR, CO-SCR can achieve synergistic control of CO and NO pollutants, making it a powerful denitrification technology that treats waste with waste. Unfortunately, the competitive adsorption of O2 and NO on CO-SCR catalysts inhibits efficient conversion of NOx under O2-containing conditions. In this work, we obtained two Ir sites with different electron densities, Ir1 single atoms in the oxidized Irδ+ state and Ir0 nanoparticles in the metallic state, by controlled pretreatment of the Ir/ZSM-5 catalyst with H2 at 200 °C. The coexistence of Ir1 single atoms and Ir0 nanoparticles on ZSM-5 creates a synergistic effect, which facilitates the reduction of NO through CO in the presence of O2, following the Langmuir-Hinshelwood mechanism. The ONNO dimer is formed on the Ir1 single atom sites and then spills over to the neighboring Ir0 nanoparticles for subsequent reduction to N2 by CO. Specifically, this tandem reaction enables 83% NO conversion and 100% CO conversion on an Ir-based catalyst at 250 °C under 3% O2.


Assuntos
Monóxido de Carbono , Catálise , Monóxido de Carbono/química , Óxido Nítrico/química , Oxirredução , Adsorção
14.
Waste Manag ; 186: 205-213, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924981

RESUMO

Multilayer film packaging (MLP) waste was decomposed completely at 500 °C. Catalysts were employed to convert residue polymer to waxes via pyrolysis at 500 °C. The activities achieved from using mordenite (Si/Al = 10), H-ZSM-5 (Si/Al = 25), MCM-41, and Al-MCM-41 (Si/Al ratio of 25, 50, and 75) catalysts were studied. The yield and property of the wax were improved with the use of the catalysis with various acidity and porous structure. The low yield of the waxes, when using mordenite and H-ZSM-5 catalysts, was caused by the microporous structure and strong acidic properties of the catalysts resulting in larger amount of gas production. The MCM-41 catalyst modified with various aluminum content raised the wax yield to 60 %. Al-MCM-41(50) produced the largest amount of wax when compared to Al-MCM-41(25), Al-MCM-41(75), and MCM-41. The mild acidity and mesoporous structure of Al-MCM-41(50) significantly enhanced the paraffins structure of the obtained waxes over other structures, while lower Si/Al ratios favored the conversion of paraffins toward olefin structure. The pyrolysis of MLP with Al-MCM-41(50) produced paraffins and olefins with the middle carbon ranging (C11-20) which were similar quality to pharmaceutical grade of petroleum wax. The spent catalysts of Al-MCM-41 series gradually decreased in wax yield and paraffins composition during the sequential MLP pyrolysis; however, the activity of catalysts was recovered after calcination of the spent catalysts. Furthermore, the viscosity of waxes obtained from Al-MCM-41(50) was 2384 Pa.s at 25 °C similar to the viscosity from commercial petroleum jelly base of 2333 Pa.s.


Assuntos
Pirólise , Ceras , Ceras/química , Catálise , Embalagem de Produtos , Eliminação de Resíduos/métodos
15.
Materials (Basel) ; 17(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930195

RESUMO

It is crucial to identify the structures of active sites to understand how catalysts function and to use that understanding to develop better catalytic materials. ZSM-5 zeolites with dominant Al(IV)-2 sites have been developed in this work. 1H-27Al 2D HMQC and 2D 1H TQ(DQ)-SQ NMR experiments have been performed to investigate the structural properties of this acidic site. The Al(IV)-2 sites have Brønsted and Lewis acid characteristics. The catalytic performance of Al(IV)-2 sites has been tested by n-dodecane cracking reactions. The catalytic results show that the Brønsted acidic strength of the Al(IV)-2 sites is comparable to that of the Al(IV)-1 sites, but the Al(IV)-2 sites' Lewis acid characteristics provide extra catalytic activity. We have gained valuable insights into the characteristics of Al(IV)-2 acid sites within these materials.

16.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930975

RESUMO

As a toxic Volatile Organic Pollutant (TVOC), formaldehyde has a toxic effect on microorganisms, consequently inhibiting the biochemical process of formaldehyde wastewater treatment. Therefore, the selective degradation of formaldehyde is of great significance in achieving high-efficiency and low-cost formaldehyde wastewater treatment. This study constructed a heterogeneous Fe-ZSM-5/H2O2 Fenton system f or the selective degradation of target compounds. By immobilizing Fe3+ onto the surface of a ZSM-5 molecular sieve, Fe-ZSM-5 was prepared successfully. XRD, BET and FT-IR spectral studies showed that Fe-ZSM-5 was mainly composed of micropores. The influences of different variables on formaldehyde-selective heterogeneous Fenton degradation performance were studied. The 93.7% formaldehyde degradation and 98.2% selectivity of formaldehyde compared with glucose were demonstrated in the optimized Fenton system after 360 min. Notably, the resultant selective Fenton oxidation system had a wide range of pH suitability, from 3.0 to 10.0. Also, the Fe-ZSM-5 was used in five consecutive cycles without a significant drop in formaldehyde degradation efficiency. The use of reactive oxygen species scavengers indicated that the hydroxyl radical was the primary active species responsible for degrading formaldehyde. Furthermore, great degradation performance was acquired with high concentrations of formaldehyde for this system, and the degradation efficiency was more than 95.0%.

17.
Nanomaterials (Basel) ; 14(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38727396

RESUMO

A series of quaternary ammonium or phosphonium salts were applied as zeolite growth modifiers in the synthesis of hierarchical ZSM-5 zeolite. The results showed that the use of methyltriphenylphosphonium bromide (MTBBP) could yield nano-sized hierarchical ZSM-5 zeolite with a "rice crust" morphology feature, which demonstrates a better catalytic performance than other disinfect candidates. It was confirmed that the addition of MTBBP did not cause discernable adverse effects on the microstructures or acidities of ZSM-5, but it led to the creation of abundant meso- to marco- pores as a result of aligned tiny particle aggregations. Moreover, the generation of the special morphology was believed to be a result of the coordination and competition between MTBBP and Na+ cations. The as-synthesized hierarchical zeolite was loaded with Zn and utilized in the propane aromatization reaction, which displayed a prolonged lifetime (1430 min vs. 290 min compared with conventional ZSM-5) and an enhanced total turnover number that is four folds of the traditional one, owing to the attenuated hydride transfer reaction and slow coking rate. This work provides a new method to alter the morphological properties of zeolites with low-cost disinfectants, which is of great potential for industrial applications.

18.
Environ Sci Pollut Res Int ; 31(25): 36849-36860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758436

RESUMO

A hydrothermal synthesis method was developed to produce high crystallinity ZSM-5 zeolite using coal gasification coarse slag (CGCS) as the raw material. Instead of the expensive NaOH(s.), Na2SiO3(s.) was utilized to activate, depolymerize, and recombine Si and Al elements in the CGCS. The mother liquor circulation technology was employed to recover and reuse raw materials and residual reagents (Na2SiO3(aq.) and TPABr), reducing waste emissions and enhancing resource utilization efficiency. The synthesized ZSM-5 had a specific surface area of 455.675 m2 g-1, pore volume of 0.284 cm3 g-1, and pore diameter of 2.496 nm. The influence of various factors on the morphology and crystallinity of ZSM-5 was investigated, resulting in the production of ZSM-5 with higher specific surface area and pore volume. Adsorption experiments showed that WU-ZSM-5 exhibited a removal efficiency of 85% for ammonia nitrogen (NH4+-N(aq.)), validating its effectiveness in coal chemical wastewater purification. The mother liquor recycling technology enabled zero-emission utilization of solid waste resources and improved the utilization rate of alkali and template to 90%. These results demonstrate the potential application of the developed method in the efficient treatment of coal chemical wastewater.


Assuntos
Carvão Mineral , Águas Residuárias , Zeolitas , Zeolitas/química , Águas Residuárias/química , Adsorção , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
19.
Chemphyschem ; 25(15): e202400339, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688862

RESUMO

Copper-exchanged ZSM-5 (Cu-ZSM-5) is a promising catalyst thanks to the Cu redox pair. A particular feature of this material consists in the presence of spontaneous isothermal oscillations which take place during N2O decomposition reaction, depending on the operating conditions. In the present work, a set of five Cu-ZSM-5 catalysts was synthesised by three procedures and three different copper precursor concentrations: i) wet impregnation, ii) single ion exchange, and iii) double ion exchange. Catalytic tests revealed that the ion-exchanged samples exhibit a low catalytic activity and no oscillatory behaviour, except for the twice-exchanged sample which achieves an average N2O conversion of 26 % at 400 °C. Conversely, the impregnated samples reach higher levels of N2O conversion (66 % for Cu5ZSM5_WI and 72 % for Cu10ZSM5_WI) and demonstrate a similar oscillating pattern. Further investigations disclosed that the most active catalysts, characterised by the presence of oscillatory behaviour, have more abundant and easily reducible copper species (ICP, EDX and H2-TPR) which interact better with the zeolitic support (FT-IR). Catalytic tests under a long time on stream (TOS) suggest that either self-organised patterns or deterministic chaos can be achieved during the reaction, depending on the operating conditions, such as temperature and contact time.

20.
Sci Total Environ ; 929: 172641, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670376

RESUMO

Pervaporation (PV), as an energy-efficient mixture separation technology, plays an important role in the chemical industry. In this work, no organic templates were needed to produce high-performance ZSM-5 membranes with an extremely low Si/Al ratio of 3.3 on α-Al2O3 tubular supports using 100 nm nanoseeds. The effects of preparation parameters on the crystalline phase structures, micromorphologies, and PV separation performance of ZSM-5 membranes were comprehensively investigated. The results revealed that the Si/Al ratio of gels significantly affected both the Si/Al ratio and the crystal orientation of the final ZSM-5 membrane. The optimized ZSM-5 membrane with a thickness of 1.8 µm was utilized to dehydrate various organic solvents via PV, and the influence of the operating parameters on PV dehydration performance was evaluated and is described herein. Furthermore, the permeation behaviors of single gases and PV were examined using permeate molecules within a similar size range to reveal the PV mechanism of the ZSM-5 membrane. The results demonstrated that gas permeation followed Knudsen diffusion, while PV permeation was decreased with decreases in the affinity of molecules, revealing an adsorption-diffusion mechanism that dominated PV dehydration through the ZSM-5 membrane. Moreover, the as-synthesized ZSM-5 membrane had good water permselectivity for water/acetone (e.g., total flux = 1.03 kg/(m2 h), α = 307) and for water/isopropanol (e.g., total flux = 1.49 kg/(m2 h), α = 1070) mixtures compared with other membranes reviewed in the literature. The synthesized ZSM-5 membrane also exhibited excellent reproducibility, high stability, and attractive PV separation performance, demonstrating its significant potential application in the PV dehydration of organic solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA