Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Hazard Mater ; 480: 135828, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39321477

RESUMO

Heavy metal stress threatens plant growth and productivity. In this study, we investigated the effects of CuSO4 and ZnSO4 toxicity on sorghum seedlings, focusing on their impact on biomass, germination rates, growth parameters, antioxidant enzyme activities, gene expression profiles, and stress resistance mechanisms. As a result, eight sorghum superoxide dismutase (SOD) genes were identified, and their evolutionary relationships with cis-acting regulatory elements and their expressional patterns were evaluated. Integrating transcriptomic data revealed a key SOD member SbCSD1 that might contribute to plant abiotic stress resistance. Furthermore, SbCSD1 overexpression enhanced plant tolerance to CuSO4 and ZnSO4 stress by regulating SOD activity and interacting with copper chaperone for superoxide dismutase 1 (CCS1) in the plant nucleus and cytoplasm. Meanwhile, silencing CCS1 in SbCSD1-overexpressing plants revealed that SbCSD1 and CCS1 synergistically contribute to Cu stress tolerance. By integrating transcriptomic and genetic data, herein we provide novel insights into the orchestration of plant responses to heavy-metal stress in sorghum by SOD.

2.
ACS Appl Mater Interfaces ; 16(39): 53242-53251, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39313374

RESUMO

Rechargeable aqueous Zn-ion batteries (AZIBs) have been recognized as competitive devices for large-scale energy storage due to their characteristics of low cost, safe operation, and environmental friendliness. Nevertheless, their practical applications are greatly limited by zinc dendrite growth and side reactions occurring at the anode/electrolyte interface. Herein, we propose an effective and simple electrolyte engineering strategy, which is the introduction of l-lysine additive containing two amino groups and one carboxyl group into a ZnSO4 electrolyte to achieve stable and reversible Zn depositions. Theoretical calculations and experimental results reveal that the l-lysine can adsorb on the Zn anode surface due to the strong coordination effects between amino groups and Zn metal (Zn-N binding) and induce the reduction of ZnSO4 into inorganic ZnS, which can not only prevent interfacial side reactions but also regulate interfacial electric field on the zinc electrode surface to guide uniform Zn2+ electrodeposition to inhibit zinc dendrites. Consequently, the l-lysine additive in the electrolyte enables Zn||Zn symmetric cells to achieve an ultralong stable cycling up to 2400 h at 1 mA cm-2 with a low polarization of only about 16 mV and Zn||Cu asymmetric cells to obtain a high average Coulombic efficiency of 99.80% after stably cycling for more than 2000 h at 2 mA cm-2 (1 mAh cm-2). In addition, the Zn||MnO2@CNT full cell in an l-lysine-containing electrolyte also exhibits good cycling performance. This study offers a new perspective on multifunctional electrolyte additive for achieving highly reversible Zn metal anodes in AZIBs.

3.
Angew Chem Int Ed Engl ; : e202410434, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078870

RESUMO

Hydrogel electrolytes (HEs) hold great promise in tackling severe issues emerging in aqueous zinc-ion batteries, but the prevalent salting-out effect of kosmotropic salt causes low ionic conductivity and electrochemical instability. Herein, a subtle molecular bridging strategy is proposed to enhance the compatibility between PVA and ZnSO4 from the perspective of hydrogen-bonding microenvironment re-construction. By introducing urea containing both an H-bond acceptor and donor, the broken H-bonds between PVA and H2O, initiated by the SO42--driven H2O polarization, could be re-united via intense intermolecular hydrogen bonds, thus leading to greatly increased carrying capacity of ZnSO4. The urea-modified PVA-ZnSO4 HEs featuring a high ionic conductivity up to 31.2 mS cm-1 successfully solves the sluggish ionic transport dilemma at the solid-solid interface. Moreover, an organic solid-electrolyte-interphase can be derived from the in-situ electro-polymerization of urea to prohibit H2O-involved side reactions, thereby prominently improving the reversibility of Zn chemistry. Consequently, Zn anodes witness an impressive lifespan extension from 50 h to 2200 h at 0.1 mA cm-2 while the Zn-I2 full battery maintains a remarkable Coulombic efficiency (>99.7%) even after 8000 cycles. The anti-salting-out strategy proposed in this work provides an insightful concept for addressing the phase separation issue of functional HEs.

4.
Biopolymers ; 115(5): e23606, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38888357

RESUMO

This study aimed to address a significant challenge in the application of bacterial cellulose (BC) within tissue engineering and regenerative medicine by tackling its inherent insolubility in water and organic solvents. Our team introduced a groundbreaking approach by utilizing zinc sulfate (ZnSO4) as a solvent to render BC soluble, a novel contribution to the literature. Subsequently, the obtained soluble BC was combined with varying concentrations of polyvinylpyrrolidone (PVP). Notably, we pioneered the fabrication of BC/PVP composite scaffolds with customizable fiber surface morphology and regulated degradation rates through the electrospun technique. Several key parameters, such as PVP concentration (8%, 15%, 12%, and 20% w/v), applied voltage (22, 15, and 12 kV), and a fixed nozzle-collector distance of 10 cm with a flow rate of 0.9 mL/h, were systematically evaluated so as to find the optimum parameter created BC/PVP product with electrospun. For electrospun BC/PVP products, a voltage of 12 kV was found to be optimal. Intriguingly, our findings revealed enhanced cell adhesion and proliferation in BC/PVP electrospun products compared with using PVP membranes alone. Specifically, cell viability for PVP and PVP/BC electrospun products was determined as 50.73% and 79.95%, respectively. In terms of thermal properties, the BC/PVP electrospun product exhibited a mass loss of 82.6% at 380°C, while PVP alone experienced 90.2% mass loss at around 280°C. Furthermore, the protein adhesion capacities were measured at 62.3 ± 1.2 µg for PVP and 99.4 ± 2 µg for BC/PVP electrospun products, whereas product showed no biodegradation over 28 days and had notable water retention capacity. In conclusion, our research not only successfully attained nanofiber morphology but also showcased enhanced cell attachment and proliferation on the BC/PVP electrospun product.


Assuntos
Celulose , Nanofibras , Povidona , Celulose/química , Nanofibras/química , Povidona/química , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Adesão Celular , Sobrevivência Celular/efeitos dos fármacos , Animais , Alicerces Teciduais/química , Camundongos
5.
Small ; 20(38): e2402595, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38764288

RESUMO

The widespread adoption of aqueous Zn ion batteries is hindered by the instability of the Zn anode. Herein, an elegant strategy is proposed to enhance the stability of Zn anode by incorporating nicotinic acid (NA), an additive with a unique molecule-ion conversion mechanism, to optimize the anode/electrolyte interface and the typical ZnSO4 electrolyte system. Experimental characterization and theoretical calculations demonstrate that the NA additive preferentially replaces H2O in the original solvation shell and adsorbs onto the Zn anode surface upon conversion from molecule to ion in the electrolyte environment, thereby suppressing side reactions arising from activated H2O decomposition and stochastic growth of Zn dendrites. Simultaneously, such a molecule-to-ion conversion mechanism may induce preferential deposition of Zn along the (002) plane. Benefiting from it, the Zn||Zn symmetric battery cycles stably for 2500 h at 1 mA cm-2, 1 mAh cm-2. More encouragingly, the Zn||AC full batteries and the Zn||AC full batteries using NA electrolyte and Zn||VO2 full batteries also exhibit excellent performance improvements. This work emphasizes the role of variation in the form of additives (especially weak acid-based additives) in fine-tuning the solvation structure and the anode/electrolyte interface, hopefully enhancing the performance of various aqueous metal batteries.

6.
Plants (Basel) ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732398

RESUMO

Boron toxicity significantly hinders the growth and development of cotton plants, therefore affecting the yield and quality of this important cash crop worldwide. Limited studies have explored the efficacy of ZnSO4 (zinc sulfate) and ZnO nanoparticles (NPs) in alleviating boron toxicity. Nanoparticles have emerged as a novel strategy to reduce abiotic stress directly. The precise mechanism underlying the alleviation of boron toxicity by ZnO NPs in cotton remains unclear. In this study, ZnO NPs demonstrated superior potential for alleviating boron toxicity compared to ZnSO4 in hydroponically cultivated cotton seedlings. Under boron stress, plants supplemented with ZnO NPs exhibited significant increases in total fresh weight (75.97%), root fresh weight (39.64%), and leaf fresh weight (69.91%). ZnO NPs positively affected photosynthetic parameters and SPAD values. ZnO NPs substantially reduced H2O2 (hydrogen peroxide) by 27.87% and 32.26%, MDA (malondialdehyde) by 27.01% and 34.26%, and O2- (superoxide anion) by 41.64% and 48.70% after 24 and 72 h, respectively. The application of ZnO NPs increased the antioxidant activities of SOD (superoxide dismutase) by 82.09% and 76.52%, CAT (catalase) by 16.79% and 16.33%, and POD (peroxidase) by 23.77% and 21.66% after 24 and 72 h, respectively. ZnO NP and ZnSO4 application demonstrated remarkable efficiency in improving plant biomass, mineral nutrient content, and reducing boron levels in cotton seedlings under boron toxicity. A transcriptome analysis and corresponding verification revealed a significant up-regulation of genes encoding antioxidant enzymes, photosynthesis pathway, and ABC transporter genes with the application of ZnO NPs. These findings provide valuable insights for the mechanism of boron stress tolerance in cotton and provide a theoretical basis for applying ZnO NPs and ZnSO4 to reduce boron toxicity in cotton production.

7.
Transl Cancer Res ; 13(3): 1493-1507, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38617511

RESUMO

Background: Colorectal cancer (CRC) poses a significant challenge in digestive system diseases, and emerging evidence underscores the critical role of zinc metabolism in its progression. This study aimed to investigate the clinical implications of genes at the intersection of zinc metabolism and CRC. Methods: We downloaded CRC prognosis-related genes and zinc metabolism-related genes from public databases. Then, the overlapping genes were screened out, and bioinformatics analysis was performed to obtain the hub gene associated with CRC prognosis. Subsequently, in vitro assays were carried out to investigate the expression of this hub gene and its exact mechanism between zinc metabolism and CRC. Results: HAMP was identified as the hub CRC prognostic gene from overlapping zinc metabolism-related and CRC prognostic genes. In vitro analysis showed HAMP was over-expressed in CRC, and its knockdown inhibited RKO and HCT-116 cell invasion and migration significantly. ZnSO4 induced HAMP up-regulation to promote cell proliferation, while TPEN decreased HAMP expression to inhibit cell proliferation. Importantly, we further found that ZnSO4 enhanced SMAD4 expression to augment HAMP promoter activity and promote cell proliferation in CRC. Conclusions: HAMP stands out as an independent prognostic factor in CRC, representing a potential therapeutic target. Its intricate regulation by zinc, particularly through the modulation of SMAD4, unveils a novel avenue for understanding CRC biology. This study provides valuable insights into the interplay between zinc metabolism, HAMP, and CRC, offering promising clinical indicators for CRC patients. The findings present a compelling case for further exploration and development of targeted therapeutic strategies in CRC management.

8.
Environ Geochem Health ; 46(3): 87, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367090

RESUMO

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (Sn2-), elemental sulfur (S0), siderite (FeCO3)-like, hematite (Fe2O3)-like with sorbed CO32- species, gunningite (ZnSO4·H2O)-like phase and smithsonite (ZnCO3)-like compounds in altered surface under calcareous conditions. However, the generation of gunningite (ZnSO4·H2O)-like phase was predominant bulk-solution system. Quantification of damage rates ranges from 75 to 90% of bulb cells under non-carbonated conditions after 15-30 days, while 50-75% of damage level is determined under neutral-alkaline carbonated conditions. Damage ratios are 70.08 and 30.26 at the highest level, respectively. These findings revealed lower ecotoxic damage due to ZnCO3-like precipitation, indicating the effect of carbonates on Zn compounds during vegetable up-taking (exposure). Other environmental suggestions of the (Fe, Zn)S weathering and ecotoxic effects under calcareous soil conditions are discussed.


Assuntos
Cebolas , Poluentes do Solo , Compostos de Zinco , Solo/química , Sulfetos/química , Tempo (Meteorologia) , Poluentes do Solo/análise
9.
Small ; 20(28): e2310824, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282374

RESUMO

Structured passivation layers and hydrated Zn2+ solvation structure strongly influence Zn depositions on Zn electrodes and then the cycle life and electrochemical performance of aqueous zinc ion batteries. To achieve these, the electrolyte additive of sodium L-ascorbate (Ass) is introduced into aqueous zinc sulfate (ZnSO4, ZS) electrolyte solutions. Combined experimental characterizations with theoretical calculations, the unique passivation layers with vertical arrayed micro-nano structure are clearly observed, as well as the hydrated Zn2+ solvation structure is changed by replacing two ligand water molecules with As-, thus regulating the wettability and interfacial electric field intensity of Zn surfaces, facilitating rapid ionic diffusions within electrolytes and electrodes together with the inhibited side reactions and uniform depositions of Zn2+. When tested in Zn||Zn symmetric cell, the electrolyte containing Ass is extraordinarily stably operated for the long time ≈3700 h at both 1 mA cm-2 and 1 mAh cm-2. In Zn||MnO2 full coin cells, the energy density can still maintain as high as ≈184 Wh kg-1 at the power density high up to 2 kW kg-1, as well as the capacity retention can reach up to 80.5% even after 1000 cycles at 2 A g-1, which are substantially superior to the control cells.

10.
Small ; 20(13): e2306947, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972273

RESUMO

As one of promising candidates for large-scale energy-storage systems, Zn-I2 aqueous battery exhibits multifaceted advantages including low cost, high energy/powder density, and intrinsic operational safety, but also suffers from fast self-discharge and short cycle/shelf lifespan associating with I3 - shuttle, Zn dendrite growth, and corrosion. In this paper, the battery's self-discharge rate is successfully suppressed down to an unprecedent level of 17.1% after an ultralong shelf-time of 1 000 h (i.e., 82.9% capacity retention after 41 days open-circuit storage), by means of manipulating solvation structures of traditional ZnSO4 electrolyte via simply adjusting electrolyte concentration. Better yet, the optimized 2.7 m ZnSO4 electrolyte further prolongs the cycle lifespan of the battery up to >10 000 and 43 000 cycles at current density of 1 and 5 A g-1, respectively, thanks to the synthetic benefits from reduced free water content, modified solvation structure and lowered I2 dissolution in the electrolyte. With both long lifespan and ultralow self-discharge, this reliable and affordable Zn-I2 battery may provide a feasible alternative to the centuries-old lead-acid battery.

11.
Plant Physiol Biochem ; 206: 108199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100890

RESUMO

Cadmium (Cd) contamination is a serious challenge in agricultural soils worldwide, resulting in Cd entering the food chain mainly through plant-based food and threatening human health. Minimizing Cd bioaccumulation in wheat is an important way to prevent Cd hazards to humans. Hydroponic and pot experiments were conducted to comprehensively evaluate the effects of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (nZnO) on Cd uptake, translocation, subcellular distribution, cellular ultrastructure, and gene expression in two wheat genotypes that differ in grain Zn accumulation. Results showed that high-dose nZnO significantly reduced root Cd concentration (52.44%∼56.85%) in two wheats, in contrast to ZnSO4. The S216 exhibited higher tolerance to Cd compared to Z797. Importantly, Zn supplementation enhanced Cd sequestration into vacuoles and binding to cell walls, which conferred stability to ultracellular structures and photosynthetic apparatus. Down-regulation of influx transporter (TaHMA2 and TaLCT1) and up-regulation of efflux transporters (TaTM20 and TaHMA3) in Z797 might contribute to Zn-dependent alleviation of Cd toxicity and enhance its Cd tolerance. Down-regulation of ZIP transporters (TaZIP3, -5, and -7) might contribute to an increase in root Zn concentration and inhibit Cd absorption. Additionally, soil Zn provided an effective strategy for the reduction of grain Cd concentrations in both wheats, with a reduction of 26%∼32% (high ZnSO4) and 11%∼67% (high nZnO), respectively. Collectively, these findings provide new insights and perspectives on the mechanisms of Cd mitigation in wheats with different Zn fertilizers and demonstrate that the effect of nZnO in mitigating Cd stress is greater than that of ZnSO4 fertilizers.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Cádmio/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Triticum/metabolismo , Fertilizantes , Solo , Proteínas de Membrana Transportadoras/metabolismo , Expressão Gênica , Poluentes do Solo/metabolismo
12.
Ultrason Sonochem ; 102: 106748, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154208

RESUMO

Currently, removing arsenic (As) from ZnSO4 solution using lime presents several drawbacks, including high wet precipitate content, long reaction time, and the introduction of new impurities. In this study, we propose a novel ultrasonic (US) ozone one-pot method for effectively removing As from a high-arsenic ZnSO4 solution. In this method, as in ZnSO4 solution was removed by ultrasound enhanced ozone oxidation combined with zinc roasting dust (ZRD). No secondary pollution will occur with the addition of ZRD and ozone, as neither introduces new impurities. The experimental results show that under the conditions of initial As and Fe concentrations of 1640 mg/L and 2963 mg/L, US power of 480 W, frequency of 20 kHz, reaction temperature of 60 °C, reaction time of 1 h, ZRD dose of 12 g/L and gas flow rate of 900 mL/min, the removal rate of As can reach 99.4%. The introduction of US can further enhance the oxidation effect of ozone on As(III) and Fe2+ by increasing the solubility of ozone and promoting the production of OH radicals. Additionally, US cavitation and mechanical action increase the probability of contact between various reactants in the solution, facilitating the occurrence of reactions. US also reduces the aggregation of arsenic-containing precipitates and the encapsulation of ZRD by arsenic containing precipitates, thereby decreasing the amount of arsenic-containing precipitates. In comparison to the traditional lime method, this approach results in a significant reduction in the amount of arsenic-containing precipitate by 54.5% and a 60% decrease in the total reaction time. The As removal mechanism of our method encompasses ZRD neutralization, US-enhanced ozone mass transfer and decomposition, oxidation of As(III) and Fe2+, and adsorption and coprecipitation. Consequently, the proposed method provides a cost-effective, fast, safe and environmentally friendly alternative for treating arsenic-contaminated ZnSO4 solutions.

13.
Plants (Basel) ; 12(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687402

RESUMO

Rhodomyrtus tomentosa is a source of a novel antibiotic, rhodomyrtone. Because of the increasing industrial demand for this compound, germplasm with a high rhodomyrtone content is the key to sustainable future cultivation. In this study, rhodomyrtone genotypes were verified using the plastid genomic region marker matK and nuclear ribosomal internal transcribed spacer ITS. These two DNA barcodes proved to be useful tools for identifying different rhodomyrtone contents via the SNP haplotypes C569T and A561G, respectively. The results were correlated with rhodomyrtone content determined via HPLC. Subsequently, R. tomentosa samples with high- and low-rhodomyrtone genotypes were collected for de novo transcriptome and gene expression analyses. A total of 83,402 unigenes were classified into 25 KOG classifications, and 74,102 annotated unigenes were obtained. Analysis of differential gene expression between samples or groups using DESeq2 revealed highly expressed levels related to rhodomyrtone content in two genotypes. semiquantitative RT-PCR further revealed that the high rhodomyrtone content in these two genotypes correlated with expression of zinc transporter protein (RtZnT). In addition, we found that expression of RtZnT resulted in increased sensitivity of R. tomentosa under ZnSO4 stress. The findings provide useful information for selection of cultivation sites to achieve high rhodomyrtone yields in R. tomentosa.

14.
Theriogenology ; 207: 61-71, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269597

RESUMO

Zinc (Zn) is an essential trace element with anti-inflammatory and antioxidant effects and plays a crucial role in the female reproductive system. We aimed to investigate the protective effect of ZnSO4 on premature ovarian failure (POF) in SD rats and granulosa cells (GCs) treated with cisplatin. We also explored the underlying mechanisms. In vivo experiments showed that ZnSO4 increased the serum levels of Zn2+, increased estrogen (E2) secretion, and decreased follicle-stimulating hormone (FSH) secretion in rats. ZnSO4 increased ovarian index, protected ovarian tissues and blood vessels, reduced excessive follicular atresia, and maintained follicular development. At the same time, ZnSO4 inhibited apoptosis in the ovaries. In vitro experiments showed that ZnSO4 combination treatment restored the intracellular levels of Zn2+ and inhibited the apoptosis of GCs. ZnSO4 inhibited cisplatin-induced reactive oxygen species (ROS) production and preserved mitochondrial membrane potential (MMP). We also found that ZnSO4 protected against POF by activating the PI3K/AKT/GSK3ß signaling pathway and reducing apoptosis of GCs. These data suggest that ZnSO4 may be a potential therapeutic agent for protecting the ovaries and preserving fertility during chemotherapy.


Assuntos
Insuficiência Ovariana Primária , Feminino , Ratos , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/veterinária , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cisplatino/efeitos adversos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Ratos Sprague-Dawley , Atresia Folicular , Transdução de Sinais , Células da Granulosa/metabolismo , Apoptose
15.
Future Microbiol ; 18: 197-203, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36916423

RESUMO

Aim: Ova and parasite examination by flotation requires hypertonic solutions, which can damage the egg and cyst membranes, leading to false negatives. The authors investigated the harmful effects of ZnSO4 and C12H22O11 solutions on the ova and parasite examination. Materials & methods: The authors processed samples using the Three Fecal Test technique. Aliquots were floated in different pH levels, temperatures and solution densities. Results: Densities above 1.12 g/ml led structures to collapse after 6-10 min. pH neutralization of the ZnSO4 solution did not prevent the parasites from changing. Conclusion: All structures were altered when standard methods were performed. To delay collapse, the parasite floating under 5 °C is highly desirable.


Fecal exams require solutions that can damage the intestinal parasite's shape. This is bad for diagnosis. The authors investigated the harmful effects of these solutions on fecal exams. The authors processed samples using a technique called the Three Fecal Test. Fecal samples were floated in different conditions, including neutral and acidic solutions, high and low temperatures and varying densities of chemical solutions. Densities above 1.12 g/ml altered the structures of parasites. Neutral solutions did not prevent the structures from changing. The structures of all parasites were altered when the usual techniques were performed. Thus, the techniques for diagnosing intestinal parasites in feces must be improved. Temperatures under 5 °C are the best for preventing the destruction of parasite membranes.


Assuntos
Enteropatias Parasitárias , Parasitos , Animais , Humanos , Contagem de Ovos de Parasitas/métodos , Enteropatias Parasitárias/diagnóstico , Enteropatias Parasitárias/parasitologia , Intestinos , Soluções Hipertônicas , Fezes
16.
Chemosphere ; 327: 138479, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965530

RESUMO

Salinization causes the degradation of the soil and threatening the global food security but the application of essential micronutrients like zinc (Zn), improve the plant growth by stabilizing the plant cell and root development. Keeping in view the above-mentioned scenario, an experiment was conducted to compare the efficiency of conventional Zn fertilizers like zinc sulphate (ZnSO4), zinc ethylene diamine tetra acetic acid (Zn-EDTA) and advance nano Zn fertilizers such as zinc sulphate nanoparticles (ZnSO4NPs), and zinc oxide nanoparticles (ZnONPs) (applied at the rate of 5 and 10 mg/kg) in saline-sodic soil. Results revealed that the maximum plant height (67%), spike length (72%), root length (162%), number of tillers (71%), paddy weight (100%), shoot dry weight (158%), and root dry weight (119%) was found in ZnSO4NPs applied at the rate of 10 mg/kg (ZnSO4NPs-10) as compared to salt-affected control (SAC). Similarly, the plants physiological attributes like chlorophyll contents (91%), photosynthesis rate (113%), transpiration rate (106%), stomatal conductance (56%) and internal CO2 (11%) were increased by the application of ZnSO4NPs-10, as compared to SAC. The maximum Zn concentration in root (153%), shoot (205%) and paddy (167%) found in ZnSO4NPs-10, as compared to control. In the body of rice plants, other nutrients like phosphorus and potassium were also increased by the application of ZnSO4NPs-10 and soil chemical attributes such as sodium and sodium adsorption ratio were decreased. The current experiment concluded that the application of ZnSO4NPs at the rate of 10 mg/kg in salt-affected paddy soil increased the growth, physiology, up take of essential nutrients and yield of rice by balancing the cationic ratio under salt stress.


Assuntos
Oryza , Zinco , Zinco/metabolismo , Oryza/metabolismo , Solo/química , Fertilizantes , Sulfato de Zinco/farmacologia , Sulfato de Zinco/metabolismo , Estresse Salino , Sódio
17.
Microbes Infect ; 25(5): 105099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36642296

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is the main causative pathogen of diarrhea. It causes acute watery diarrhea that leads to rapid dehydration and prostration within hours. ETEC is still an important cause of neonatal and post-weaning diarrhea in pigs. However, the mechanism underlying ETEC-induced diarrhea is not yet clear. In this study, we investigated these mechanisms and found that the mTORC1 pathway plays a role in the host response to ETEC F4 infection. Specifically, we found that ETEC F4 treatment significantly repressed mTORC1 activity as well as cell proliferation, promoted apoptosis and regulated the expression of diarrhea-related genes via the promotion of PKA-mediated phosphorylation of SIN1, which plays a critical role in the assembly of mTORC2. These findings indicate that PKA is a checkpoint for ETEC-induced diarrhea. In terms of potential therapeutic strategies, we found that ZnSO4 dramatically rescued ETEC F4-induced the inhibition of mTORC1 activity and cell viability and the induction of apoptosis and alterations in the expression of diarrhea-related genes. Thus, the present findings demonstrate that ETEC F4 influences mTORC1 activation by inhibiting the assembly of mTORC2 through PKA-mediated phosphorylation of SIN1. Further, supplementation with ZnSO4 is an effective strategy for blocking the effect of ETEC F4 on mTORC1 activation, and it may have potential clinical applications in the treatment of ETEC F4-induced diarrhea.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Suínos , Animais , Diarreia , Apoptose , Células Epiteliais
18.
Artigo em Inglês | MEDLINE | ID: mdl-35909798

RESUMO

Heavy metals have played a great role in the genesis of the present-day civilization. Human beings are affected when these metals are added to the food chain. Although these are the most important plant nutrients, they are phytotoxic at high concentrations. Heavy metals at super optimal concentrations affect different metabolic pathways in plants and result in their ceased growth and development. They may enter plants either by their root system or through foliar uptake; stunted growth, chlorosis, necrosis, and reddish-brown discoloration are visible symptoms of severe metallic phytotoxicity. The study of heavy metal stress tolerance on Momordica cymbalaria shows the effect on the plant growth and metabolism. All heavy metals treated with high concentrations affect the overall plant growth. The Murashige and Skoog (MS) basal medium with ZnSO4 at 100 µM concentration resulted in healthy shoot development (9) with a maximum shoot length of 7.2 cm. MS basal medium with low concentration of CuSO4 (50 µM) achieved a maximum shoot number (7) with healthy leaves and shoots. MS basal medium with higher concentration of CdCl2 (150 µM) affects plant growth and reduced the regeneration capability completely.

19.
Plant Physiol Biochem ; 186: 52-63, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809436

RESUMO

Soil secondary salinization is a serious menace that has significant influence on the sustainability of agriculture and threatens food security around the world. Zinc (Zn) as an essential plant nutrient associated with many physio-biochemical processes in plants and improve resistance against various abiotic stresses. The role of Zn in acclimation of Solanum lycopersicum L. challenged with salt stress is miserly understood. A hydroponic study was performed with two tomato varieties (Riogrande and Sungold) exposed to the salinity stress (0 mM and 160 mM NaCl) under two Zn concentrations (15 µM and 30 µM ZnSO4). The results revealed that salt stress exerted strongly negative impacts on root and shoot length, fresh and dry biomass, plant water relations, membrane stability, chlorophyll contents, Na+/K+ ratio along with inferior gas exchange attributes and activities of antioxidant enzymes. Moreover, Riogrande was found to be more resistant to salinity stress than Sungold. However, Zn supply significantly alleviated the hazardous effects of salinity by altering compatible solutes accumulation, photosynthetic activity, water relation, soluble sugar contents and providing antioxidant defense against salt stress. The salinity + Zn2 treatment more obviously enhanced RWC (19.0%), MSI (30.8%), SPAD value (17.8%), and activities of SOD (31.7%), POD (28.5%), APX (64.5%) and CAT (23.3%) in Riogrande than Sungold, compared with the corresponding salinity treatment alone. In addition, salinity + Zn2 treatment significantly (P > 0.05) ameliorated salinity stress due to the depreciation in Na+/K+ ratio by 63.3% and 40.8%, Na+ ion relocation from root to shoot by 10.4% and 6.4%, and thereby significantly reduced Na+ ion accumulation by 47.4% and 16.3% in the leaves of Riogrande and Sungold respectively, compared to the salinity treatment alone. Therefore, it was obvious that 30 µM Zn concentration was more effective to induce resistance against salinity stress than 15 µM Zn concentration. Conclusively, it can be reported that exogenous Zn application helps tomato plant to combat adverse saline conditions by modulating photosynthetic and antioxidant capacity along with reduced Na+ uptake at the root surface of tomato plant.


Assuntos
Solanum lycopersicum , Antioxidantes/farmacologia , Salinidade , Tolerância ao Sal , Plântula , Sódio/farmacologia , Água/farmacologia , Zinco/farmacologia
20.
J Colloid Interface Sci ; 626: 59-67, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780552

RESUMO

Despite of great interests in aqueous asymmetric supercapacitors (ASC), their performance is often restricted by unsatisfactory specific capacitance of anode materials. Herein, accordion-like V2CTx MXene has been prepared and exploited as novel anode material for aqueous ASC in neutral ZnSO4 electrolyte. Profitting from the layered structure with expanded interlayer distance, the V2CTx electrode exhibits a high specific capacitance of 481F g-1 at 1 A g-1, a reasonable rate performance and intriguing cycling stability with capacitance retention of 84.3% after 60,000 cycles at 10 A g-1 in 2 M ZnSO4 electrolyte. Furthermore, an ASC device based on the V2CTx as anode and activated carbon (AC) as cathode was successfully assembled in the ZnSO4 electrolyte, which achieves a wide potential window up to 1.8 V. Remarkably, the V2CTx//AC ASC delivers a high energy density of 34 W h kg-1 at a power density of 954 W kg-1, as well as superb cycling stability with capacitance retention of 79% even after 100,000 charge/discharge cycles at 10 A g-1. The intriguing electrochemical performance, especially the ultralong cycling life, make the V2CTx MXene electrode promising in aqueous energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA