Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.451
Filtrar
1.
Cureus ; 16(4): e57889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725786

RESUMO

In order to effectively address challenges related to anterior teeth restoration and achieve natural-looking results, considerations such as shape, size, gingival contour, and color are crucial. Due to an increasing desire for visually appealing alternatives that are free of metal, materials such as dental zirconia have become popular because of their superior aesthetics and mechanical characteristics. This case report presents clinical insights into anterior teeth rehabilitation with the use of layered zirconia fixed dental prostheses. It delves into the experiences associated with zirconia dental restorations on both endodontically treated and vital abutments, aiming to discern how various factors influence treatment outcomes. Beginning with the design of the restoration, its intricacies significantly impact its fit, strength, and overall durability. Moreover, the composition of zirconia used plays a pivotal role, as different formulations offer varying degrees of mechanical properties, influencing factors such as resilience and wear resistance. The shade selection is also scrutinized, as it directly affects the restoration's aesthetic integration with surrounding natural teeth, contributing to a more harmonious smile. Furthermore, the layering technique employed, particularly when additional porcelain or ceramic layers are applied, is essential for both cosmetic enhancement and structural integrity. Lastly, considerations of occlusion are paramount, ensuring proper alignment and contact between teeth to prevent premature wear and discomfort. By exploring these facets in zirconia restorations across different abutment types, this inquiry seeks to illuminate best practices for achieving favorable treatment outcomes in dental restoration procedures. The choice of zirconia composition, framework design, and shade must be carefully tailored to suit the characteristics of each individual abutment. This emphasizes the significance of adopting a tailored approach to tackle the distinct challenges posed by every clinical scenario. The manuscript provides detailed observations from a clinical case involving the restoration of anterior teeth utilizing monolithic zirconia-fixed dental prostheses. Through a combination of root canal treatment and composite buildup, successful restoration was achieved, with meticulous attention paid to aesthetic considerations. The utilization of computer-aided designing/computer-aided manufacturing (CAD/CAM) technology in crafting zirconia restorations ensured precise fit and superior biocompatibility, contributing to the overall success of the treatment. The study underscores the importance of personalized treatment strategies in achieving optimal outcomes in anterior teeth restoration, emphasizing the need for careful consideration of various factors such as design, composition, and shade selection. Overall, the findings shed light on the potential of zirconia-based restorations in addressing the unique challenges associated with anterior teeth rehabilitation, offering valuable insights for dental practitioners striving to deliver aesthetically pleasing and functionally sound outcomes for their patients.

2.
Dent Mater ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734486

RESUMO

OBJECTIVES: Part 1 of this study investigates the influence of zirconia types, chimney heights, and gingival heights on the strength of the zirconia-abutment-interface. Part 2 extends the analysis to include adhesive brands and macro-retentions. METHODS: In Part 1, the study utilized three zirconia types (700 MPa, 1000 MPa, 1200 MPa) to fabricate 234 screw-retained zirconia crowns with varying chimney heights (3.5 mm, 4.1 mm, 5 mm) and gingival heights (0.65 mm, 1.2 mm, 3 mm) of the titanium abutments. All adherend surfaces underwent sandblasting with aluminum oxide before cementation with a specific resin cement. In Part 2, the investigation of 240 screw-retained zirconia crowns focused on a single zirconia type (1000 MPa) with chimney heights of 3.5 mm and 5 mm and a gingival height of 0.65 mm of the titanium abutments, cemented with three different resin cements. All adherent surfaces underwent sandblasting with aluminum oxide before cementation, whereas 120 out of 240 abutments received additional macro retentions. Storage in water at 37 °C for 24 h preceded the tensile test. RESULTS: The study revealed a substantial impact of chimney height and zirconia type on the bond strength of the zirconia-abutment-interface. Neither adhesive brands nor macro retentions significantly impacted the bond strength. Fracture incidence was significantly influenced by gingival height and zirconia type in part 1, whereas in part 2 smaller chimney heights correlated with a higher fracture incidence. SIGNIFICANCE: This study contributes insights into the complex interplay of factors influencing the zirconia-abutment-interface. The results provide a foundation for refining clinical approaches, emphasizing the importance of chimney height and zirconia type in achieving successful anterior gap implant restorations.

3.
J Dent ; : 105053, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729288

RESUMO

OBJECTIVES: To give a comprehensive review of advancement in dental ceramics, fabrication methods, and the challenges associated with clinical application. DATA, SOURCES AND STUDY SELECTION: Researches on chemical composition, biomechanical behaviors, optical properties, bonding strategies and fabrication methods were included. The search of articles was independently conducted by two authors in the PubMed, Scopus, Medline and Web of Science. CONCLUSIONS: Dental ceramics have shown significant advancements in terms of esthetics and function. However, improving fracture toughness without compromising optical properties remains a challenge. Repairing fractured zirconia or glass-matrix ceramic prostheses with the same material is difficult due to the sintering process. Developing innovative bonding techniques that provide strong and long-lasting bonding strength between ceramics and tooth structures poses a recurring obstacle. CLINICAL SIGNIFICANCE: Despite the emergence of dental ceramics and fabrication techniques, certain limitations such as susceptibility to brittleness and fracture still exist. Therefore, the current review provided valuable information around the advanced dental ceramics in tooth repair. The laboratory test data and the clinical outcome are also presented in details, aiming to guide clinicians in making informed decisions regarding ceramic restorations.

4.
Dent Mater ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719710

RESUMO

OBJECTIVES: To investigate the effect of the stability of oxygen vacancies on the low-temperature degradation (LTD) resistance of two kinds of commercial zirconia-based materials (3Y-TZP ceramics and Ce-TZP/Al2O3 composites) via the dielectric probing methods. METHODS: The commercial 3Y-TZP ceramics and Ce-TZP/Al2O3 composites were prepared via conventional solid-state methods. Density, phase content, microstructure, strain, and biaxial flexural strength (BFS) of two materials were investigated using Archimedes method, XRD, SEM, strain-electric field (S-E) loops and ball-on-ring methods, respectively. The concentration of oxygen vacancies before and after LTD of two materials were evaluated using dielectric probing and XPS methods. RESULTS: The XRD analysis revealed that compared to the 3Y-TZP ceramics, the Ce-TZP/Al2O3 composites showed better LTD resistance, without clear LTD. The greater LTD resistance for Ce-TZP/Al2O3 composites was associated with their stability of oxygen vacancies, by higher activation energy based on the dielectric measurements and XPS results. For the 3Y-TZP ceramics that underwent the tetragonal to the monoclinic phase transition during the LTD treatment, the concentration of their oxygen vacancies decreased after LTD. In addition, the Ce-TZP/Al2O3 composites exhibited higher flexural strength and potential fracture toughness based on the BFS testing and strain vs electric field measurement results, indicating a great potential for use in fixed restorative dental applications. SIGNIFICANCE: This work suggested the stability of oxygen vacancies played a key role in the resistance to LTD. Optimizing the stability of the oxygen vacancies is key to the development of more reliable zirconia- based dental biomaterials with greater resistance to LTD.

5.
Clin Oral Investig ; 28(6): 305, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722356

RESUMO

OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.


Assuntos
Colagem Dentária , Vidro , Teste de Materiais , Cimentos de Resina , Silanos , Propriedades de Superfície , Resistência à Tração , Água , Zircônio , Zircônio/química , Cimentos de Resina/química , Silanos/química , Água/química , Colagem Dentária/métodos , Vidro/química , Microscopia Eletrônica de Varredura , Análise do Estresse Dentário
6.
J Oral Biosci ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723946

RESUMO

BACKGROUND: The osseointegration of zirconia implants has been evaluated based on their implant fixture bonding with the alveolar bone at the optical microscopic level. Achieving nano-level bonding between zirconia and bone apatite is crucial for superior osseointegration; however, only a few studies have investigated nanoscale bonding. This review outlines zirconia osseointegration, including surface modification, and presents an evaluation of nanoscale zirconia-apatite bonding and its structure. HIGHLIGHT: Assuming osseointegration, the cells produced calcium salts on a ceria-stabilized zirconia substrate. We analyzed the interface between calcium salts and zirconia substrates using transmission electron microscopy and found that 1) the cell-induced calcium salts were bone-like apatite and 2) direct nanoscale bonding was observed between the bone-like apatite and zirconia crystals without any special modifications of the zirconia surface. CONCLUSION: Structural affinity exists between bone apatite and zirconia crystals. Apatite formation can be induced by the zirconia surface. Zirconia bonds directly with apatite, indicating superior osseointegration in vivo.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38714619

RESUMO

The increasing concentration of CO2 and CH4 in the environment is a global concern. Tri-reforming of methane (TRM) is a promising route for the conversion of these two greenhouse gases to more valuable synthesis gas with an H2/CO ratio of 1.5-2. In this study, a series of Zr-MOF synthesized via the solvothermal method and impregnation technique was used to synthesize the nickel impregnated on MOF-derived ZrO2 catalyst. The catalyst was characterized by various methods, including N2-porosimetry, X-ray diffraction (XRD), temperature programmed reduction (TPR), CO2-temperature programmed desorption (CO2-TPD), thermo-gravimetric analysis (TGA), chemisorption, field-emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM). Characterization results confirmed the formation of the Zr-MOF and nickel metal dispersed on MOF-derived ZrO2. Further, the tri-reforming activity of the catalyst developed was evaluated in a downflow-packed bed reactor. The various catalysts were screened for TRM activity at different temperatures (600-850 °C). Results demonstrated that TRM was highly favorable over the NZ-1000 catalyst due to its desirable physicochemical properties, including nickel metal surface area (2.3 m2/gcat-1), metal dispersion (7.1%), and nickel metal reducibility (45%), respectively. Over the NZ-1000 catalyst, an optimum H2/CO ratio of ~ 1.6-2 was achieved at 750 °C, and it was stable for a longer period of time.

8.
J Esthet Restor Dent ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716797

RESUMO

STATEMENT OF PROBLEM: Limited evidence is available for the effect of chairside adjustment using rotary cutting instruments on the surface roughness and optical properties of different zirconia types. PURPOSE: To evaluate the effect of simulated adjustments on surface roughness and optical properties of different zirconia types. MATERIALS AND METHODS: Three Partially Stabilized Zirconia (PSZ) types based on mole percent yttria (Y) concentration from the same manufacturer (Katana; Kuraray) were used: 3Y-PSZ, 4Y-PSZ, and 5Y-PSZ. Thirty disk-shaped specimens (Ø14 × 1.2 mm) from different zirconia types (N = 90) were prepared. Specimens were either left without adjustment (NA), adjusted with Dialite ZR finishing and polishing system (Brasseler) (APol), or adjusted with course diamond instruments only (ADia). The specimens were distributed into 9 groups (n = 10): Group 3Y-PSZ/NA, Group 3Y-PSZ/APol, Group 3Y-PSZ/ADia, Group 4Y-PSZ/NA, Group 4Y-PSZ/APol, Group 4Y-PSZ/ADia, Group 5Y-PSZ/NA, Group 5Y-PSZ/APol, and Group 5Y-PSZ/ADia. The surface roughness of specimen was analyzed using an Atomic Force Microscope (AFM) (Bruker's Dimension Icon, Bruker) and Root Means Square (RMS) were recorded (nm). Surface Gloss (SG), Translucency Parameter (TP), and Contrast Ratio (CR) values of all groups were recorded using an integrating sphere spectrophotometer. Statistical analysis was performed using analysis of variance (ANOVA) and Tukey's multiple comparison tests for pairwise comparisons at p < 0.05 and 95% confidence interval. RESULTS: APol had no effect on the surface roughness (p = 0.88) while ADia had a significant negative effect (p < 0.05) despite the type of zirconia. Out of the three testes optical properties, only SG was negatively affected by ADia for all types of zirconia (p < 0.05). The two adjustment types did not affect the TP of all the tested zirconia (p = 0.91). The CR was not affected by the tested adjustments for all zirconia types (p = 0.726). CONCLUSION: Proper zirconia adjustment following a sequence of burs and polishers can maintain acceptable roughness and optical properties. Adjustment of zirconia with rough diamond can lead to deleterious effects and should be avoided. CLINICAL SIGNIFICANCE: Chairside adjustment of zirconia could lead to rougher surface and unpredictable changes of surface gloss. Therefore, zirconia adjustment should be minimized to the greatest extent possible and a proper protocol should be followed if had to be done.

9.
Int J Oral Maxillofac Implants ; 0(0): 1-34, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38717352

RESUMO

OBJECTIVES: The objective of this study was to compare the inflammatory responses from peripheral blood mononuclear cells PBMCs subjected to Titanium (Ti) and/or Zirconia (Zr) particles while growing on Ti or Zr discs. MATERIALS AND METHODS: In total, 240 discs were fabricated in the size of 2 mm height and 5 mm diameter. 120 discs were made of Ti (Commercially pure (CP grade 4) and 120 discs were made of Zr (3 Mol% Yttria-Stabilized Zirconia Polycrystals (3Y TZP). The PBMCs were cultured on the two-disc materials and particles with a size up to 20 µm Ti (99, 5 % Ti) and 0, 1 -2 µm Zr (3Y TZP) were added to the cultures. The concentration levels of inflammatory cytokines in culture supernatants were measured through Bioplex assay and light microscopic analysis was performed to detect cell attachment and characterize particle shape and cell-particle interaction. RESULTS: The inflammatory responses from PBMCs were generally higher when cells were cultured on a Ti surface compared to a Zr surface. In addition, higher cytokine levels were generally seen when cells were cultured in the presence of Ti particles compared to Zr particles in the absence of discs. However, there were only significantly increased levels for three cytokines (MCP-1, IFN-g, and TNF-a) when particles were added to the Ti discs. Higher release of NETS from neutrophils were seen in presence of Zr particles compared to Ti particles. And a lowering of cell death was seen when adding Zr particles compared to Ti particles and unstimulated control samples. CONCLUSIONS: Type of growth material and presence of particle affects PBMCs in vitro. Cells seeded on Ti disc and together with Ti particles generated higher levels of inflammatory cytokines compared to the Zr counterparts.

10.
Odontology ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717525

RESUMO

The purpose of this study was to analyze the biomechanical properties of implants made of different materials to replace missing teeth by using three-dimensional finite element analysis and provide a theoretic basis for clinical application. CBCT data was imported into the Mimics and 3-Matic to construct the three-dimensional finite element model of a missing tooth restored by an implant. Then, the model was imported into the Marc Mentat. Based on the variations of the implant materials (titanium, titanium-zirconia, zirconia and poly (ether-ether-ketone) (PEEK)) and bone densities (high and low), a total of eight models were created. An axial load of 150 N was applied to the crown of the implant to simulate the actual occlusal situation. Both the maximum values of stresses in the cortical bone and implant were observed in the Zr-low model. The maximum displacements of the implants were also within the normal range except for the PEEK models. The cancellous bone strains were mainly distributed in the apical area of the implant, and the maximum value (3225 µstrain) was found in PEEK-low model. Under the premise of the same implant material, the relevant data from various indices in low-density bone models were larger than that in high-density bone models. From the biomechanical point of view, zirconia, titanium and titanium-zirconia were all acceptable implant materials for replacing missing teeth and possessed excellent mechanical properties, while the application of PEEK material needs to be further optimized and modified.

11.
Heliyon ; 10(8): e29724, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699754

RESUMO

The electrochemical act of valve-regulated lead acid batteries can be enhanced by conductive materials like metal oxides. This work aims to examine the preparation and influence of zirconia on poly(vinyl alcohol) based gel valve-regulated lead acid battery. Characterizations like Fourier transform infrared spectroscopy, ionic conductivity, water retention study, cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques were done. The optimized gel system exhibited a discharge capacity of 198.45 µAh cm-2 at the current density of 0.6 mA cm-2. The battery cell with an optimized gel matrix displayed a maximum discharge capacity of 22.5 µAh at a current of 20 µA. After 500 continuous cycles, the battery attained a discharge capacity retention of 91 %. The presence of zirconia will increase the electrochemical performance of gel valve-regulated lead acid batteries.

12.
J Contemp Dent Pract ; 25(3): 226-230, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690694

RESUMO

AIM: To assess the effectiveness of various surface treatments and adhesives on the bond strength of zirconia-based ceramic to dentin. MATERIALS AND METHODS: Eighty samples of zirconia were subjected to the four-surface treatment protocols (sandblasting, 48% hydrofluoric acid (HF), 48% hydrofluoric acid + 70% nitric acid (HNO3) and no treatment (control) following which the samples from each group were subdivided into two subgroups (n = 10) based on the resin cement employed for cementation (RelyX U200 and G-Cem Linkforce). The bonded specimens were subjected to shear stress to measure the bond strength using Universal testing machine. To test the difference in bond strength among the eight study groups, the Kruskal-Wallis ANOVA test was applied and for comparison between cements in each group, Mann-Whitney U test was applied. RESULTS: The highest bond strength values were observed for 48% HF group cemented with G-Cem Linkforce resin cement (16.220 ± 1.574) and lowest for control group-RelyX (4.954 ± 0.972). G-Cem cement showed higher bond strength than RelyX for all surface treatments except 48% HF + 70% nitric acid. CONCLUSION: It can be inferred that 48% HF can etch zirconia and generate a porous structure that proves to be beneficial for bonding. CLINICAL SIGNIFICANCE: The increasing demand for esthetics has led to the replacement of metal-ceramic materials with zirconia-based ceramics. However, the chemical inertness of zirconia to various conventional surface treating agents has continuously challenged researchers to discover a new surface treatment protocol that could enhance the bond strength of zirconia. How to cite this article: Yenamandra MS, Joseph A, Singh P, et al. Effect of Various Surface Treatments of Zirconia on its Adhesive Properties to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):226-230.


Assuntos
Colagem Dentária , Dentina , Teste de Materiais , Cimentos de Resina , Propriedades de Superfície , Zircônio , Cimentos de Resina/química , Colagem Dentária/métodos , Técnicas In Vitro , Humanos , Análise do Estresse Dentário , Resistência ao Cisalhamento , Ácido Fluorídrico/química , Ácido Nítrico/química , Cerâmica/química
13.
J Adv Prosthodont ; 16(2): 105-114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694193

RESUMO

PURPOSE: This study aimed to evaluate the effect of pretreatment of three different universal adhesives (Single Bond Universal [SBU], All-Bond Universal [ABU], and Prime&Bond universal [PBU]) on the bonding durability of an adhesive (Panavia F 2.0, PF) and a conventional (Duo-Link, DL) resin cements to air-abraded zirconia. MATERIALS AND METHODS: Rectangular-shaped zirconia specimens were prepared. The chemical composition and surface energy parameters of the materials were studied by Fourier transform infrared spectroscopy and contact angle measurement, respectively. To evaluate resin bonding to the zirconia, all the bonding specimens were immersed in water for 24 h and the specimens to be aged were additionally thermocycled 10000 times before the shear bond strength (SBS) test. RESULTS: The materials showed different surface energy parameters, including the degree of hydrophilicity/hydrophobicity. While the DL/CON (no pretreatment) showed the lowest SBS and a significant decrease in the value after thermocycling (P < .001), the PF/CON obtained a higher SBS value than the DL/CON (P < .001) and no decrease even after thermocycling (P = .839). When the universal adhesives were used with DL, their SBS values were higher than the CON (P < .05), but the trend was adhesive-specific. In conjunction with PF, the PF/SBU produced the highest SBS followed by the PF/ABU (P = .002), showing no significant decrease after thermocycling (P > .05). The initial SBS of the PF/PBU was similar to the PF/CON (P = .999), but the value decreased after thermocycling (P < .001). CONCLUSION: The universal adhesive pretreatment did not necessarily show a synergistic effect on the bonding performance of an adhesive resin cement, whereas the pretreatment was beneficial to bond strength and durability of a conventional resin cement.

14.
Materials (Basel) ; 17(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38730928

RESUMO

The aim of this paper was to evaluate the fracture resistance of 3D-printed zirconia occlusal veneers (OVs) of different thicknesses and supported by different abutment materials. Materials and Methods: The standard OV of a natural molar was prepared and digitized using a laboratory 3D scanner. The resulting digital tooth abutment was milled either using cobalt-chromium (CoCr) or a fiber-reinforced composite (FRC). All the abutments were digitized and standardized OVs (30° tilt of all the cusps) designed with 0.4 mm, 0.6 mm, or 0.8 mm wall thicknesses. The OVs were fabricated using either the Programill PM7 milling device (Ivoclar Vivadent, PM) or one of two 3D zirconia printers, Cerafab 7500 (Lithoz, LC) or Zipro-D (AON, ZD). The ZD samples were only tested on CoCr abutments. The completed OVs were luted to their abutments and subjected to artificial aging, consisting of thermocycling and chewing simulation before fracture testing with a steel sphere (d = 8 mm) as an antagonist with three contact points on the occlusal OV surface. Besides the total fracture resistance Fu,tot, the lowest contact force Fu,cont leading to the local fracture of a cusp was of interest. The possible effects of the factors fabrication approach, wall thickness, and abutment material were evaluated using ANOVA (α = 0.05; SPSS Ver.28). Results: The total fracture resistance/contact forces leading to failure ranged from Fu,tot = 416 ± 83 N/Fu,cont = 140 ± 22 N for the 0.4 mm OVs fabricated using LC placed on the FRC abutments to Fu,tot = 3309 ± 394 N (ZD)/Fu,cont = 1206 ± 184 N (PM) for the 0.8 mm thick OVs on the CoCr abutments. All the factors (the fabrication approach, abutment material, and OV wall thickness) had an independent effect on Fu,tot as well as Fu,cont (p < 0.032). In pairwise comparisons for Fu,tot of the OVs luted to the CoCr abutments, the ZD samples statistically outperformed the LC- and PM-fabricated teeth irrespective of the thickness (p < 0.001). Conclusions: Within the limitations of this study, the printed occlusal veneers exhibited comparable fracture resistances to those of the milled variants. However, more resilient abutments (FRC as a simulation of dentine) as well as a thinner wall thickness led to reduced OV fracture resistance, suggesting that 0.4 mm thick zirconia OVs should not be unreservedly used in every clinical situation.

15.
Materials (Basel) ; 17(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38730936

RESUMO

The marginal accuracy of fit between prosthetic restorations and abutment teeth represents an essential aspect with regard to long-term clinical success. Since the final gap is also influenced by the luting techniques and materials applied, this study analyzed the accuracy of the fit of single-tooth zirconia copings before and after cementation using different luting materials. Forty plaster dies with a corresponding zirconia coping were manufactured based on a single tooth chamfer preparation. The copings were luted on the plaster dies (n = 10 per luting material) with a zinc phosphate (A), glass-ionomer (B), self-adhesive resin (C), or resin-modified glass-ionomer cement (D). The accuracy of fit for each coping was assessed using a non-destructive digital method. Intragroup statistical analysis was conducted using Wilcoxon signed rank tests and intergroup analysis by Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Accuracy of fit was significantly different before/after cementation within A (0.033/0.110 µm) and B (0.035/0.118 µm; p = 0.002). A had a significantly increased marginal gap compared to C and D, and B compared to C and D (p ≤ 0.001). Significantly increased vertical discrepancies between A and B versus C and D (p < 0.001) were assessed. Of the materials under investigation, the zinc phosphate cement led to increased vertical marginal discrepancies, whereas the self-adhesive resin cement did not influence the restoration fit.

16.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731620

RESUMO

Developing highly active and durable Pt-based electrocatalysts is crucial for polymer electrolyte membrane fuel cells. This study focuses on the performance of oxygen reduction reaction (ORR) electrocatalysts composed of Pt-Pd alloy nanoparticles on graphene nanoplates (GNPs) anchored with sulfated zirconia nanoparticles. The results of field emission scanning electron microscopy and transmission electron microscopy showed that Pt-Pd and S-ZrO2 are well dispersed on the surface of the GNPs. X-ray diffraction revealed that the S-ZrO2 and Pt-Pd alloy coexist in the Pt-Pd/S-ZrO2-GNP nanocomposites without affecting the crystalline lattice of Pt and the graphitic structure of the GNPs. To evaluate the electrochemical activity and reaction kinetics for ORR, we performed cyclic voltammetry, rotating disc electrode, and EIS experiments in acidic solutions at room temperature. The findings showed that Pt-Pd/S-ZrO2-GNPs exhibited a better ORR performance than the Pt-Pd catalyst on the unsulfated ZrO2-GNP support and with Pt on S-ZrO2-GNPs and commercial Pt/C.

17.
BMC Oral Health ; 24(1): 472, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641578

RESUMO

PURPOSE: The aim of the current study was to evaluate the effect of simulated gastric acid on the color and translucency of different indirect restorative materials. MATERIALS AND METHODS: A total of 36 disc-shaped samples were cut by using an isomet saw and divided into four equal groups (n = 9) according to the material type: Group Z: translucent zirconia (Ceramill® Zolid ht.+ preshade, Amann Girrbach, Koblach, Austria); Group E: lithium disilicate (IPS e.max CAD, Ivoclar Vivadent AG, Schaan, Liechtenstein); Group C: resin nanoceramic (Cerasmart, GC, Tokyo, Japan); Group P: polyether ether ketone (PEEK) (Bettin Zirconia Dentale Italy) veneered with indirect high impact polymer composite (HIPC) (breCAM HIPC, Bredent GmbH & Co. KG, Germany). The samples were immersed in simulated gastric acid (HCl, pH 1.2) for 96 hours at 37 °C in an incubator. The color change (ΔE00) and translucency (RTP00) were measured every 9.6 hours (one-year clinical simulation) of immersion in simulated gastric acid. RESULTS: For color change (∆E00) and translucency (RTP00) among the tested materials, there was a highly statistically significant difference (P < 0.001) after every year of follow-up. The color change in both Z and G groups was the lowest after 1 year of acid immersion, followed by that in group H, and the highest change in color was recorded in group P. CONCLUSION: High translucent zirconia is recommended in patients who are concerned about esthetic, especially with acidic oral environment.


Assuntos
Cerâmica , Materiais Dentários , Humanos , Teste de Materiais , Zircônio , Propriedades de Superfície , Cor , Desenho Assistido por Computador
18.
J Funct Biomater ; 15(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38667548

RESUMO

Zirconia ceramic implants are commercially available from a rapidly growing number of manufacturers. Macroscopic and microscopic surface design and characteristics are considered to be key determining factors in the success of the osseointegration process. It is, therefore, crucial to assess which surface modification promotes the most favorable biological response. The purpose of this study was to conduct a comparison of modern surface modifications that are featured in the most common commercially available zirconia ceramic implant systems. A review of the currently available literature on zirconia implant surface topography and the associated bio-physical factors was conducted, with a focus on the osseointegration of zirconia surfaces. After a review of the selected articles for this study, commercially available zirconia implant surfaces were all modified using subtractive protocols. Commercially available ceramic implant surfaces were modified or enhanced using sandblasting, acid etching, laser etching, or combinations of the aforementioned. From our literature review, laser-modified surfaces emerged as the ones with the highest surface roughness and bone-implant contact (BIC). It was also found that surface roughness could be controlled to achieve optimal roughness by modifying the laser output power during manufacturing. Furthermore, laser surface modification induced a very low amount of preload microcracks in the zirconia. Osteopontin (OPN), an early-late osteogenic differentiation marker, was significantly upregulated in laser-treated surfaces. Moreover, surface wettability was highest in laser-treated surfaces, indicating favorable hydrophilicity and thus promoting early bone forming, cell adhesion, and subsequent maturation. Sandblasting followed by laser modification and sandblasting followed by acid etching and post-milling heat treatment (SE-H) surfaces featured comparable results, with favorable biological responses around zirconia implants.

19.
SAGE Open Med Case Rep ; 12: 2050313X241248385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680597

RESUMO

The objective of this case report was to provide a plan for aesthetic rehabilitation of a patient utilizing layered zirconia restorations to produce a homogeneous, pleasing smile. In this case, a female patient, aged 38 years, presented in dental clinic with a spaced dentition and faulty crowns that were causing functional and aesthetic concerns. She was a banker by profession and socially active. The treatment plan involved layered zirconia indirect restorations to enhance her natural teeth appearance. The aim of this case report was to propose an effective strategy for addressing her concerns, with the potential to achieve a desired aesthetic outcome. Additionally, the implementation of this treatment approach had a positive influence on self-esteem and confidence of the patient.

20.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668202

RESUMO

The cubic zirconia (ZrO2) is attractive for a broad range of applications. However, at room temperature, the cubic phase needs to be stabilized. The most studied stabilization method is the addition of the oxides of trivalent metals, such as Sc2O3. Another method is the stabilization of the cubic phase in nanostructures-nanopowders or nanocrystallites of pure zirconia. We studied the relationship between the size factor and the dopant concentration range for the formation and stabilization of the cubic phase in scandium-stabilized zirconia (ScSZ) films. The thin films of (ZrO2)1-x(Sc2O3)x, with x from 0 to 0.2, were deposited on room-temperature substrates by reactive direct current magnetron co-sputtering. The crystal structure of films with an average crystallite size of 85 Å was cubic at Sc2O3 content from 6.5 to 17.5 mol%, which is much broader than the range of 8-12 mol.% of the conventional deposition methods. The sputtering of ScSZ films on hot substrates resulted in a doubling of crystallite size and a decrease in the cubic phase range to 7.4-11 mol% of Sc2O3 content. This confirmed that the size of crystallites is one of the determining factors for expanding the concentration range for forming and stabilizing the cubic phase of ScSZ films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...