Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Metab ; 36(9): 2118-2129.e6, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39111308

RESUMO

Copper (Cu) is a co-factor for several essential metabolic enzymes. Disruption of Cu homeostasis results in genetic diseases such as Wilson's disease. Here, we show that the zinc transporter 1 (ZnT1), known to export zinc (Zn) out of the cell, also mediates Cu2+ entry into cells and is required for Cu2+-induced cell death, cuproptosis. Structural analysis and functional characterization indicate that Cu2+ and Zn2+ share the same primary binding site, allowing Zn2+ to compete for Cu2+ uptake. Among ZnT members, ZnT1 harbors a unique inter-subunit disulfide bond that stabilizes the outward-open conformations of both protomers to facilitate efficient Cu2+ transport. Specific knockout of the ZnT1 gene in the intestinal epithelium caused the loss of Lgr5+ stem cells due to Cu deficiency. ZnT1, therefore, functions as a dual Zn2+ and Cu2+ transporter and potentially serves as a target for using Zn2+ in the treatment of Wilson's disease caused by Cu overload.


Assuntos
Proteínas de Transporte de Cátions , Cobre , Zinco , Cobre/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Humanos , Animais , Zinco/metabolismo , Camundongos , Células HEK293 , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/genética , Transporte Biológico , Mucosa Intestinal/metabolismo
2.
J Trace Elem Med Biol ; 86: 127500, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047373

RESUMO

BACKGROUND: Zinc transport proteins (ZIP and ZnT), metallothioneins (MT) and protein kinase CK2 are involved in dysregulation of zinc homeostasis in breast and prostate cancer cells. Following up our previous research, we targeted ZIP12, ZnT1, MT2A and CK2 in this study by investigating their expression levels and protein localisation. METHODS: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunofluorescence confocal microscopy were employed to quantify the expression of ZIP12, ZnT1, MT2A and CK2 subunits in a panel of breast and prostate cell lines without or with extracellular zinc exposure. The cellular localisations of these target proteins were also examined by immunofluorescence confocal microscopy. RESULTS: In response to the extracellular zinc exposure, the gene expression was elevated for SLC39A12 (ZIP12), SLC30A1 (ZnT1) and MT2A (MT2A) in normal prostate epithelial cells (RWPE-1) in contrast to their cancerous counterparts (PC3 and DU145), whilst the gene expression was higher for SLC39A12 (ZIP12) and SLC30A1 (ZnT1) in both normal (MCF10A) and basal breast cancer cells (MDA-MB-231) compared to luminal breast cancer cells (MCF-7). At the protein level, the expression for both ZIP12 and ZnT1 was trending lower in the time course for the breast cancer cells whilst their expression was remained constant in the normal breast epithelial cells. The expression of ZIP12 in prostate cancer cells was higher than the normal prostate cells. The protein expression for CK2 α/αꞌ and CK2ß was markedly higher in prostate cancer cells than the normal prostate cells. Upon extracellular zinc exposure, ZIP12 was, for the first time, conspicuously localised in the plasma membrane of breast cancer cells but not in normal breast epithelial cells and prostate cells. ZnT1 is only localised in the plasma membrane of breast cancer cells. MT2A is distinctively seen close to the plasma membrane in breast cancer cells. CK2 is also for the first time shown to be localised in proximity to the plasma membrane of breast cancer cells. CONCLUSION: The findings, particularly the localisation of ZIP12 and CK2, are novel and significant for our understanding of zinc homeostasis in breast and prostate cancer cells.

3.
Indian J Dermatol ; 69(2): 201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841228

RESUMO

Background: Condyloma acuminatum (CA), which is a highly contagious sexually transmitted illness generated by human papillomavirus (HPV) infection, is characterized by abnormal proliferation of keratinocytes resulting in verrucous lesions. Although solute carrier family 30 member 1 (ZNT1) is highly expressed in CA tissues, the function of ZNT1 in CA remains unclear. Methods: HPV transfection was performed in HaCaT to simulate the CA pathological environment. The mRNA and protein levels were monitored using RT-qPCR and immunoblotting. Cell viability was found using the MTT test. Cell invasion and migration were probed using the transwell and wound healing. Results: ZNT1 expression was up-regulated in CA tissues, and HPV transfection increased the expression of ZNT1. Overexpression of ZNT1 promoted the proliferation, migration and invasion of Human immortalized keratinocyte (HaCaT) transfected with HPV. Meanwhile, ZNT1 knockdown repressed the proliferation, migration and invasion of HaCaT that HPV transfected. Further research displayed that ZNT1 promoted the proliferation, migration and invasion of HaCaT transfected with HPV through the PI3K/Akt pathway. Conclusion: Our research confirmed that ZNT1 regulated the proliferation, migration and invasion of HaCaT transfected with HPV through the PI3K/Akt pathway, providing a new target for the effective remedy of CA.

4.
FASEB J ; 38(7): e23605, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597508

RESUMO

Understanding the homeostatic interactions among essential trace metals is important for explaining their roles in cellular systems. Recent studies in vertebrates suggest that cellular Mn metabolism is related to Zn metabolism in multifarious cellular processes. However, the underlying mechanism remains unclear. In this study, we examined the changes in the expression of proteins involved in cellular Zn and/or Mn homeostatic control and measured the Mn as well as Zn contents and Zn enzyme activities to elucidate the effects of Mn and Zn homeostasis on each other. Mn treatment decreased the expression of the Zn homeostatic proteins metallothionein (MT) and ZNT1 and reduced Zn enzyme activities, which were attributed to the decreased Zn content. Moreover, loss of Mn efflux transport protein decreased MT and ZNT1 expression and Zn enzyme activity without changing extracellular Mn content. This reduction was not observed when supplementing with the same Cu concentrations and in cells lacking Cu efflux proteins. Furthermore, cellular Zn homeostasis was oppositely regulated in cells expressing Zn and Mn importer ZIP8, depending on whether Zn or Mn concentration was elevated in the extracellular milieu. Our results provide novel insights into the intricate interactions between Mn and Zn homeostasis in mammalian cells and facilitate our understanding of the physiopathology of Mn, which may lead to the development of treatment strategies for Mn-related diseases in the future.


Assuntos
Manganês , Zinco , Animais , Zinco/metabolismo , Manganês/metabolismo , Cobre/metabolismo , Homeostase , Mamíferos/metabolismo
5.
Metallomics ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37193665

RESUMO

ZnT1 is a major zinc transporter that regulates cellular zinc homeostasis. We have previously shown that ZnT1 has additional functions that are independent of its activity as a Zn2+ extruder. These include inhibition of the L-type calcium channel (LTCC) through interaction with the auxiliary ß-subunit of the LTCC and activation of the Raf-ERK signaling leading to augmented activity of the T-type calcium channel (TTCC). Our findings indicate that ZnT1 increases TTCC activity by enhancing the trafficking of the channel to the plasma membrane. LTCC and TTCC are co-expressed in many tissues and have different functions in a variety of tissues. In the current work, we investigated the effect of the voltage-gated calcium channel (VGCC) ß-subunit and ZnT1 on the crosstalk between LTCC and TTCC and their functions. Our results indicate that the ß-subunit inhibits the ZnT1-induced augmentation of TTCC function. This inhibition correlates with the VGCC ß-subunit-dependent reduction in ZnT1-induced activation of Ras-ERK signaling. The effect of ZnT1 is specific, as the presence of the ß-subunit did not change the effect of endothelin-1 (ET-1) on TTCC surface expression. These findings document a novel regulatory function of ZnT1 serving as a mediator in the crosstalk between TTCC and LTCC. Overall, we demonstrate that ZnT1 binds and regulates the activity of the ß-subunit of VGCC and Raf-1 kinase and modulates surface expression of the LTCC and TTCC catalytic subunits, consequently modulating the activity of these channels.


Assuntos
Canais de Cálcio Tipo L , Canais de Cálcio Tipo T , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Xenopus
6.
Redox Biol ; 62: 102712, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116256

RESUMO

Zinc is an important component of cellular antioxidant defenses and dysregulation of zinc homeostasis is a risk factor for coronary heart disease and ischemia/reperfusion injury. Intracellular homeostasis of metals, such as zinc, iron and calcium are interrelated with cellular responses to oxidative stress. Most cells experience significantly lower oxygen levels in vivo (2-10 kPa O2) compared to standard in vitro cell culture (18kPa O2). We report the first evidence that total intracellular zinc content decreases significantly in human coronary artery endothelial cells (HCAEC), but not in human coronary artery smooth muscle cells (HCASMC), after lowering of O2 levels from hyperoxia (18 kPa O2) to physiological normoxia (5 kPa O2) and hypoxia (1 kPa O2). This was paralleled by O2-dependent differences in redox phenotype based on measurements of glutathione, ATP and NRF2-targeted protein expression in HCAEC and HCASMC. NRF2-induced NQO1 expression was attenuated in both HCAEC and HCASMC under 5 kPa O2 compared to 18 kPa O2. Expression of the zinc efflux transporter ZnT1 increased in HCAEC under 5 kPa O2, whilst expression of the zinc-binding protein metallothionine (MT) decreased as O2 levels were lowered from 18 to 1 kPa O2. Negligible changes in ZnT1 and MT expression were observed in HCASMC. Silencing NRF2 transcription reduced total intracellular zinc under 18 kPa O2 in HCAEC with negligible changes in HCASMC, whilst NRF2 activation or overexpression increased zinc content in HCAEC, but not HCASMC, under 5 kPa O2. This study has identified cell type specific changes in the redox phenotype and metal profile in human coronary artery cells under physiological O2 levels. Our findings provide novel insights into the effect of NRF2 signaling on Zn content and may inform targeted therapies for cardiovascular diseases.


Assuntos
Células Endoteliais , Hiperóxia , Humanos , Células Endoteliais/metabolismo , Hiperóxia/metabolismo , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Oxigênio/metabolismo , Zinco/metabolismo
7.
Metallomics ; 14(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36214409

RESUMO

A recent study investigated the impact of glutathione (GSH) on the transfer of zinc (Zn) from proteome to apo-carbonic anhydrase. Here, we probed the requirement of glutathione for zinc trafficking in LLC-PK1 pig kidney epithelial cells. Depletion of GSH by at least 95% left cells viable and able to divide and synthesize Zn-proteins at the control rate over a 48-h period. Loss of GSH stimulated the accumulation of 2.5x the normal concentration of cellular Zn. According to gel filtration chromatography, differential centrifugal filtration, and spectrofluorimetry with TSQ, the extra Zn was distributed between the proteome and metallothionein (MT). To test the functionality of proteome and/or MT as sources of Zn for the constitution of Zn-proteins, GSH-deficient cells were incubated with CaEDTA to isolate them from their normal source of nutrient Zn. Control cells plus CaEDTA stopped dividing; GSH-depleted cells plus CaEDTA continued to divide at ∼40% the rate of GSH deficient cells. Evidently, proteome and/or MT served as a functional source of Zn for generating Zn-proteins. In vitro insertion of Zn bound to proteome into apo-carbonic anhydrase occurred faster at larger concentrations of Zn bound to proteome. These results support the hypothesis that enhanced transport of Zn into cells drives the conversion of apo-Zn-proteins to Zn-proteins by mass action. Similar results were also obtained with human Jurkat T lymphocyte epithelial cells. This study reveals a powerful new model for studying the chemistry of Zn trafficking, including transport processes, involvement of intermediate binding sites, and constitution of Zn-proteins.


Assuntos
Anidrases Carbônicas , Metalotioneína , Humanos , Suínos , Animais , Metalotioneína/metabolismo , Zinco/metabolismo , Proteoma/metabolismo , Glutationa/metabolismo
8.
Biochem Biophys Rep ; 32: 101362, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36204728

RESUMO

Recently, we reported that TMEM163 is a zinc efflux transporter that likely belongs to the mammalian solute carrier 30 (Slc30/ZnT) subfamily of the cation diffusion facilitator (CDF) protein superfamily. We hypothesized that human TMEM163 forms functional heterodimers with certain ZNT proteins based on their overlapping subcellular localization with TMEM163 and previous reports that some ZNT monomers interact with each other. In this study, we heterologously expressed individual constructs with a unique peptide tag containing TMEM163, ZNT1, ZNT2, ZNT3, and ZNT4 (negative control) or co-expressed TMEM163 with each ZNT in cultured cells for co-immunoprecipitation (co-IP) experiments. We also co-expressed TMEM163 with two different peptide tags as a positive co-IP control. Western blot analyses revealed that TMEM163 dimerizes with itself but that it also heterodimerizes with ZNT1, ZNT2, ZNT3, and ZNT4 proteins. Confocal microscopy revealed that TMEM163 and ZNT proteins partially co-localize in cells, suggesting that they exist as homodimers and heterodimers in their respective subcellular sites. Functional zinc flux assays using Fluozin-3 and Newport Green dyes show that TMEM163/ZNT heterodimers exhibit similar efflux function as TMEM163 homodimers. Cell surface biotinylation revealed that the plasma membrane localization of TMEM163 is not markedly influenced by ZNT co-expression. Overall, our results show that the interaction between TMEM163 and distinct ZNT proteins is physiologically relevant and that their heterodimerization may serve to increase the functional diversity of zinc effluxers within specific tissues or cell types.

9.
Neurosci Lett ; 790: 136896, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202195

RESUMO

Zinc, loaded into glutamate-containing presynaptic vesicles and released into the synapse in an activity-dependent manner, modulates neurotransmission through its actions on postsynaptic targets, prominently via high-affinity inhibition of GluN2A-containing NMDA receptors. Recently, we identified a postsynaptic transport mechanism that regulates endogenous zinc inhibition of NMDARs. In this new model of zinc regulation, the postsynaptic transporter ZnT1 mediates zinc inhibition of NMDARs by binding to GluN2A. Through this interaction, ZnT1, a transporter that moves zinc from the cytoplasm to the extracellular domain, generates a zinc microdomain that modulates NMDAR-mediated neurotransmission. As ZnT1 expression is transcriptionally driven by the metal-responsive transcription factor 1 (MTF-1), we found that intracellular zinc strongly drives MTF-1 in cortical neurons in vitro and increases the number of GluN2A-ZnT1 interactions, thereby enhancing tonic zinc inhibition of NMDAR-mediated currents. Importantly, this effect is absent when the interaction between GluN2A and ZnT1 is disrupted by a cell-permeable peptide. These results suggest that zinc-regulated gene expression can dynamically regulate NMDAR-mediated synaptic processes.


Assuntos
Receptores de N-Metil-D-Aspartato , Zinco , Receptores de N-Metil-D-Aspartato/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Sinapses/metabolismo , Ácido Glutâmico/metabolismo , Fatores de Transcrição/metabolismo
10.
Cell Calcium ; 101: 102505, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871934

RESUMO

Zinc transporter 1 (ZnT1; SLC30A1) is present in the neuronal plasma membrane, critically modulating NMDA receptor function and Zn2+ neurotoxicity. The mechanism mediating Zn2+ transport by ZnT1, however, has remained elusive. Here, we investigated ZnT1-dependent Zn2+ transport by measuring intracellular changes of this ion using the fluorescent indicator FluoZin-3. In primary mouse cortical neurons, which express ZnT1, transient addition of extracellular Zn2+ triggered a rise in cytosolic Zn2+, followed by its removal. Knockdown of ZnT1 by adeno associated viral (AAV)-short hairpin RNA (shZnT1) markedly increased rates of Zn2+ rise, and decreased rates of its removal, suggesting that ZnT1 is a primary route for Zn2+ efflux in neurons. Although Zn2+ transport by other members of the SLC30A family is dependent on pH gradients across cellular membranes, altered H+ gradients were not coupled to ZnT1-dependent transport. Removal of cytoplasmic Zn2+, against a large inward gradient during the initial loading phase, suggests that Zn2+ efflux requires a large driving force. We therefore asked if Ca2+ gradients across the membrane can facilitate Zn2+ efflux. Elimination of extracellular Ca2+ abolished Zn2+ efflux, while increased extracellular Ca2+ levels enhanced Zn2+ efflux. Intracellular Ca2+ rises, measured in GCaMP6 expressing neurons, closely paralleled cytoplasmic Zn2+ removal. Taken together, these results strongly suggest that ZnT1 functions as a Zn2+/Ca2+ exchanger, thereby regulating the transport of two ions of fundamental importance in neuronal signaling.


Assuntos
Proteínas de Transporte de Cátions , Animais , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Camundongos , Neurônios/metabolismo , Zinco/metabolismo
11.
Toxics ; 9(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923173

RESUMO

We explored the potential role of zinc (Zn) and zinc transporters in protection against cytotoxicity of cadmium (Cd) in a cell culture model of human urothelium, named UROtsa. We used real-time qRT-PCR to quantify transcript levels of 19 Zn transporters of the Zrt-/Irt-like protein (ZIP) and ZnT gene families that were expressed in UROtsa cells and were altered by Cd exposure. Cd as low as 0.1 µM induced expression of ZnT1, known to mediate efflux of Zn and Cd. Loss of cell viability by 57% was seen 24 h after exposure to 2.5 µM Cd. Exposure to 2.5 µM Cd together with 10-50 µM Zn prevented loss of cell viability by 66%. Pretreatment of the UROtsa cells with an inhibitor of glutathione biosynthesis (buthionine sulfoximine) diminished ZnT1 induction by Cd with a resultant increase in sensitivity to Cd cytotoxicity. Conversely, pretreatment of UROtsa cells with an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (aza-dC) did not change the extent of ZnT1 induction by Cd. The induced expression of ZnT1 that remained impervious in cells treated with aza-dC coincided with resistance to Cd cytotoxicity. Therefore, expression of ZnT1 efflux transporter and Cd toxicity in UROtsa cells could be modulated, in part, by DNA methylation and glutathione biosynthesis. Induced expression of ZnT1 may be a viable mechanistic approach to mitigating cytotoxicity of Cd.

12.
Mol Imaging Biol ; 23(2): 230-240, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33140261

RESUMO

PURPOSE: We have previously demonstrated by MRI that high glucose stimulates efflux of zinc ions from the prostate. To our knowledge, this phenomena had not been reported previously and the mechanism remains unknown. Here, we report some initial observations that provide new insights into zinc processing during glucose-stimulated zinc secretion (GSZS) in the immortalized human prostate epithelial cell line, PNT1A. Additionally, we identified the subtypes of zinc-containing cells in human benign prostatic hyperplasia (BPH) tissue to further identify which cell types are likely responsible for zinc release in vivo. PROCEDURE: An intracellular fluorescence marker, FluoZin-1-AM, was used to assess the different roles of ZnT1 and ZnT4 in zinc homeostasis in wild type (WT) and mRNA knockdown PNT1A cell lines. Additionally, Bafilomycin A1 (Baf) was used to disrupt lysosomes and assess the role of lysosomal storage during GSZS. ZIMIR, an extracellular zinc-responsive fluorescent marker, was used to assess dynamic zinc efflux of WT and ZnT1 mRNA knockdown cells exposed to high glucose. Electron microscopy was used to assess intracellular zinc storage in response to high glucose and evaluate how Bafilomycin A1 affects zinc trafficking. BPH cells were harvested from transurtheral prostatectomy tissue and stained with fluorescent zinc granule indicator (ZIGIR), an intracellular zinc-responsive fluorescent marker, before being sorted for cell types using flow cytometry. RESULTS: Fluorescent studies demonstrate that ZnT1 is the major zinc efflux transporter in prostate epithelial cells and that loss of ZnT1 via mRNA knockdown combined with lysosomal storage disruption results in a nearly 4-fold increase in cytosolic zinc. Knockdown of ZnT1 dramatically reduces zinc efflux during GSZS. Electron microscopy (EM) reveals that glucose stimulation significantly increases lysosomal storage of zinc; disruption of lysosomes via Baf or ZnT4 mRNA knockdown increases multi-vesicular body (MVB) formation and cytosolic zinc levels. In human BPH tissue, only the luminal epithelial cells contained significant amounts of zinc storage granules. CONCLUSIONS: Exposure of prostate epithelial cells to high glucose alters zinc homeostasis by inducing efflux of zinc ions via ZnT1 channels and increasing lysosomal storage via ZnT4. Given that prostate cancer cells undergo profound metabolic changes that result in reduced levels of total zinc, understanding the complex interplay between glucose exposure and zinc homeostasis in the prostate may provide new insights into the development of prostate carcinogenesis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Células Epiteliais/metabolismo , Glucose/administração & dosagem , Próstata/metabolismo , Zinco/metabolismo , Animais , Linhagem Celular , Células Epiteliais/patologia , Humanos , Masculino , Próstata/patologia , Edulcorantes/farmacologia
13.
Biochem Biophys Res Commun ; 533(4): 1004-1011, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33012507

RESUMO

Zinc is an essential trace element and participates in a variety of biological processes. ZnT (SLC30) family members are generally responsible for zinc efflux across the membrane regulating zinc homeostasis. In mammals, the only predominantly plasma membrane resident ZnT has been reported to be ZnT1, and ZnT1-/ZnT1- mice die at the embryonic stage. In Drosophila, knock down of ZnT1 homologue (dZnT1//ZnT63C/CG17723) results in growth arrest under zinc-limiting conditions. To investigate the essentiality of dZnT1 for zinc homeostasis, as well as its role in dietary zinc uptake especially under normal physiological conditions, we generated dZnT1 mutants by the CRISPER/Cas9 method. Homozygous mutant dZnT1 is lethal, with substantial zinc accumulation in the iron cell region, posterior midgut as well as gastric caeca. Expression of human ZnT1 (hZnT1), in the whole body or in the entire midgut, fully rescued the dZnT1 mutant lethality, whereas tissue-specific expression of hZnT1 in the iron cell region and posterior midgut partially rescued the developmental defect of the dZnT1 mutant. Supplementation of zinc together with clioquinol or hinokitiol conferred a limited but observable rescue upon dZnT1 loss. Our work demonstrated the absolute requirement of dZnT1 in Drosophila survival and indicated that the most essential role of dZnT1 is in the gut.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Zinco/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Dieta , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Técnicas de Silenciamento de Genes , Genes de Insetos , Humanos , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Masculino , Mutação , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oligoelementos/administração & dosagem , Oligoelementos/metabolismo , Oligoelementos/farmacocinética , Zinco/administração & dosagem , Zinco/farmacocinética
14.
Biol Trace Elem Res ; 194(2): 360-367, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31325026

RESUMO

Bone is a passive storage organ for zinc, which contains about 30% of the total body zinc. However, during extreme zinc deficiency, only a small fraction of zinc is released in contrast to other tissues where zinc is released like monocytes or conserved, e.g., skeletal muscle. Zinc plays an important role in bone tissue remodeling. Zinc homeostasis is regulated by several zinc transporters (ZnTs) and importers (ZIPs), but their expression dynamics concerning zinc status of bone cells is not well understood. The study aimed to elucidate the effects of zinc supplementation and depletion on the transcript levels of various zinc transporters. Saos-2, a human osteoblastic cell line, was used as representative bone tissue. Zinc sulfate was used for simulating sufficient zinc status whereas TPEN, a zinc chelator, was used to simulate zinc-deficient state. Expression of various transcripts was measured by qRT-PCR. Subcellular localization of ZnT-1 was carried out by immunofluorescent microscopy, and Western Blotting was carried out to measure the expression of ZnT-1 at the protein level. Among the export transporters the transcript levels of MT, ZnT-1 showed higher levels in zinc sufficient and lower levels in TPEN treated cells. Expression of ZnT-4 was decreased under both the conditions. ZIP-6 and ZIP-13 were downregulated in zinc sufficiency, and ZIP-10 upregulated probably to prevent an excess zinc accumulation in bone cells. Further, ZnT-1 was found to be localized in the nuclear region of SaOS-2 cells. ZnT-1, ZnT-4, ZIP-6, ZIP-11, ZIP-10, and ZIP-13 along with MT may be responsible for maintaining bone zinc homeostasis.


Assuntos
Osteossarcoma , Zinco , Proteínas de Transporte , Suplementos Nutricionais , Regulação da Expressão Gênica , Humanos , Osteossarcoma/genética , Zinco/metabolismo , Zinco/farmacologia
15.
J Nutr Sci Vitaminol (Tokyo) ; 66(Supplement): S304-S307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33612614

RESUMO

Zinc deficiency is rapidly emerging as one of the important concerns in public health nutrition. Early diagnosis of zinc deficiency remains a major challenge. We investigated the expression level of different zinc transporters in zinc-deficient condition induced by TPEN, an intracellular zinc chelator in different cell lines like human monocyte (THP-1), skeletal muscle (RD), bone (Saos-2), liver (HepG2), representing different tissues which play key roles in zinc homeostasis. Cells were exposed to TPEN at various concentrations (2, 5, 10 µM) for 2 to12 h and mRNA levels of ZnT1 and MT were analyzed using qPCR. Statistical analysis was carried out using one-way ANOVA. ZnT1 expression was significantly different at 4 h with TPEN concentration of 2 µM and 5 µM as compared to untreated controls in THP-1, whereas in HepG2, significant differences were observed at 5 µM and 10 µM TPEN concentration after 6 h. In RD, significant differences were observed at 4 h in presence of 2 µM TPEN and in Saos2 expression was significantly different at 2 h with 2 µM, 5 µM, and 10 µM TPEN as compared to respective controls. Expression of MT in THP1 was significantly different at 2 h and 12 h control in presence of 2 µM, 5 µM and 10 µM TPEN, whereas in HepG2 significant differences were found at 2 µM, 5 µM, and 10 µM TPEN after 6 h of treatment. RD MT expression was significantly different in 10 µM for 12 h. Similarly, Saos2 expression was significantly different in the presence of 5 µM and 10 µM TPEN. Conclusions: This study may help in understanding the molecular cross talks among different zinc tissue storage depots during zinc deficiency and identification of early biomarkers for zinc deficiency.


Assuntos
Proteínas de Transporte de Cátions , Etilenodiaminas , Zinco , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Etilenodiaminas/farmacologia , Humanos , RNA Mensageiro
16.
Hum Reprod ; 34(11): 2129-2143, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31713610

RESUMO

STUDY QUESTION: Does maternal smoking in early pregnancy affect metallothionein 1 and 2 (MT1 and MT2) mRNA and protein expression in first trimester placenta or embryonic/fetal liver? SUMMARY ANSWER: In the first trimester, MT protein expression is seen only in liver, where smoking is associated with a significantly reduced expression. WHAT IS KNOWN ALREADY: Zinc homeostasis is altered by smoking. Smoking induces MT in the blood of smokers properly as a result of the cadmium binding capacities of MT. In term placenta MT is present and smoking induces gene and protein expression (MT2 in particular), but the MT presence and response to smoking have never been examined in first trimester placenta or embryonic/fetal tissues. STUDY DESIGN, SIZE, DURATION: Cross sectional study where the presence of MT mRNA and protein was examined at the time of the abortion. The material was collected with informed consent after surgical intervention and frozen immediately. For protein expression analysis, liver tissue originating from smoking exposed n = 10 and unexposed n = 12 pregnancies was used. For mRNA expression analyses, placental tissue originating from smokers n = 19 and non-smokers n = 23 and fetal liver tissue from smoking exposed n = 16 and smoking unexposed pregnancies n = 13, respectively, were used. PARTICIPANTS/MATERIALS, SETTING, METHODS: Tissues were obtained from women who voluntarily and legally chose to terminate their pregnancy between gestational week 6 and 12. Western blot was used to determine the protein expression of MT, and real-time PCR was used to quantify the mRNA expression of MT2A and eight MT1 genes alongside the expression of key placental zinc transporters: zinc transporter protein-1 (ZNT1), Zrt-, Irt-related protein-8 and -14 (ZIP8 and ZIP14). MAIN RESULTS AND THE ROLE OF CHANCE: A significant reduction in the protein expression of MT1/2 in liver tissue (P = 0.023) was found by western blot using antibodies detecting both MT forms. Overall, a similar tendency was observed on the mRNA level although not statistically significant. Protein expression was not present in placenta, but the mRNA regulation suggested a down regulation of MT as well. A suggested mechanism based on the known role of MT in zinc homeostasis could be that the findings reflect reduced levels of easily accessible zinc in the blood of pregnant smokers and hence a reduced MT response in smoking exposed fetal/embryonic tissues. LIMITATIONS AND REASONS FOR CAUTION: Smoking was based on self-reports; however, our previous studies have shown high consistency regarding cotinine residues and smoking status. Passive smoking could interfere but was found mainly among smokers. The number of fetuses was limited, and other factors such as medication and alcohol might affect the findings. Information on alcohol was not consistently obtained, and we cannot exclude that it was more readily obtained from non-users. In the study, alcohol consumption was reported by a limited number (less than 1 out of 5) of women but with more smokers consuming alcohol. However, the alcohol consumption reported was typically limited to one or few times low doses. The interaction between alcohol and smoking is discussed in the paper. Notably we would have liked to measure zinc status to test our hypothesis, but maternal blood samples were not available. WIDER IMPLICATIONS OF THE FINDINGS: Zinc deficiency-in particular severe zinc deficiency-can affect pregnancy outcome and growth. Our findings indicate that zinc homeostasis is also affected in early pregnancy of smokers, and we know from pilot studies that even among women who want to keep their babies, the zinc status is low. Our findings support that zinc supplements should be considered in particular to women who smoke. STUDY FUNDING/COMPETING INTEREST(S): We thank the Department of Biomedicine for providing laboratory facilities and laboratory technicians and the Lundbeck Foundation and Læge Sofus Carl Emil Friis og Hustru Olga Doris Friis Legat for financial support. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fígado/enzimologia , Exposição Materna , Metalotioneína/metabolismo , Fumar/efeitos adversos , Zinco/sangue , Aborto Induzido , Estudos Transversais , Dinamarca , Suplementos Nutricionais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fígado/embriologia , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez
17.
Onco Targets Ther ; 11: 8695-8704, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584327

RESUMO

BACKGROUND: At present, the molecular genetics of the development and progression of bladder cancer are still unclear. In recent years, the pathological relevance and significance of microRNAs (miRNAs) in bladder cancer have attracted increasing attention. METHODS: The expressions of miR-411 and zinc transporter 1 (ZnT1) in bladder cancer were determined by western blot and real-time PCR. Biological software, luciferase reporter gene, Western blot and real-time PCR were used to determine the regulatory effect of miR-411 on ZnT1. MTT and transwell were used to confirm the regulatory effect of miR-411 on bladder cancer cells. MTT and transwell were used to find how miR-411 modulated the biological activity of bladder cancer cells by regulating ZnT1. RESULTS: The expression of miR-411 was low in bladder cancer and was negatively correlated with ZnT1. MiR-411 can inhibit the activity and the expression of ZnT1. MiR-411 can inhibit the growth and metastasis of bladder cancer cells. MiR-411 inhibited the growth and metastasis of bladder cancer cells by targeting ZnT1. CONCLUSION: The miR-411 target ZnT1 may provide a potential therapeutic target for the treatment of bladder cancer.

18.
Artigo em Inglês | MEDLINE | ID: mdl-28303117

RESUMO

Polycystic ovary syndrome (PCOS) is associated with infertility, increased androgen levels, and insulin resistance. In adipose tissue, zinc facilitates insulin signaling. Circulating zinc levels are altered in obesity, diabetes, and PCOS; and zinc supplementation can ameliorate metabolic disturbances in PCOS. In adipose tissue, expression of zinc influx transporter ZIP14 varies with body mass index (BMI), clinical markers of metabolic syndrome, and peroxisome proliferator-activated receptor gamma (PPARG). In this study, we investigated expression levels of ZIP14 and PPARG in subcutaneous adipose tissue of 36 PCOS women (17 lean and 19 obese women) compared with 23 healthy controls (7 lean and 16 obese women). Further, expression levels of zinc transporter ZIP9, a recently identified androgen receptor, and zinc efflux transporter ZNT1 were investigated, alongside lipid profile and markers of glucose metabolism [insulin degrading enzyme, retinol-binding protein 4 (RBP4), and glucose transporter 4 (GLUT4)]. We find that ZIP14 expression is reduced in obesity and positively correlates with PPARG expression, which is downregulated with increasing BMI. ZNT1 is upregulated in obesity, and both ZIP14 and ZNT1 expression significantly correlates with clinical markers of altered glucose metabolism. In addition, RBP4 and GLUT4 associate with obesity, but an association with PCOS as such was present only for PPARG and RBP4. ZIP14 and ZNT1 does not relate to clinical androgen status and ZIP9 is unaffected by all parameters investigated. In conclusion, our findings support the existence of a zinc dyshomeostasis in adipose tissue in metabolic disturbances including PCOS-related obesity.

19.
Mol Cell Neurosci ; 68: 186-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26253862

RESUMO

The cellular prion protein has been identified as a metalloprotein that binds copper. There have been some suggestions that prion protein also influences zinc and manganese homeostasis. In this study we used a series of cell lines to study the levels of zinc and manganese under different conditions. We overexpressed either the prion protein or known transporters for zinc and manganese to determine relations between the prion protein and both manganese and zinc homeostasis. Our observations supported neither a link between the prion protein and zinc metabolism nor any effect of altered zinc levels on prion protein expression or cellular infection with prions. In contrast we found that a gain of function mutant of a manganese transporter caused reduction of manganese levels in prion infected cells, loss of observable PrP(Sc) in cells and resistance to prion infection. These studies strengthen the link between manganese and prion disease.


Assuntos
ATPases Transportadoras de Cálcio/genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Príons/metabolismo , Animais , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endopeptidase K/farmacologia , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Zinco/metabolismo , Fator MTF-1 de Transcrição
20.
J Neurochem ; 132(2): 159-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25319628

RESUMO

Zinc (Zn(2+) ) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn(2+) homeostasis is critical and involves different classes of molecules, including Zn(2+) transporters. The ubiquitous Zn(2+) transporter-1 (ZNT-1) is a transmembrane protein that pumps cytosolic Zn(2+) to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT-1 interacts with GluN2A-containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT-1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two-hybrid screening, coimmunoprecipitation experiments and clustering assay in COS-7 cells demonstrated that ZNT-1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull-down assays indicated GluN2A(1390-1464) domain as necessary for the binding to ZNT-1. Most importantly, ZNT-1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT-1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD-95 clusters and GluN2A surface levels, supporting the involvement of ZNT-1 in the dynamics of excitatory PSD. Zn(2+) transporter-1 (ZNT-1) pumps cytosolic Zn(2+) to the extracellular space, but its function in the central nervous system is not fully understood. We show that ZNT-1 interacts with GluN2A-containing NMDA receptors at the glutamatergic synapse. Most importantly, ZNT-1/GluN2A complex is regulated by induction of synaptic plasticity. Modulation of ZNT-1 expression in hippocampal neurons determined a shrinkage of dendritic spines and a reduction of GluN2A surface levels supporting the involvement of ZNT-1 in the dynamics of the excitatory synapse.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Transporte de Íons , Masculino , Plasticidade Neuronal , Gravidez , Cultura Primária de Células , Mapeamento de Interação de Proteínas , Ratos , Ratos Sprague-Dawley , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA