Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.756
Filtrar
1.
Pest Manag Sci ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139054

RESUMO

BACKGROUND: The widespread evolution of pesticide resistance poses a significant challenge to current agriculture, necessitating the discovery of molecules with new modes of action. Despite extensive efforts, no major molecules with new modes of action have been commercialized for decades. Most pesticides function by binding to specific pockets on target enzymes, enabling a single target site mutation to confer resistance. An alternative approach is the disruption of protein-protein interactions (PPI), which require complementary mutations on both interacting partners for resistance to occur. Thus, our aim is the discovery and design of small-molecule inhibitors that target the interface of the PPI complex of O-acetylserine sulfhydrylase (OASS) and serine acetyltransferase (SAT), key obligatory interacting plant enzymes involved in the biosynthesis of the amino acid cysteine. RESULTS: By employing in silico filtering techniques on a virtual library of 30 million small molecules, we identified initial hits capable of binding OASS and interfering with its interaction with a peptide derived from SAT with a half-maximal inhibitory concentration (IC50) of 34 µm. Subsequently, we conducted molecular chemical optimizations, generating an early lead molecule (PJ4) with an IC50 value of 4 µm. PJ4 successfully inhibited the germination of Arabidopsis thaliana seedlings and inhibited clover growth in a pre-emergence application at an effective concentration of 4.6 kg ha-1. CONCLUSION: These new compounds described herein can serve as promising leads for further optimization as herbicides with a new mode-of-action. This technology can be used for discovering new modes of action chemicals inhibiting all pest groups. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Front Microbiol ; 15: 1366336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113837

RESUMO

Streptomycetes are well-known antibiotic producers possessing in their genomes numerous silent biosynthetic pathways that might direct the biosynthesis of novel bio-active specialized metabolites. It is thus of great interest to find ways to enhance the expression of these pathways to discover most needed novel antibiotics. In this study, we demonstrated that the over-expression of acetyltransferase SCO0988 up-regulated the production of specialized metabolites and accelerated sporulation of the weak antibiotic producer, Streptomyces lividans and that the deletion of this gene had opposite effects in the strong antibiotic producer, Streptomyces coelicolor. The comparative analysis of the acetylome of a S. lividans strain over-expressing sco0988 with that of the original strain revealed that SCO0988 acetylates a broad range of proteins of various pathways including BldKB/SCO5113, the extracellular solute-binding protein of an ABC-transporter involved in the up-take of a signal oligopeptide of the quorum sensing pathway. The up-take of this oligopeptide triggers the "bald cascade" that regulates positively specialized metabolism, aerial mycelium formation and sporulation in S. coelicolor. Interestingly, BldKB/SCO5113 was over-acetylated on four Lysine residues, including Lys425, upon SCO0988 over-expression. The bald phenotype of a bldKB mutant could be complemented by native bldKB but not by variant of bldKB in which the Lys425 was replaced by arginine, an amino acid that could not be acetylated or by glutamine, an amino acid that is expected to mimic acetylated lysine. Our study demonstrated that Lys425 was a critical residue for BldKB function but was inconclusive concerning the impact of acetylation of Lys425 on BldKB function.

3.
BMC Cancer ; 24(1): 1054, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192221

RESUMO

BACKGROUND: In prior research employing iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) technology, we identified a range of proteins in breast cancer tissues exhibiting high levels of acetylation. Despite this advancement, the specific functions and implications of these acetylated proteins in the context of cancer biology have yet to be elucidated. This study aims to systematically investigate the functional roles of these acetylated proteins with the objective of identifying potential therapeutic targets within breast cancer pathophysiology. METHODS: Acetylated targets were identified through bioinformatics, with their expression and acetylation subsequently confirmed. Proteomic analysis and validation studies identified potential acetyltransferases and deacetylases. We evaluated metabolic functions via assays for catalytic activity, glucose consumption, ATP levels, and lactate production. Cell proliferation and metastasis were assessed through viability, cycle analysis, clonogenic assays, PCNA uptake, wound healing, Transwell assays, and MMP/EMT marker detection. RESULTS: Acetylated proteins in breast cancer were primarily involved in metabolism, significantly impacting glycolysis and the tricarboxylic acid cycle. Notably, PGK1 showed the highest acetylation at lysine 323 and exhibited increased expression and acetylation across breast cancer tissues, particularly in T47D and MCF-7 cells. Notably, 18 varieties acetyltransferases or deacetylases were identified in T47D cells, among which p300 and Sirtuin3 were validated for their interaction with PGK1. Acetylation at 323 K enhanced PGK1's metabolic role by boosting its activity, glucose uptake, ATP production, and lactate output. This modification also promoted cell proliferation, as evidenced by increased viability, S phase ratio, clonality, and PCNA levels. Furthermore, PGK1-323 K acetylation facilitated metastasis, improving wound healing, cell invasion, and upregulating MMP2, MMP9, N-cadherin, and Vimentin while downregulating E-cadherin. CONCLUSION: PGK1-323 K acetylation was significantly elevated in T47D and MCF-7 luminal A breast cancer cells and this acetylation could be regulated by p300 and Sirtuin3. PGK1-323 K acetylation promoted cell glycolysis, proliferation, and metastasis, highlighting novel epigenetic targets for breast cancer therapy.


Assuntos
Neoplasias da Mama , Proliferação de Células , Glicólise , Lisina , Fosfoglicerato Quinase , Humanos , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Quinase/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Acetilação , Lisina/metabolismo , Sirtuína 3/metabolismo , Células MCF-7 , Linhagem Celular Tumoral , Proteômica/métodos , Metástase Neoplásica , Movimento Celular , Regulação Neoplásica da Expressão Gênica
4.
Artigo em Inglês | MEDLINE | ID: mdl-39187010

RESUMO

The classic melatonin biosynthesis pathway (Mel; N-acetyl-5-methoxytryptamine) involves two consecutive enzymatic steps that are decisive in hormone production: conversion of serotonin (5-hydroxytryptamine; 5-HT) to N-acetylserotonin (NAS) and the methylation of the last compound to Mel. This pathway requires the activity of the enzymes: the first is of the category of N-acetyltransferases (AANAT, SNAT, or NAT) and the second is N-acetylserotonin O-methyltransferase (ASMT; also known as HIOMT). However, quite recently, new information has been provided on the possibility of an alternative Mel synthesis pathway; it would include a two-step action by these enzymes, but in reverse order, where ASMT (or ASMTL, the enzyme related to ASMT) methylates 5-HT to 5-methoxytryptamine (5-MT), and then the last compound is acetylated by an enzyme of the category of N-acetyltransferases to Mel. In our study on the activity of enzymes in the Mel biosynthesis pathway in flounder skin, we have found an increase in 5-MT level, as a result of the increase in 5-HT concentration, which is followed by a growing concentration of Mel. However, we have not found any increase in Mel concentration, despite an increase in NAS in the samples. Our data strongly suggest an alternative way of Mel production in flounder skin in which 5-HT is first methylated to 5-MT, which is then acetylated to Mel.

5.
Elife ; 132024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196614

RESUMO

Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of α-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-α-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal α-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in the HGSNAT-catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.


Assuntos
Microscopia Crioeletrônica , Humanos , Acetiltransferases/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Conformação Proteica , Lisossomos/enzimologia , Acetilação , Mutação
6.
Cancer Commun (Lond) ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030964

RESUMO

BACKGROUND: N4-acetylcytidine (ac4C) represents a novel messenger RNA (mRNA) modification, and its associated acetyltransferase N-acetyltransferase 10 (NAT10) plays a crucial role in the initiation and progression of tumors by regulating mRNA functionality. However, its role in hepatocellular carcinoma (HCC) development and prognosis is largely unknown. This study aimed to elucidate the role of NAT10-mediated ac4C in HCC progression and provide a promising therapeutic approach. METHODS: The ac4C levels were evaluated by dot blot and ultra-performance liquid chromatography-tandem mass spectrometry with harvested HCC tissues. The expression of NAT10 was investigated using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemical staining across 91 cohorts of HCC patients. To explore the underlying mechanisms of NAT10-ac4C in HCC, we employed a comprehensive approach integrating acetylated RNA immunoprecipitation and sequencing, RNA sequencing and ribosome profiling analyses, along with RNA immunoprecipitation, RNA pull-down, mass spectrometry, and site-specific mutation analyses. The drug affinity responsive targets stability, cellular thermal shift assay, and surface plasmon resonance assays were performed to assess the specific binding of NAT10 and Panobinostat. Furthermore, the efficacy of targeting NAT10-ac4C for HCC treatment was elucidated through in vitro experiments using HCC cells and in vivo HCC mouse models. RESULTS: Our investigation revealed a significant increase in both the ac4C RNA level and NAT10 expression in HCC. Notably, elevated NAT10 expression was associated with poor outcomes in HCC patients. Functionally, silencing NAT10 suppressed HCC proliferation and metastasis in vitro and in vivo. Mechanistically, NAT10 stimulates the ac4C modification within the coding sequence (CDS) of high mobility group protein B2 (HMGB2), which subsequently enhances HMGB2 translation by facilitating eukaryotic elongation factor 2 (eEF2) binding to the ac4C sites on HMGB2 mRNA's CDS. Additionally, high-throughput compound library screening revealed Panobinostat as a potent inhibitor of NAT10-mediated ac4C modification. This inhibition significantly attenuated HCC growth and metastasis in both in vitro experiments using HCC cells and in vivo HCC mouse models. CONCLUSIONS: Our study identified a novel oncogenic epi-transcriptome axis involving NAT10-ac4C/eEF2-HMGB2, which plays a pivotal role in regulating HCC growth and metastasis. The drug Panobinostat validates the therapeutic potential of targeting this axis for HCC treatment.

7.
Horm Behav ; 164: 105599, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964019

RESUMO

Melatonin, the multi-functional neurohormone, is synthesized in the extra-pineal tissues such as the hippocampus. The key enzyme in hippocampal melatonin synthesis is arylalkylamine-N-acetyltransferase (AANAT). The importance of melatonin synthesis in the hippocampus has not yet been determined. We investigated hippocampal AANAT role in cognitive function using gene silencing small interference RNA (siRNA) technology. The hippocampal local melatonin synthesis was inhibited by AANAT-siRNA injection. The time-gene silencing profile of AANAT-siRNA was obtained by RT-PCR technique. The cytotoxicity of siRNA dose was determined by MTT assay on the B65 neural cells. Animals received the selected dosage of AANAT-siRNA. Then, the spatial working memory (Y maze), object recognition memory and spatial reference memory (Morris's water maze, MWM) were evaluated. The anxiety-like behaviors were evaluated by the elevated plus maze. After one week, following the probe test of MWM, the rats were sacrificed for histological analysis. The hippocampal melatonin levels were measured using the liquid chromatography-mass spectrometry technique. The hippocampal melatonin levels in the AANAT-siRNA group decreased. Animals receiving the AANAT-siRNA showed deficits in spatial learning and working memory which were verified by increased escape latency and reduced spontaneous alternations, respectively. There was an increase in anxiety-like behaviors as well as a deficit in recognition memory in the AANAT-siRNA group. The Nissl staining and immunohistochemistry of activated caspase-3 showed the neuronal loss and cell apoptosis in hippocampal tissue of the AANAT-siRNA group. The 18F-FDG-PET imaging displayed lower glucose metabolism following the reduction in AANAT mRNA. Data suggest that the AANAT mRNA and hippocampal melatonin synthesis might be an essential factor for learning, memory and some aspects of cognition, as well as homeostasis of hippocampal cells.


Assuntos
Hipocampo , Aprendizagem em Labirinto , Melatonina , Transtornos da Memória , RNA Interferente Pequeno , Animais , Melatonina/biossíntese , Masculino , Hipocampo/metabolismo , Ratos , Transtornos da Memória/metabolismo , Transtornos da Memória/genética , Aprendizagem em Labirinto/fisiologia , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Memória de Curto Prazo/fisiologia , Ratos Wistar , Memória Espacial/fisiologia
8.
J Agric Food Chem ; 72(31): 17392-17404, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39056217

RESUMO

Ketosis in dairy cows is often accompanied by the dysregulation of lipid homeostasis in the liver. Acetyl-coenzyme A acetyltransferase 2 (ACAT2) is specifically expressed in the liver and is important for regulating lipid homeostasis in ketotic cows. Lentinan (LNT) has a wide range of pharmacological activities, and this study investigates the protective effects of LNT on ß-hydroxybutyrate (BHBA)-induced lipid metabolism disorder in bovine hepatocytes (BHECs) and elucidates the underlying mechanisms. BHECs were first pretreated with LNT to investigate the effect of LNT on BHBA-induced lipid metabolism disorder in BHECs. ACAT2 was then silenced or overexpressed to investigate whether this mediated the protective action of LNT against BHBA-induced lipid metabolism disorder in BHECs. Finally, BHECs were treated with LNT after silencing ACAT2 to investigate the interaction between LNT and ACAT2. LNT pretreatment effectively enhanced the synthesis and absorption of cholesterol, inhibited the synthesis of triglycerides, increased the expression of ACAT2, and elevated the contents of very low-density lipoprotein and low-density lipoprotein cholesterol, thereby ameliorating BHBA-induced lipid metabolism disorder in BHECs. The overexpression of ACAT2 achieved a comparable effect to LNT pretreatment, whereas the silencing of ACAT2 aggravated the effect of BHBA on inducing disorder in lipid metabolism in BHECs. Moreover, the protective effect of LNT against lipid metabolism disorder in BHBA-induced BHECs was abrogated upon silencing of ACAT2. Thus, LNT, as a natural protective agent, can enhance the regulatory capacity of BHECs in maintaining lipid homeostasis by upregulating ACAT2 expression, thereby ameliorating the BHBA-induced lipid metabolism disorder.


Assuntos
Ácido 3-Hidroxibutírico , Acetil-CoA C-Acetiltransferase , Hepatócitos , Metabolismo dos Lipídeos , Regulação para Cima , Animais , Bovinos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Regulação para Cima/efeitos dos fármacos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/genética , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Triglicerídeos/metabolismo , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/genética , Doenças dos Bovinos/tratamento farmacológico , Cetose/metabolismo , Cetose/genética , Cetose/induzido quimicamente
9.
Exp Cell Res ; 441(2): 114149, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960363

RESUMO

Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive malignancies in the urological system, known for its high immunogenicity. However, its pathogenesis remains unclear. This study utilized bioinformatics algorithms and in vitro experiments to investigate the role of KAT7 in ccRCC. The results indicate that KAT7 is significantly downregulated in ccRCC tissues and cell lines, which is linked to distant metastasis and unfavorable outcomes in ccRCC patients. Overexpression of KAT7 in vitro notably decreased the proliferation, migration, and invasion of renal cancer cells and inhibited Epithelial-Mesenchymal Transition (EMT). Additionally, Gene Set Enrichment Analysis (GSEA) demonstrated that KAT7-related gene functions are associated with cell cycle and ferroptosis transcription factors. Treatment with a KAT7 acetylation inhibitor in ccRCC cell lines reversed the S phase arrest caused by KAT7 overexpression. Similarly, ferroptosis inhibitors alleviated ferroptosis induced by overexpressed KAT7. In conclusion, the findings suggest that KAT7 acts as a tumor suppressor in ccRCC by modulating the cell cycle and ferroptosis sensitivity, underscoring its potential as a therapeutic target and prognostic biomarker for renal cell carcinoma patients.


Assuntos
Carcinoma de Células Renais , Ciclo Celular , Proliferação de Células , Ferroptose , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Humanos , Ferroptose/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proliferação de Células/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Prognóstico
10.
Front Plant Sci ; 15: 1404977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081527

RESUMO

In eukaryotes, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Increasing evidence highlights histone acetylation plays essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance of histone acetylation in the regulation of abiotic stress responses including temperature, light, salt and drought stress. This information will contribute to our understanding of how plants adapt to environmental changes. As the mechanisms of epigenetic regulation are conserved in many plants, research in this field has potential applications in improvement of agricultural productivity.

11.
Antibiotics (Basel) ; 13(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39061354

RESUMO

Resistance to amikacin and other major aminoglycosides is commonly due to enzymatic acetylation by the aminoglycoside 6'-N-acetyltransferase type I enzyme, of which type Ib [AAC(6')-Ib] is the most widespread among Gram-negative pathogens. Finding enzymatic inhibitors could be an effective way to overcome resistance and extend the useful life of amikacin. Small molecules possess multiple properties that make them attractive for drug development. Mixture-based combinatorial libraries and positional scanning strategy have led to the identification of a chemical scaffold, pyrrolidine pentamine, that, when substituted with the appropriate functionalities at five locations (R1-R5), inhibits AAC(6')-Ib-mediated inactivation of amikacin. Structure-activity relationship studies have shown that while truncations to the molecule result in loss of inhibitory activity, modifications of functionalities and stereochemistry have different effects on the inhibitory properties. In this study, we show that alterations at position R1 of the two most active compounds, 2700.001 and 2700.003, reduced inhibition levels, demonstrating the essential nature not only of the presence of an S-phenyl moiety at this location but also the distance to the scaffold. On the other hand, modifications on the R3, R4, and R5 positions had varied effects, demonstrating the potential for optimization. A correlation analysis between molecular docking values (ΔG) and the dose required for two-fold potentiation of the compounds described in this and the previous studies showed a significant correlation between ΔG values and inhibitory activity.

12.
Biomed Rep ; 21(3): 130, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39070112

RESUMO

Pinostrobin, a key bioactive compound found in the medicinal plant Boesenbergia rotunda (L.), has been noted for its beneficial biological properties including antioxidant, anti-inflammation, anti-cancer and anti-amnesia activities. In view of this, the present study purposed to evaluate the neuroprotective potential of pinostrobin in reversing scopolamine-induced cognitive impairment involving oxidative stress and cholinergic function in rats. A total of 30 male Wistar rats were randomly divided into five groups (n=6): Group 1 received vehicle as a control, group 2 received vehicle + scopolamine (3 mg/kg, i.p.), group 3 received pinostrobin (20 mg/kg, p.o.) + scopolamine, group 4 received pinostrobin (40 mg/kg, p.o.) + scopolamine and group 5 received donepezil (5 mg/kg, p.o.) + scopolamine. Treatments were administered orally to the rats for 14 days. During the final 7 days of treatment, a daily injection of scopolamine was administered. Scopolamine impaired learning and memory performance, as measured by the novel object recognition test and the Y-maze test. Additionally, oxidative stress marker levels, acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT) and glutamate receptor 1 (GluR1) expression were determined. Consequently, the findings demonstrated that the administration of pinostrobin (20 and 40 mg/kg) markedly improved cognitive function as indicated by an increase in recognition index and by spontaneous alternation behaviour. Pinostrobin also modulated the levels of oxidative stress by causing a decrease in malondialdehyde levels accompanied by increases in superoxide dismutase and glutathione activities. Similarly, pinostrobin markedly enhanced cholinergic function by decreasing AChE activity and promoting ChAT immunoreactivity in the hippocampus. Additionally, the reduction in GluR1 expression due to scopolamine was diminished by treatment with pinostrobin. The findings indicated that pinostrobin exhibited a significant restoration of scopolamine-induced memory impairment by regulating oxidative stress and cholinergic system function. Thus, pinostrobin could serve as a potential therapeutic agent for the management of neurodegenerative diseases such as Alzheimer's disease.

13.
Antibiotics (Basel) ; 13(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39061260

RESUMO

Invasive candidiasis poses a worldwide threat because of the rising prevalence of antifungal resistance, resulting in higher rates of morbidity and mortality. Additionally, Candida species, which are opportunistic infections, have significant medical and economic consequences for immunocompromised individuals. This study explores the antifungal potential of chitosan to mitigate caspofungin resistance in caspofungin-resistant Candida albicans, C. krusei, and C. tropicalis isolates originating from human and animal sources using agar well diffusion, broth microdilution tests, and transmission electron microscope (TEM) analysis of treated Candida cells. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed to assess the expression of SAGA complex genes (GCN5 and ADA2) and the caspofungin resistance gene (FKS) in Candida species isolates after chitosan treatment. The highest resistance rate was observed to ketoconazole (80%) followed by clotrimazole (62.7%), fluconazole (60%), terbinafine (58%), itraconazole (57%), miconazole (54.2%), amphotericin B (51.4%), voriconazole (34.28%), and caspofungin (25.7%). Nine unique FKS mutations were detected, including S645P (n = 3 isolates), S645F, L644F, S645Y, L688M, E663G, and F641S (one isolate in each). The caspofungin minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values before chitosan treatment ranged from 2 to 8 µg/mL and 4 to 16 µg/mL, respectively. However, the MIC and MFC values were decreased after chitosan treatment (0.0625-1 µg/mL) and (0.125-2 µg/mL), respectively. Caspofungin MIC was significantly decreased (p = 0.0007) threefold following chitosan treatment compared with the MIC values before treatment. TEM analysis revealed that 0.5% chitosan disrupted the integrity of the cell surface, causing irregular morphologies and obvious aberrant changes in cell wall thickness in caspofungin-resistant and sensitive Candida isolates. The cell wall thickness of untreated isolates was 0.145 µm in caspofungin-resistant isolate and 0.125 µm in sensitive isolate, while it was significantly lower in chitosan-treated isolates, ranging from 0.05 to 0.08 µm when compared with the cell wall thickness of sensitive isolate (0.03 to 0.06 µm). Moreover, RT-qPCR demonstrated a significant (p < 0.05) decrease in the expression levels of histone acetyltransferase genes (GCN5 and ADA2) and FKS gene of caspofungin-resistant Candida species isolates treated with 0.5% chitosan when compared with before treatment (fold change values ranged from 0.001 to 0.0473 for GCN5, 1.028 to 4.856 for ADA2, and 2.713 to 12.38 for FKS gene). A comparison of the expression levels of cell wall-related genes (ADA2 and GCN5) between caspofungin-resistant and -sensitive isolates demonstrated a significant decrease following chitosan treatment (p < 0.001). The antifungal potential of chitosan enhances the efficacy of caspofungin against various caspofungin-resistant Candida species isolates and prevents the development of further antifungal resistance. The results of this study contribute to the progress in repurposing caspofungin and inform a development strategy to enhance its efficacy, appropriate antifungal activity against Candida species, and mitigate resistance. Consequently, chitosan could be used in combination with caspofungin for the treatment of candidiasis.

14.
BMC Genomics ; 25(1): 657, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956453

RESUMO

BACKGROUND: Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in plant growth and development as well as in response to environmental changes, by dynamically regulating gene acetylation levels. Although there have been numerous reports on the identification and function of HDAC and HAT in herbaceous plants, there are fewer report related genes in woody plants under drought stress. RESULTS: In this study, we performed a genome-wide analysis of the HDAC and HAT families in Populus trichocarpa, including phylogenetic analysis, gene structure, conserved domains, and expression analysis. A total of 16 PtrHDACs and 12 PtrHATs were identified in P. trichocarpa genome. Analysis of cis-elements in the promoters of PtrHDACs and PtrHATs revealed that both gene families could respond to a variety of environmental signals, including hormones and drought. Furthermore, real time quantitative PCR indicated that PtrHDA906 and PtrHAG3 were significantly responsive to drought. PtrHDA906, PtrHAC1, PtrHAC3, PtrHAG2, PtrHAG6 and PtrHAF1 consistently responded to abscisic acid, methyl jasmonate and salicylic acid under drought conditions. CONCLUSIONS: Our study demonstrates that PtrHDACs and PtrHATs may respond to drought through hormone signaling pathways, which helps to reveal the hub of acetylation modification in hormone regulation of abiotic stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Histona Acetiltransferases , Histona Desacetilases , Filogenia , Populus , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Populus/genética , Populus/enzimologia , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Mol Plant Pathol ; 25(7): e13489, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956897

RESUMO

A cell death pathway, ferroptosis, occurs in conidial cells and is critical for formation and function of the infection structure, the appressorium, in the rice blast fungus Magnaporthe oryzae. In this study, we identified an orthologous lysophosphatidic acid acyltransferase (Lpaat) acting at upstream of phosphatidylethanolamines (PEs) biosynthesis and which is required for such fungal ferroptosis and pathogenicity. Two PE species, DOPE and SLPE, that depend on Lpaat function for production were sufficient for induction of lipid peroxidation and the consequent ferroptosis, thus positively regulating fungal pathogenicity. On the other hand, both DOPE and SLPE positively regulated autophagy. Loss of the LPAAT gene led to a decrease in the lipidated form of the autophagy protein Atg8, which is probably responsible for the autophagy defect of the lpaatΔ mutant. GFP-Lpaat was mostly localized on the membrane of lipid droplets (LDs) that were stained by the fluorescent dye monodansylpentane (MDH), suggesting that LDs serve as a source of lipids for membrane PE biosynthesis and probably as a membrane source of autophagosome. Overall, our results reveal novel intracellular membrane-bound organelle dynamics based on Lpaat-mediated lipid metabolism, providing a temporal and spatial link of ferroptosis and autophagy.


Assuntos
Autofagia , Ferroptose , Oryza , Fosfatidiletanolaminas , Doenças das Plantas , Fosfatidiletanolaminas/metabolismo , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Ascomicetos/patogenicidade , Ascomicetos/metabolismo
16.
Clin Transl Med ; 14(7): e1747, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961519

RESUMO

BACKGROUND: Accumulating studies suggested that posttranscriptional modifications exert a vital role in the tumorigenesis of diffuse large B-cell lymphoma (DLBCL). N4-acetylcytidine (ac4C) modification, catalyzed by the N-acetyltransferase 10 (NAT10), was a novel type of chemical modification that improves translation efficiency and mRNA stability. METHODS: GEO databases and clinical samples were used to explore the expression and clinical value of NAT10 in DLBCL. CRISPER/Cas9-mediated knockout of NAT10 was performed to determine the biological functions of NAT10 in DLBCL. RNA sequencing, acetylated RNA immunoprecipitation sequencing (acRIP-seq), LC-MS/MS, RNA immunoprecipitation (RIP)-qPCR and RNA stability assays were performed to explore the mechanism by which NAT10 contributed to DLBCL progression. RESULTS: Here, we demonstrated that NAT10-mediated ac4C modification regulated the occurrence and progression of DLBCL. Dysregulated N-acetyltransferases expression was found in DLBCL samples. High expression of NAT10 was associated with poor prognosis of DLBCL patients. Deletion of NAT10 expression inhibited cell proliferation and induced G0/G1 phase arrest. Furthermore, knockout of NAT10 increased the sensitivity of DLBCL cells to ibrutinib. AcRIP-seq identified solute carrier family 30 member 9 (SLC30A9) as a downstream target of NAT10 in DLBCL. NAT10 regulated the mRNA stability of SLC30A9 in an ac4C-dependent manner. Genetic silencing of SLC30A9 suppressed DLBCL cell growth via regulating the activation of AMP-activated protein kinase (AMPK) pathway. CONCLUSION: Collectively, these findings highlighted the essential role of ac4C RNA modification mediated by NAT10 in DLBCL, and provided insights into novel epigenetic-based therapeutic strategies.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Acetiltransferases N-Terminal , Transdução de Sinais/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
17.
Biochimie ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038730

RESUMO

N-terminal acetylation is being recognized as a factor affecting protein lifetime and proteostasis. It is a modification where an acetyl group is added to the N-terminus of proteins, and this occurs in 80 % of the human proteome. N-terminal acetylation is catalyzed by enzymes called N-terminal acetyltransferases (NATs). The various NATs acetylate different N-terminal amino acids, and methionine is a known target for some of the NATs. Currently, the acetylation status of most proteins can only be assessed with a limited number of methods, including mass spectrometry, which although powerful and robust, remains laborious and can only survey a fraction of the proteome. We here present testing of an antibody that was developed to specifically recognize Nt-acetylated methionine-starting proteins. We have used dot blots with synthetic acetylated and non-acetylated peptides in addition to protein analysis of lysates from NAT knockout cell lines to assess the specificity and application of this anti-Nt-acetylated methionine antibody (anti-NtAc-Met). Our results demonstrate that this antibody is indeed NtAc-specific and further show that it has selectivity for some subtypes of methionine-starting N-termini, specifically potential substrates of the NatC, NatE and NatF enzymes. We propose that this antibody may be a powerful tool to identify NAT substrates or to analyse changes in N-terminal acetylation for specific cellular proteins of interest.

18.
Discov Med ; 36(186): 1334-1344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054704

RESUMO

N-acetyltransferase 10 (NAT10) is an important acetyltransferase that regulates telomerase activity and participates in DNA damage reactions, ribosomal RNA (rRNA) transcriptional activation, cell division, microtubule acetylation, and other important cellular processes. Abnormalities in the expression or distribution of NAT10 result in diseases such as Hutchinson-Gilford progeria syndrome (HGPS) and various tumors, with serious consequences. Remodelin, an inhibitor of NAT10, delays HGPS progression; many studies have been conducted on its role in tumor therapy. A major breakthrough in the study of NAT10 was the discovery of mRNA N4-acetylcytidine (ac4C) modification, which can increase mRNA stability and translation efficiency significantly. In addition, NAT10 modifies the mRNA of ac4C, which is associated with tumor development. Here, we present a review of pertinent studies focusing on NAT10, particularly its role in cancer, to provide researchers with a concise and informative summary of the current state of knowledge about this topic. The conclusions drawn from this review could provide a new direction for tumor treatment.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/genética , Neoplasias/enzimologia , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferase N-Terminal E/genética , Animais , Regulação Neoplásica da Expressão Gênica , Acetiltransferases N-Terminal
19.
Virulence ; 15(1): 2387172, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39082211

RESUMO

The Eaf6 protein, a conserved component of the NuA4 and NuA3 complexes in yeast and MOZ/MORF complexes in humans, plays crucial roles in transcriptional activation, gene regulation, and cell cycle control. Despite its significance in other organisms, the functional role of Eaf6 in entomopathogenic fungi (EPF) remained unexplored. Here, we investigate the function of BbEaf6, the Eaf6 homolog in the entomopathogenic fungus Beauveria bassiana. We demonstrate that BbEaf6 is predominantly localized in nuclei, similar to its counterpart in other fungi. Deletion of BbEaf6 resulted in delayed conidiation, reduced conidial yield, and altered conidial properties. Transcriptomic analysis revealed dysregulation of the genes involved in asexual development and cell cycle progression in the ΔBbEaf6 mutant. Furthermore, the ΔBbEaf6 mutant exhibited decreased tolerance to various stresses, including ionic stress, cell wall perturbation, and DNA damage stress. Notably, the ΔBbEaf6 mutant displayed attenuated virulence in insect bioassays, accompanied by dysregulation of genes associated with cuticle penetration and haemocoel infection. Overall, our study elucidates the multifaceted role of BbEaf6 in stress response, development, and virulence in B. bassiana, providing valuable insights into the molecular mechanisms governing fungal pathogenesis and potential targets for pest management strategies.


Assuntos
Beauveria , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos , Estresse Fisiológico , Beauveria/genética , Beauveria/patogenicidade , Beauveria/fisiologia , Virulência/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Animais , Esporos Fúngicos/genética , Perfilação da Expressão Gênica , Deleção de Genes , Insetos/microbiologia
20.
World J Gastrointest Oncol ; 16(6): 2727-2741, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994152

RESUMO

BACKGROUND: Previous studies have shown that the Shi-pi-xiao-ji (SPXJ) herbal decoction formula is effective in suppressing hepatocellular carcinoma (HCC), but the underlying mechanisms are not known. Therefore, this study investigated whether the antitumor effects of the SPXJ formula in treating HCC were mediated by acetyl-coA acetyltransferase 1 (ACAT1)-regulated cellular stiffness. Through a series of experiments, we concluded that SPXJ inhibits the progression of HCC by upregulating the expression level of ACAT1, lowering the level of cholesterol in the cell membrane, and altering the cellular stiffness, which provides a new idea for the research of traditional Chinese medicine against HCC. AIM: To investigate the anti-tumor effects of the SPXJ formula on the malignant progression of HCC. METHODS: HCC cells were cultured in vitro with SPXJ-containing serum prepared by injecting SPXJ formula into wild-type mice. The apoptotic rate and proliferative, invasive, and migratory abilities of control and SPXJ-treated HCC cells were compared. Atomic force microscopy was used to determine the cell surface morphology and the Young's modulus values of the control and SPXJ-treated HCC cells. Plasma membrane cholesterol levels in HCC cells were detected using the Amplex Red cholesterol detection kit. ACAT1 protein levels were estimated using western blotting. RESULTS: Compared with the vehicle group, SPXJ serum considerably reduced proliferation of HCC cells, increased stiffness and apoptosis of HCC cells, inhibited migration and invasion of HCC cells, decreased plasma membrane cholesterol levels, and upregulated ACAT1 protein levels. However, treatment of HCC cells with the water-soluble cholesterol promoted proliferation, migration, and invasion of HCC cells as well as decreased cell stiffness and plasma membrane cholesterol levels, but did not alter the apoptotic rate and ACAT1 protein expression levels compared with the vehicle control. CONCLUSION: SPXJ formula inhibited proliferation, invasion, and migration of HCC cells by decreasing plasma membrane cholesterol levels and altering cellular stiffness through upregulation of ACAT1 protein expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA