Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.759
Filtrar
1.
J Gen Psychol ; : 1-22, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733318

RESUMO

A considerable amount of research has revealed that there exists an evolutionary mismatch between ancestral environments and conditions following the rise of agriculture regarding the contact between humans and animal reservoirs of infectious diseases. Based on this evolutionary mismatch framework, we examined whether visual attention exhibits adaptive attunement toward animal targets' pathogenicity. Consistent with our predictions, faces bearing heuristic infection cues held attention to a greater extent than did animal vectors of zoonotic infectious diseases. Moreover, the results indicated that attention showed a specialized vigilance toward processing facial cues connoting the presence of infectious diseases, whereas it was allocated comparably between animal disease vectors and disease-irrelevant animals. On the other hand, the pathogen salience manipulation employed to amplify the participants' contextual-level anti-pathogen motives did not moderate the selective allocation of attentional resources. The fact that visual attention seems poorly equipped to detect and encode animals' zoonotic transmission risk supports the idea that our evolved disease avoidance mechanisms might have limited effectiveness in combating global outbreaks originating from zoonotic emerging infectious diseases.

2.
Funct Integr Genomics ; 24(3): 92, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733534

RESUMO

In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.


Assuntos
Evolução Molecular , Variação Genética , Filogenia , Infecções por Rotavirus , Rotavirus , Rotavirus/genética , Rotavirus/classificação , Brasil , Humanos , Infecções por Rotavirus/virologia , Genótipo , Animais
3.
BMC Infect Dis ; 24(1): 491, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745172

RESUMO

Brucellosis, a zoonotic disease caused by Brucella species, poses a significant global health concern. Among its diverse clinical manifestations, neurobrucellosis remains an infrequent yet debilitating complication. Here, we present a rare case of neurobrucellosis with unusual presentations in a 45-year-old woman. The patient's clinical course included progressive lower extremity weakness, muscle wasting, and double vision, prompting a comprehensive diagnostic evaluation. Notable findings included polyneuropathy, elevated brucella agglutination titers in both cerebrospinal fluid and blood, abnormal EMG-NCV tests, and resolving symptoms with antibiotic therapy. The clinical presentation, diagnostic challenges, and differentiation from other neurological conditions are discussed. This case underscores the importance of considering neurobrucellosis in regions where brucellosis is prevalent and highlights this rare neurological complication's distinctive clinical and radiological features. Early recognition and appropriate treatment are crucial to mitigate the significant morbidity associated with neurobrucellosis.


Assuntos
Brucelose , Polirradiculoneuropatia , Humanos , Feminino , Brucelose/diagnóstico , Brucelose/complicações , Brucelose/tratamento farmacológico , Pessoa de Meia-Idade , Polirradiculoneuropatia/diagnóstico , Polirradiculoneuropatia/microbiologia , Antibacterianos/uso terapêutico , Brucella/isolamento & purificação
5.
Appl Environ Microbiol ; : e0229723, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722170

RESUMO

Salmonella Typhimurium is a zoonotic pathogen that poses a major threat to public health. This generalist serotype can be found in many hosts and the environment where varying selection pressures may result in the accumulation of antimicrobial resistance determinants. However, the transmission of this serotype between food-producing hosts, specifically between poultry layer flocks and nearby dairy herds, was never demonstrated. We investigated an outbreak at a dairy in Israel to determine the role of nearby poultry houses to be sources of infection. The 2-month outbreak resulted in a 47% mortality rate among 15 calves born in that period. Routine treatment of fluid therapy, a nonsteroidal anti-inflammatory, and cefquinome was ineffective, and control was achieved by the introduction of vaccination of dry cows against Salmonella (Bovivac S, MSD Animal Health) and a strict colostrum regime. Whole genome sequencing and antimicrobial sensitivity tests were performed on S. Typhimurium strains isolated from the dairy (n = 4) and strains recovered from poultry layer farms (n = 10). We identified acquired antimicrobial-resistant genes, including the blaCTX-M-55 gene, conferring resistance to extended-spectrum cephalosporins, which was exclusive to dairy isolates. Genetic similarity with less than five single nucleotide polymorphism differences between dairy and poultry strains suggested a transmission link. This investigation highlights the severe impact of S. Typhimurium on dairy farms and the transmission risk from nearby poultry farms. The accumulation of potentially transferable genes conferring resistance to critically important antimicrobials underscores the increased public health risk associated with S. Typhimurium circulation between animal hosts.IMPORTANCESalmonella Typhimurium is one of the major causes of food-borne illness globally. Infections may result in severe invasive disease, in which antimicrobial treatment is warranted. Therefore, the emergence of multi-drug-resistant strains poses a significant challenge to successful treatment and is considered one of the major threats to global health. S. Typhimurium can be found in a variety of animal hosts and environments; however, its transmission between food-producing animals, specifically poultry layers flocks and dairy herds, was never studied. Here, we demonstrate the transmission of the pathogen from poultry to a nearby dairy farm. Alarmingly, the multi-drug-resistant strains collected during the outbreak in the dairy had acquired resistance to extended-spectrum cephalosporins, antibiotics critically important in treating Salmonellosis in humans. The findings of the study emphasize the increased risk to public health posed by zoonotic pathogens' circulation between animal hosts.

6.
Prev Vet Med ; 227: 106211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691954

RESUMO

Sporotrichosis is a widespread fungal infection that affects skin and subcutaneous tissues in humans and animals. In cats, it is displayed as nodules, ulcers and lesions on the nasal and respiratory mucosa. Antifungal treatment of cats is crucial but many cases are difficult, thus resulting in discontinue of the treatment, with disastrous consequences for the animal, encouraging contamination of the environment, other animals and people. The effects of responsible ownership education and health education for owners of cats with feline sporotrichosis as well as the interval between veterinary consultations on treatment outcomes for three groups of owners and their pet cats were evaluated in this study. The responsible ownership education and health education strategies consisted in videos in easy and accessible language for people with any level of education and were presented during consultations for two of the three groups included. The time between appointments was two weeks for two of the groups, and four weeks for one of the groups. The median of treatment time for the group without educational activities was 138 days, while for the other two groups it was 77.5 days and 86 days. It was found a significative reduction in the treatment time in the groups exposed to Responsible ownership education videos. There was no contamination of those responsible for home treatment, and the interval between monthly appointments did not impact on cure or death rates compared to the interval between fortnightly appointments. All these results can be applied to feline sporotrichoses treatment protocols increasing the owners treatment adherence and reducing either, the treatment discontinuation and the treatment costs and helps to control zoonotic sporotrichosis. The importance of attractive and comprehensible educational strategies as part of the feline sporotrichosis treatment protocol for the promotion of one health was highlighted.


Assuntos
Doenças do Gato , Educação em Saúde , Propriedade , Esporotricose , Animais , Gatos , Doenças do Gato/terapia , Doenças do Gato/prevenção & controle , Doenças do Gato/microbiologia , Esporotricose/veterinária , Esporotricose/tratamento farmacológico , Esporotricose/prevenção & controle , Esporotricose/terapia , Humanos , Feminino , Masculino , Antifúngicos/uso terapêutico
7.
Heliyon ; 10(9): e29785, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699006

RESUMO

Bats are a significant reservoir for numerous pathogens, including Bartonella spp. It is one of the emerging zoonotic bacterial diseases that can be transmitted to humans and may cause various unspecific clinical manifestations. Thus, bartonellosis is rarely diagnosed and is regarded as a neglected vector-borne disease (VBD). Bat flies have been hypothesised to be a vector in the transmission of pathogens among bats. They are host-specific, which reduces the likelihood of pathogen transmission across bat species; however, they are likely to maintain high pathogen loads within their host species. To explore the presence of Bartonella spp. in bat flies from Peninsular Malaysia; bat fly samples collected from various sites at the east coast states were subjected to molecular detection for Bartonella spp. It was discovered that 38.7 % of bats from Terengganu and Kelantan were infested with bat flies; however, no bat fly was found in bats collected from Pahang. The collected bat flies belonged to the families Nycteribiidae (79.6 %) and Streblidae (20.4 %). The collected bat flies were pooled according to the locations and species into 39 pools. Out of these 39 pools, 66.7 % (n = 26) were positive for Bartonella spp. by PCR. Sequence analyses of five randomly selected PCR-positive pools revealed that pools from Kelantan (n = 3) have the closest sequence identities (99 %) to Bartonella spp. strain Lisso-Nig-922 from Nigeria. However, the other pools from Terengganu (n = 2) were closely related to Bartonella spp. strain KP277 from Thailand and Bartonella spp. strain Rhin-3 from the Republic of Georgia with 99 % and 100 % sequence identity, respectively. This suggests that the Bartonella spp. found in Malaysian bat flies are genetically diverse and can potentially serve as reservoirs for pathogenic Bartonella spp.

8.
One Health ; 18: 100721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699437

RESUMO

Introduction: Literacy about zoonoses can contribute people adapt their behaviour to minimize zoonotic risks. In this study, associations between sociodemographic factors and zoonotic risk-averse attitudes were explored. Objective: To determine factors significantly associated with literacy about zoonoses across sociodemographic groups to inform targeted interventions aiming at improving awareness and zoonotic risk-avoidance behaviours. Method: Data was collected in 2022 using an online survey of a nationally representative sample of residents in the Netherlands. A multivariable logistic regression analysis, accounting for multiple hypothesis testing, was applied to assess whether there were significant associations between socio-demographic factors and attitudes towards zoonosis prevention. Results: A total of 2039 respondents completed the survey. People who were female, older, highly educated and those who searched for information about zoonoses, were relatively more likely to report behaviours favourable to the prevention of zoonoses. However, people with limited language and computer skills and immunocompromised people were significantly more likely to report risky behaviours. There were no significant associations found for pregnant women, dog and cat owners, those with an intermediate level of education and those who do have contact with farm animals. Conclusion: Certain sociodemographic groups display significantly riskier attitudes towards zoonoses. These groups provide targets where to improve literacy about zoonoses. This also implies that there is room for improvement in literacy about zoonoses, particularly among immunocompromised people and people with limited language and limited computer skills.

9.
One Health ; 18: 100742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711480

RESUMO

Raccoon roundworm, Baylisascaris procyonis, is a zoonotic parasite of raccoons (Procyon lotor) that needs a One Health approach to better inform risks to human and animal health. The few studies on B. procyonis in wild rodents have primarily focused on white-footed mice (Peromyscus leucopus). This study aimed to determine the prevalence and rodent host range of B. procyonis in Georgia (USA) and investigate differences in prevalence at urban/fragmented sites and rural/agriculture sites. We sampled 99 rodents of five species. Larvae were recovered from seven of 78 (9.0%) white-footed mice with a mean of 4.4 larvae (range 1-12). One mouse had a single larva in the brain. Prevalence was not different between urban and rural sites. This report extends the geographic range of this parasite and confirms that rodents serve as paratenic hosts in the southern range. Therefore, baylisascariasis should be considered a differential for neurologic domestic animals, wildlife, or people in this region.

10.
Acta Trop ; : 107249, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740319

RESUMO

BACKGROUND: Natural human infections by Plasmodium cynomolgi and P. inui have been reported recently and gain the substantial attention from Southeast Asian countries. Zoonotic transmission of non-human malaria parasites to humans from macaque monkeys occurred through the bites of the infected mosquitoes. The objective of this study is to establish real-time fluorescence loop-mediated isothermal amplification (LAMP) assays for the detection of zoonotic malaria parasites by combining real-time fluorescent technology with the isothermal amplification technique. METHODS: By using 18S rRNA as the target gene, the primers for P. cynomolgi, P. coatneyi and P. inui were newly designed in the present study. Four novel real-time fluorescence LAMP assays were developed for the detection of P. cynomolgi, P. coatneyi, P. inui and P. knowlesi. The entire amplification process was completed in 60 minutes, with the assays performed at 65°C. By using SYTO-9 as the nucleic acid intercalating dye, the reaction was monitored via real-time fluorescence signal. RESULTS: There was no observed cross-reactivity among the primers from different species. All 70 field-collected monkey samples were successfully amplified by real-time fluorescence LAMP assays. The detection limit for P. cynomolgi, P. coatneyi and P. knowlesi was 5 × 109 copies/µL. Meanwhile, the detection limit of P. inui was 5 × 1010 copies/µL. CONCLUSION: This is the first report of the detection of four zoonotic malaria parasites by real-time fluorescence LAMP approaches. It is an effective, rapid and simple-to-use technique. This presented platform exhibits considerable potential as an alternative detection for zoonotic malaria parasites.

11.
Pathogens ; 13(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668237

RESUMO

Cercarial dermatitis (CD), or "Swimmer's itch" as it is also known, is a waterborne illness caused by a blood fluke from the family Schistosomatidae. It occurs when cercariae of trematode species that do not have humans as their definitive host accidentally penetrate human skin (in an aquatic environment) and trigger allergic symptoms at the site of contact. It is an emerging zoonosis that occurs through water and is often overlooked during differential diagnosis. Some of the factors contributing to the emergence of diseases like CD are related to global warming, which brings about climate change, water eutrophication, the colonization of ponds by snails susceptible to the parasite, and sunlight exposure in the summer, associated with migratory bird routes. Therefore, with the increase in tourism, especially at fluvial beaches, it is relevant to analyze the current epidemiological scenario of CD in European countries and the potential regions at risk.

12.
Pathogens ; 13(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668283

RESUMO

Ferrets are highly susceptible to a wide range of mycobacteria, mainly M. bovis, M. avium, and M. triplex. Therefore, ferrets pose a risk of transmission of mycobacteriosis, especially zoonotically relevant tuberculosis. The aim of this study was to describe the findings of M. xenopi mycobacteriosis in a pet ferret and emphasize its zoonotic potential. A pet ferret had a history of weight loss, apathy, hyporexia, and hair loss. Abdominal ultrasound revealed splenomegaly with two solid masses and cystic lesions of the liver. Fine-needle aspiration cytology revealed numerous acid-fast bacilli in epithelioid cells, thus leading to the suspicion of mycobacterial infection. Because of its poor general condition, the ferret was euthanized. Necropsy examination revealed generalized granulomatous lymphadenitis, pneumonia, myocarditis, splenitis, and hepatitis. Histologically, in all organs, there were multifocal to coalescing areas of inflammatory infiltration composed of epithelioid macrophages, a low number of lymphocytes, and plasma cells, without necrosis nor multinucleated giant cells. Ziehl-Neelsen staining detected the presence of numerous (multibacillary) acid-fast bacteria, which were PCR-typed as M. xenopi. This is the first study showing the antimicrobial susceptibility testing of M. xenopi in veterinary medicine, describing the resistance to doxycycline. Overall, our results could facilitate further diagnosis and provide guidelines for the treatment protocols for such infections.

13.
Vet Sci ; 11(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38668429

RESUMO

Ectoparasite infestations are one of the major problems affecting goat and sheep farming. Disease resulting from these infestations can cause changes in physical appearance, such as severe lesions on the skin, and economic consequences in the form of significantly reduced selling prices. This study aimed to determine the prevalence of ectoparasites in the Boyolali district, Central Java, Indonesia. A total of 651 sheep and goats were surveyed in this study. The parasites were collected via skin scraping, twister, or manually from clinically infected goats and sheep in traditional farms. All of the ectoparasites collected were successfully identified. The prevalence of ectoparasites in ruminants in Boyolali was 97.8% (637/651). The species make-up was as follows: Bovicola caprae 97.8% (637/651), Linognathus africanus 39% (254/651), Haemaphysalis bispinosa 3.5% (23/651), Ctenocephalides spp. 0.2% (1/651), and Sarcoptes scabiei 5.2% (34/651). The predilection sites were in the face, ear, and leg areas, and in the axillary, dorsal, abdomen, and scrotum regions of the surveyed animals. An evaluation of farmers' attitudes to ectoparasites was performed using a questionnaire. The findings of this study imply that animals in the investigated area are highly exposed to ectoparasite infestations. Given the importance of ectoparasites in both livestock and human communities, specifically in the health domain, more research into appropriate control strategies is necessary.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38686950

RESUMO

AIMS: Contact with backyard poultry (i.e., privately-owned, non-commercial poultry) was first associated with a multistate outbreak of salmonellosis in 1955. In recent years, backyard poultry-associated salmonellosis outbreaks have caused more illnesses in the United States than salmonellosis outbreaks linked to any other type of animal. Here, we describe the epidemiology of outbreaks from 2015-2022 to inform prevention efforts. METHODS AND RESULTS: During 2015-2022, there were 88 multistate backyard poultry-associated salmonellosis outbreaks and 7866 outbreak-associated illnesses caused by 21 different Salmonella serotypes. Salmonella Enteritidis accounted for the most outbreaks (n = 21) and illnesses (n = 2400) of any serotype. Twenty-four percent (1840/7727) of patients with available information were <5 years of age. In total, 30% (1710/5644) of patients were hospitalized, and nine deaths were attributed to Salmonella infection. Throughout this period, patients reported behaviours that have a higher risk of Salmonella transmission, including kissing or snuggling poultry or allowing poultry inside their home. CONCLUSIONS: Despite ongoing efforts to reduce the burden of salmonellosis associated with backyard poultry, outbreak-associated illnesses have nearly tripled and hospitalizations more than quadrupled compared with those in 1990-2014. Because this public health problem is largely preventable, government officials, human and veterinary healthcare providers, hatcheries, and retailers might improve the prevention of illnesses by widely disseminating health and safety recommendations to the public and by continuing to develop and implement prevention measures to reduce zoonotic transmission of Salmonella by backyard poultry.

15.
Microbiol Spectr ; : e0054124, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687062

RESUMO

Lactococcus garvieae is a fish pathogen that can cause diseases in humans and cows. Two genetically related species, Lactococcus formosensis and Lactococcus petauri, may be misidentified as L. garvieae. It is unclear if these species differ in host specificity and virulence genes. This study analyzed the genomes of 120 L. petauri, 53 L. formosensis, and 39 L. garvieae isolates from various sources. The genetic diversity and virulence gene content of these isolates were compared. The results showed that 77 isolates previously reported as L. garvieae were actually L. formosensis or L. petauri. The distribution of the three species varied across different collection sources, with L. petauri being predominant in human infections, human fecal sources, and rainbow trout, while L. formosensis was more common in bovine isolates. The genetic diversity of isolates within each species was high and similar. Using a genomic clustering method, L. petauri, L. formosensis, and L. garvieae were divided into 45, 22, and 13 clusters, respectively. Most rainbow trout and human isolates of L. petauri belonged to different clusters, while L. formosensis isolates from bovine and human sources were also segregated into separate clusters. In L. garvieae, most human isolates were grouped into three clusters that also included isolates from food or other sources. Non-metric multidimensional scaling ordination revealed the differential association of 15 virulence genes, including 14 adherence genes and a bile salt hydrolase gene, with bacterial species and certain collection sources. In conclusion, this work provides evidence of host specificity among the three species. IMPORTANCE: Lactococcus formosensis and Lactococcus petauri are two newly discovered bacteria, which are closely related to Lactococcus garvieae, a pathogen that affects farmed rainbow trout, as well as causes cow mastitis and human infections. It is unclear whether the three bacteria differ in their host preference and the presence of genes that contribute to the development of disease. This study shows that L. formosensis and L. petauri were commonly misidentified as L. garvieae. The three bacteria showed different distribution patterns across various sources. L. petauri was predominantly found in human infections and rainbow trout, while L. formosensis was more commonly detected in cow mastitis. Fifteen genes displayed a differential distribution among the three bacteria from certain sources, indicating a genetic basis for the observed host preference. This work indicates the importance of differentiating the three bacteria in diagnostic laboratories for surveillance and outbreak investigation purposes.

16.
Sci Total Environ ; 931: 172593, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642765

RESUMO

Wastewater surveillance has evolved into a powerful tool for monitoring public health-relevant analytes. Recent applications in tracking severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection highlight its potential. Beyond humans, it can be extended to livestock settings where there is increasing demand for livestock products, posing risks of disease emergence. Wastewater surveillance may offer non-invasive, cost-effective means to detect potential outbreaks among animals. This approach aligns with the "One Health" paradigm, emphasizing the interconnectedness of animal, human, and ecosystem health. By monitoring viruses in livestock wastewater, early detection, prevention, and control strategies can be employed, safeguarding both animal and human health, economic stability, and international trade. This integrated "One Health" approach enhances collaboration and a comprehensive understanding of disease dynamics, supporting proactive measures in the Anthropocene era where animal and human diseases are on the rise.

17.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612650

RESUMO

Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.


Assuntos
Doenças dos Animais , Doença de Chagas , Doenças do Cão , Trypanosoma cruzi , Humanos , Cães , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/veterinária , Animais Domésticos , Doenças do Cão/epidemiologia , Mamíferos
18.
medRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38633782

RESUMO

Background: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/µL for P. knowlesi and 0.002 parasites/µL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/µL); Divis et al. real-time 18S rRNA (0.0002 parasites/µL); Lubis et al. hemi-nested SICAvar (1.1 parasites/µL) and Lee et al. nested 18S rRNA (11 parasites/µL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/µL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

19.
BioTechnologia (Pozn) ; 105(1): 5-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633890

RESUMO

The ever-increasing demand for wildlife-derived raw or processed meat commonly known as bushmeat, has been identified as one of the critical factors driving the emergence of infectious diseases. This study focused on examining the bacterial community composition of smoked and fermented bushmeats, specifically grasscutter, rat, rabbit, and mona monkey. The analysis involved exploring 16Sr RNA amplicon sequences isolated from bushmeat using QIIME2. Microbiome profiles and their correlation with proximate components (PLS regression) were computed in STAMP and XLSTAT, respectively. Results indicate the predominance of Firmicutes (70.9%), Actinobacteria (18.58%), and Proteobacteria (9.12%) in bushmeat samples at the phylum level. Staphylococcus, Arthrobacter, Macrococcus, and Proteus constituted the core microbiomes in bushmeat samples, ranked in descending order. Notably, significant differences were observed between the bacterial communities of bushmeat obtained from omnivores and herbivores (rat and mona monkey, and grasscutter and mona monkey), as well as those with similar feeding habits (rat and monkey, and grasscutter and rabbit) at the family and genus levels. Each type of bushmeat possessed unique microbial diversity, with some proximate components such as fat in rat samples correlating with Staphylococcus, while proteins in Mona monkey correlated with Arthrobacter and Brevibacterium, respectively. The study underscores public health concerns and highlights probiotic benefits, as bushmeat samples contained both pathogenic and beneficial bacteria. Therefore, future research efforts could focus on improving bushmeat quality.

20.
Int J Parasitol Parasites Wildl ; 24: 100935, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38638363

RESUMO

To demonstrate predation and potential impacts of raccoons on various species, a total of 108 raccoons from aquatic-associated nature reserves and natural areas in three federal states of Germany, Hesse (n = 36), Saxony-Anhalt (n = 36) and Brandenburg (n = 36), were investigated from a dietary ecological perspective in the present study. Fecal analyses and stomach content examinations were conducted for this purpose. Additionally, as a supplementary method for analyzing the dietary spectrum of raccoons, the parasite fauna was considered, as metazoan parasites, in particular, can serve as indicators for the species and origin of food organisms. While stomach content analyses allow for a detailed recording of trophic relationships solely at the time of sampling, parasitological examinations enable inferences about more distant interaction processes. With their different developmental stages and heteroxenous life cycles involving specific, sometimes obligate, intermediate hosts, they utilize the food web to reach their definitive host. The results of this study clearly demonstrate that spawning areas of amphibians and reptiles were predominantly utilized as food resources by raccoons in the study areas. Thus, common toad (Bufo bufo), common newt (Lissotriton vulgaris), grass frog (Rana temporaria), and grass snake (Natrix natrix) were identified as food organisms for raccoons. The detection of the parasite species Euryhelmis squamula, Isthmiophora melis, and Physocephalus sexalatus with partially high infestation rates also suggests that both amphibians and reptiles belong to the established dietary components of raccoons from an ecological perspective, as amphibians and reptiles are obligate intermediate hosts in the respective parasitic life cycles of the detected parasites. The study clearly demonstrates that raccoons have a significant impact on occurrence-sensitive animal species in certain areas and, as an invasive species, can exert a negative influence on native species and ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...