Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
Mol Genet Metab Rep ; 40: 101117, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39101156

RESUMO

Background: Biochemical testing is a common first-tier approach in the setting of genetic evaluation of patients with unexplained developmental delay. However, results can be unclear, and a plan for second-tier analysis must be determined based on the patient's biochemical results and clinical presentation - in many cases, triggering a diagnostic odyssey. Case presentation: A male patient from the United States presenting with unexplained developmental delay, microcephaly, hypotonia, and feeding difficulties was referred for clinical genetic evaluation at age 8 months. Biochemical testing revealed an isolated marked elevation of glutaric acid on urine organic acid profile, without elevations of related metabolites. Further testing included GCDH sequencing, a neurometabolic gene panel, chromosomal microarray, Prader Willi/Angelman testing, and lysosomal disease enzyme panel, all of which were non-diagnostic. The patient had persistent developmental delay and hypotonia, dystonia, sensorineural hearing loss, and abnormal brain myelination on magnetic resonance imaging. Whole exome sequencing (WES) was performed and revealed a dual diagnosis of glutaric aciduria III (GA III) and BCAP31-related disorder, an X-linked intellectual disability syndrome, caused by a novel pathogenic variant. Conclusions: GA III has historically been considered clinically benign, with few reported cases. This patient's presenting symptoms were similar to those commonly seen in GA I and GA II, however the biochemical abnormalities were not consistent with these disorders, prompting additional molecular and biochemical testing. Ultimately, WES confirmed a diagnosis of BCAP31-related syndrome, a rare neurological disorder, which explained the patient's presenting symptoms. WES also identified a secondary diagnosis of GA III. We present a patient with two rare genetic conditions, highlighting the importance of deep phenotyping and the utility of WES in the setting of a patient with dual genetic diagnoses.

2.
Mol Genet Metab ; 143(1-2): 108560, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121792

RESUMO

Isolated methylmalonic acidemia/aciduria (MMA) due to MMUT enzyme deficiency is an ultra-rare pediatric disease with high morbidity and mortality, with no approved disease-altering therapies. Previous publications showed that systemic treatment with a codon-optimized mRNA encoding wild-type human MMUT (MMUT) is a promising strategy for treatment of MMA. We developed a second-generation drug product, mRNA-3705, comprised of an mRNA encoding the MMUT enzyme formulated in a lipid nanoparticle (LNP) with incorporation of enhancements over the previous clinical candidate mRNA-3704. Both drug products produced functional MMUT in rat livers when dosed IV, and showed long-term safety and efficacy in two mouse models of MMA. mRNA-3705 produced 2.1-3.4-fold higher levels of hepatic MMUT protein expression than the first-generation drug product mRNA-3704 when given at an identical dose level, which resulted in greater and more sustained reductions in plasma methylmalonic acid. The data presented herein provide comprehensive preclinical pharmacology to support the clinical development of mRNA-3705.

3.
J Clin Med ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124570

RESUMO

BACKGROUND: Methylmalonic Aciduria (MA) without homocystinuria (or isolated MA) is a group of rare inherited metabolic disorders which leads to the accumulation of methylmalonic acid (MMA), a toxic molecule that accumulates in blood, urine, and cerebrospinal fluid, causing acute and chronic complications including metabolic crises, acute kidney injury (AKI), and chronic kidney disease (CKD). Detailed Case Description: Herein, we report a case of a 39-year-old male with MA and stage IV CKD who experienced acute metabolic decompensation secondary to gastrointestinal infection. The patient underwent a single hemodialysis (HD) session to correct severe metabolic acidosis unresponsive to medical therapy and to rapidly remove MMA. The HD session resulted in prompt clinical improvement and shortening of hospitalization. DISCUSSION: MMA accumulation in MA patients causes acute and life-threatening complications, such as metabolic decompensations, and long-term complications such as CKD, eventually leading to renal replacement therapy (RRT). Data reported in the literature show that, overall, all dialytic treatments (intermittent HD, continuous HD, peritoneal dialysis) are effective in MMA removal. HD, in particular, can be useful in the emergency setting to control metabolic crises, even with GFR > 15 mL/min. Kidney and/or liver transplantations are often needed in MA patients. While a solitary transplanted kidney can be rapidly affected by MMA exposure, with a decline in renal function even in the first year of follow-up, the combined liver-kidney transplantation showed better long-term results due to a combination of reduced MMA production along with increased urinary excretion. CONCLUSIONS: Early diagnosis, multidisciplinary management and preventive measures are pivotal in MA patients to avoid recurrent AKI episodes and, consequently, to slow down CKD progression.

4.
Mol Genet Metab Rep ; 40: 101104, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38983107

RESUMO

Several disorders of energy metabolism have been treated with exogenous ketone bodies. The benefit of this treatment is best documented in multiple acyl-CoA dehydrogenase deficiency (MADD) (MIM#231680). One might also expect ketone bodies to help in other disorders with impaired ketogenesis or in conditions that profit from a ketogenic diet. Here, we report the use of a novel preparation of dextro-ß-hydroxybutyrate (D-ßHB) salts in two cases of MADD and one case of pyruvate dehydrogenase (PDH) deficiency (MIM#312170). The two patients with MADD had previously been on a racemic mixture of D- and L­sodium hydroxybutyrate. Patient #1 found D-ßHB more palatable, and the change in formulation corrected hypernatraemia in patient #2. The patient with PDH deficiency was on a ketogenic diet but had not previously been given hydroxybutyrate. In this case, the addition of D-ßHB improved ketosis. We conclude that NHS101 is a good candidate for further clinical studies in this group of diseases of inborn errors of metabolism.

5.
Radiol Case Rep ; 19(9): 3701-3704, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38983300

RESUMO

Glutaric aciduria type 1 is a rare autosomal recessive disorder caused by a deficiency of glutaryl-CoA dehydrogenase, which is the key mitochondrial enzyme involved in the final degradation of lysine, L-hydroxylysine, and L-tryptophan. It is an inherited organic acidemia characterized by macrocephaly and dystonia, which results in high morbidity and mortality. In resource-limited countries like Nepal, where enzyme assays are not available, MRI has a great role to play in supporting diagnosis in such situations. Here, we present 2 cases of glutaric aciduria type 1 in brothers from the same parent that were diagnosed by MRI, and subsequent diet modification and L-carnitine therapy led to improvement of clinical symptoms.

6.
Mol Ther Methods Clin Dev ; 32(3): 101276, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-38983872

RESUMO

Glutaric aciduria type 1 (GA1) is a rare inherited metabolic disorder caused by a deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), with accumulation of neurotoxic metabolites, resulting in a complex movement disorder, irreversible brain damage, and premature death in untreated individuals. While early diagnosis and a lysine restricted diet can extend survival, they do not prevent neurological damage in approximately one-third of treated patients, and more effective therapies are required. Here we report the efficacy of adeno-associated virus 9 (AAV9)-mediated systemic delivery of human GCDH at preventing a high lysine diet (HLD)-induced phenotype in Gcdh -/- mice. Neonatal treatment with AAV-GCDH restores GCDH expression and enzyme activity in liver and striatum. This treatment protects the mice from HLD-aggressive phenotype with all mice surviving this exposure; in stark contrast, a lack of treatment on an HLD triggers very high accumulation of glutaric acid, 3-hydroxyglutaric acid, and glutarylcarnitine in tissues, with about 60% death due to brain accumulation of toxic lysine metabolites. AAV-GCDH significantly ameliorates the striatal neuropathology, minimizing neuronal dysfunction, gliosis, and alterations in myelination. Magnetic resonance imaging findings show protection against striatal injury. Altogether, these results provide preclinical evidence to support AAV-GCDH gene therapy for GA1.

7.
Mol Genet Genomic Med ; 12(7): e2489, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967380

RESUMO

BACKGROUND: Glutaric aciduria type II (GA2) is a rare genetic disorder inherited in an autosomal recessive manner. Double dosage mutations in GA2 corresponding genes, ETFDH, ETFA, and ETFB, lead to defects in the catabolism of fatty acids, and amino acids lead to broad-spectrum phenotypes, including muscle weakness, developmental delay, and seizures. product of these three genes have crucial role in transferring electrons to the electron transport chain (ETC), but are not directly involve in ETC complexes. METHODS: Here, by using exome sequencing, the cause of periodic cryptic gastrointestinal complications in a 19-year-old girl was resolved after years of diagnostic odyssey. Protein modeling for the novel variant served as another line of validation for it. RESULTS: Exome Sequencing (ES) identified two variants in ETFDH: ETFDH:c.926T>G and ETFDH:c.1141G>C. These variants are likely contributing to the crisis in this case. To the best of our knowledge at the time of writing this manuscript, variant ETFDH:c.926T>G is reported here for the first time. Clinical manifestations of the case and pathological analysis are in consistent with molecular findings. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. ETFDH:c.926T>G is reported here for the first time in relation to the causation GA2. CONCLUSION: Given the milder symptoms in this case, a review of GA2 cases caused by compound heterozygous mutations was conducted, highlighting the range of symptoms observed in these patients, from mild fatigue to more severe outcomes. The results underscore the importance of comprehensive genetic analysis in elucidating the spectrum of clinical presentations in GA2 and guiding personalized treatment strategies.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Heterozigoto , Proteínas Ferro-Enxofre , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Feminino , Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Adulto Jovem , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/patologia , Encefalopatias Metabólicas/diagnóstico , Mutação , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/patologia
8.
Saudi Med J ; 45(7): 745-748, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955445

RESUMO

L-2-Hydroxyglutaric aciduria (L-2-HGA) is a rare disorder. The patients have psychomotor retardation, ataxia, macrocephaly, and epilepsy usually in childhood. We present a case of L-2-HGA who developed dystonia in the third decade of life. The family reported symptoms of progressive psychomotor regression since childhood. On assessment, the patient had mild impairment of higher mental functions, mild exotropia, and right-hand dystonia. Brain MRI revealed diffuse bilateral symmetrical subcortical white matter hyperintense signals. 2-hydroxyglutaric acid in urine was elevated and the whole genome sequencing revealed a homogeneous pathogenic variant of the L-2-hydroxyglutarate dehydrogenase (L2HGDH) gene. The prognosis was explained to the caregivers. Patients with mild phenotype L-2-HGA can remain undiagnosed until adulthood. Cases of dystonia even without complaints of epilepsy should be investigated by MRI -brain, urine test and genetic testing to rule out L-2-HGA.


Assuntos
Distúrbios Distônicos , Imageamento por Ressonância Magnética , Humanos , Distúrbios Distônicos/genética , Adulto , Masculino , Oxirredutases do Álcool/genética , Feminino , Encefalopatias Metabólicas Congênitas
9.
Mol Genet Metab ; 142(4): 108516, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941880

RESUMO

Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Feminino , Masculino , Criança , Adulto , Pré-Escolar , Flavoproteínas Transferidoras de Elétrons/genética , Adolescente , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Queensland , Riboflavina/uso terapêutico , Adulto Jovem , Lactente , Proteínas Ferro-Enxofre/genética , Estudos de Coortes , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Recém-Nascido , Mutação , Sequenciamento Completo do Genoma
10.
Cureus ; 16(6): e62347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38882225

RESUMO

Background Inborn errors of metabolism (IEM) are collectively rare but potentially preventable causes of sudden unexpected death (SUD) in infancy or childhood, and metabolic autopsy serves as the final tool for establishing the diagnosis. We conducted a retrospective review of the metabolic and molecular autopsy on SUD and characterized the biochemical and genetic findings. Methodology A retrospective review of postmortem metabolic investigations (dried blood spot acylcarnitines and amino acid analysis, urine metabolic profiling where available, and next-generation sequencing on a panel of 75 IEM genes) performed for infants and children who presented with SUD between October 2016 and December 2021 with inconclusive autopsy findings or autopsy features suspicious of underlying IEM in our locality was conducted. Clinical and autopsy findings were reviewed for each case. Results A total of 43 infants and children aged between zero days to 10 years at the time of death were referred to the authors' laboratories throughout the study period. One positive case of multiple acyl-CoA dehydrogenase deficiency was diagnosed. Postmortem reference intervals for dried blood spot amino acids and acylcarnitines profile were established based on the results from the remaining patients. Conclusions Our study confirmed the importance of metabolic autopsy and the advantages of incorporating biochemical and genetic testing in this setting.

11.
Clin Exp Nephrol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872014

RESUMO

BACKGROUND: The beneficial effects of oral supplements with alkalinizing agents in patients with chronic kidney disease (CKD) have been limited to the severe stages. We investigated whether two types of supplements, sodium bicarbonate (SB) and potassium citrate/sodium citrate (PCSC), could maintain renal function in patients with mild-stage CKD. METHODS: This was a single-center, open-labeled, randomized cohort trial. Study participants with CKD stages G2, G3a, and G3b were enrolled between March 2013 and January 2019 and randomly assigned by stratification according to age, sex, estimated glomerular filtration rate (eGFR), and diabetes. They were followed up for 6 months (short-term study) for the primary endpoints and extended to 2 years (long-term study) for the secondary endpoints. Supplementary doses were adjusted to achieve an early morning urinary pH of 6.8-7.2. We observed renal dysfunction or new-onset cerebrovascular disease and evaluated urinary surrogate markers for renal injury. RESULTS: Overall, 101 participants were registered and allocated to three groups: standard (n = 32), SB (n = 34), and PCSC (n = 35). Two patients in the standard group attained the primary endpoints (renal stones and overt proteinuria) but were not statistically significant. There was one patient in the standard reduced eGFR during the long-term study (p = 0.042 by ANOVA). SB increased proteinuria (p = 0.0139, baseline vs. 6 months), whereas PCSC significantly reduced proteinuria (p = 0.0061, baseline vs. 1 year, or p = 0.0186, vs. 2 years) and urinary excretion of 8-hydroxy-2'-deoxyguanosine (p = 0.0481, baseline vs. 6 months). CONCLUSION: This study is the first to report supplementation of PCSC reduced intrarenal oxidative stress in patients with mild-stage CKD.

12.
Acta Neurol Belg ; 124(4): 1233-1236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703293

RESUMO

L-2-Hydroxyglutaric aciduria (L2HGA) is a rare, autosomal recessive neurometabolic disease, which presents with elevated L-2-hydroxyglutarate acid. Generally, L2HGA appear as slowly progressing central nervous system function deterioration during infancy, and a rapid progression in adulthood is uncommon for the syndrome's classic phenotype.


Assuntos
Oxirredutases do Álcool , Encefalopatias Metabólicas Congênitas , Ataxia Cerebelar , Adulto , Humanos , Oxirredutases do Álcool/genética , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/diagnóstico , Ataxia Cerebelar/genética , População do Leste Asiático , Mutação da Fase de Leitura/genética
13.
An Pediatr (Engl Ed) ; 100(5): 318-324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714461

RESUMO

INTRODUCTION: . Neonatal screening of glutaric aciduria type 1 (GA-1) has brought radical changes in the course and outcomes of this disease. This study analyses the outcomes of the first 5 years (2015-2019) of the AGA1 neonatal screening programme in our autonomous community. MATERIAL: . We conducted an observational, descriptive and retrospective study. All neonates born between January 1, 2015 and December 31, 2019 that participated in the neonatal screening programme were included in the study. The glutarylcarnitine (C5DC) concentration in dry blood spot samples was measured by means of tandem mass spectrometry applying a cut-off point of 0.25 µmol/L. RESULTS: . A total of 30 120 newborns underwent screening. We found differences in the C5DC concentration based on gestational age, type of feeding and hours of life at sample collection. These differences were not relevant for screening purposes. There were no differences between neonates with weights smaller and greater than 1500 g. Screening identified 2 affected patients and there were 3 false positives. There were no false negatives. The diagnosis was confirmed by genetic testing. Patients have been in treatment since diagnosis and have not developed encephalopathic crises in the first 4 years of life. CONCLUSIONS: . Screening allowed early diagnosis of two cases of GA-1 in the first 5 years since its introduction in our autonomous community. Although there were differences in C5DC levels based on gestational age, type of feeding and hours of life at blood extraction, they were not relevant for screening.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase , Triagem Neonatal , Humanos , Triagem Neonatal/métodos , Recém-Nascido , Estudos Retrospectivos , Glutaril-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Masculino , Feminino , Encefalopatias Metabólicas/diagnóstico , Espectrometria de Massas em Tandem , Glutaratos/sangue , Idade Gestacional , Carnitina/análogos & derivados
14.
Neurocase ; 30(2): 77-82, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38795053

RESUMO

L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare autosomal recessive disease characterized by elevated levels of hydroxyglutaric acid in the body fluids and brain with abnormal white matter. We present two siblings with psychomotor retardation and quadriparesis. Their brain imaging showed diffuse bilateral symmetrical involvement of the cerebral cortex, white matter, basal ganglia and cerebellum. The whole exome sequence studies revealed a homozygous likely pathogenic variant on chromosome 14q22.1 (NM_024884.2: c.178G > A; pGly60Arg) in the gene encoding for L-2-hydroxyglutarate dehydrogenase (L2HGDH) (OMIM #236792). Therefore, using the L2HGDH gene study is beneficial for L2HGA diagnosis.


Assuntos
Oxirredutases do Álcool , Irmãos , Criança , Humanos , Oxirredutases do Álcool/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/diagnóstico por imagem , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/diagnóstico por imagem , Egito , Imageamento por Ressonância Magnética
15.
JIMD Rep ; 65(3): 156-162, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38736636

RESUMO

Type II D-2-Hydroxyglutaric aciduria (T2D2HGA) is caused by a gain-of-function pathogenic variant in Isocitrate Dehydrogenase 2 (IDH2). Patients with T2D2HGA commonly present with developmental delay, seizures, cardiomyopathy, and arrhythmias. The recently approved IDH2-inhibitor Enasidenib targets the p.Arg140Gln pathogenic IDH2 variant and decreases production of D2HGA. We present a 7-year-old female with T2D2HGA due to the p.Arg140Gln variant. She was diagnosed at 3-years-old after presenting with global developmental delay, leukoencephalopathy, communicating hydrocephalus, seizures, and dilated cardiomyopathy. At age 3 years 11 months, 50 mg Enasidenib daily was initiated. Primary outcomes included seizure frequency, hospital admissions, development, and cardiac structure. Laboratories were monitored biweekly for common Enasidenib side effects. Our patient tolerated Enasidenib well. Urine 2-HGA decreased significantly from 244 mg/g creatinine to undetectable within 2 weeks of treatment. Inpatient admissions decreased from 8 during the 2 years preceding treatment to 1 during treatment. She has been seizure-free since Enasidenib initiation. Echocardiography showed improvement in dilated cardiomyopathy with normal left ventricular systolic function. Developmental assessment demonstrated improvements in gross motor, fine motor, language, and socialization domains. Treatment was complicated by mild elevations in alanine transaminase (118 IU/L, range 0-28) and creatine kinase (334 U/L, range 45-198) that resolved by decreasing Enasidenib dosing frequency to three times weekly. Enasidenib is a viable treatment for Type II D2HGA with benefits including developmental gains, fewer acute medical interventions, and cardiomyopathy improvement. While drug-induced hepatitis is a novel adverse effect of Enasidenib, it can be ameliorated by decreasing dose frequency.

16.
Stereotact Funct Neurosurg ; 102(4): 209-216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38714179

RESUMO

INTRODUCTION: L-2-hydroxyglutaric aciduria (L2HGA) is a rare neurometabolic disorder marked by progressive and debilitating psychomotor deficits. Here, we report the first patient with L2HGA-related refractory dystonia that was managed with deep brain stimulation to the bilateral globus pallidus internus (GPi-DBS). CASE PRESENTATION: We present a 17-year-old female with progressive decline in cognitive function, motor skills, and language ability which significantly impaired activities of daily living. Neurological exam revealed generalized dystonia, significant choreic movements in the upper extremities, slurred speech, bilateral dysmetria, and a wide-based gait. Brisk deep tendon reflexes, clonus, and bilateral Babinski signs were present. Urine 2-OH-glutaric acid level was significantly elevated. Brain MRI showed extensive supratentorial subcortical white matter signal abnormalities predominantly involving the U fibers and bilateral basal ganglia. Genetic testing identified a homozygous pathogenic mutation in the L-2-hydroxyglutarate dehydrogenase gene c. 164G>A (p. Gly55Asp). Following minimal response to pharmacotherapy, GPi-DBS was performed. Significant increases in mobility and decrease in dystonia were observed at 3 weeks, 6 months, and 12 months postoperatively. CONCLUSION: This is the first utilization of DBS as treatment for L2HGA-related dystonia. The resulting significant improvements indicate that pallidal neuromodulation may be a viable option for pharmaco-resistant cases, and possibly in other secondary metabolic dystonias.


Assuntos
Estimulação Encefálica Profunda , Distonia , Globo Pálido , Humanos , Feminino , Globo Pálido/diagnóstico por imagem , Adolescente , Distonia/terapia , Distonia/genética , Encefalopatias Metabólicas Congênitas/terapia , Encefalopatias Metabólicas Congênitas/genética
17.
Free Neuropathol ; 52024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38716347

RESUMO

L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare neurometabolic disorder characterized by accumulation of L2-hydroxyglutarate (L-2-HG) due to mutations in the L2HGDH gene. L-2-HGA patients have a significantly increased lifetime risk of central nervous system (CNS) tumors. Here, we present a 16-year-old girl with L-2-HGA who developed a tumor in the right cerebral hemisphere, which was discovered after left-sided neurological deficits of the patient. Histologically, the tumor had a high-grade diffuse glioma phenotype. DNA sequencing revealed the inactivating homozygous germline L2HGDH mutation as well as inactivating mutations in TP53, BCOR and NF1. Genome-wide DNA-methylation analysis was unable to classify the tumor with high confidence. More detailed analysis revealed that this tumor clustered amongst IDH-wildtype gliomas by methylation profiling and did not show the glioma CpG island methylator phenotype (G-CIMP) in contrast to IDH-mutant diffuse gliomas with accumulated levels of D-2-HG, the stereoisomer of L-2-HD. These findings were against all our expectations given the inhibitory potential of 2-HG on DNA-demethylation enzymes. Our final integrated histomolecular diagnosis of the tumor was diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype. Due to rapid tumor progression the patient died nine months after initial diagnosis. In this manuscript, we provide extensive molecular characterization of the tumor as well as a literature review focusing on oncogenetic considerations of L-2-HGA-associated CNS tumors.

18.
Orphanet J Rare Dis ; 19(1): 198, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750596

RESUMO

BACKGROUND: Methylmalonic aciduria (MMA) is a group of rare genetic metabolic disorders resulting from defects in methylmalonyl coenzyme A mutase (MCM) or intracellular cobalamin (cbl) metabolism. MMA patients show diverse clinical and genetic features across different subtypes and populations. METHODS: We retrospectively recruited 60 MMA patients from a single center and diagnosed them based on their clinical manifestations and biochemical assays. We then performed genetic analysis to confirm the diagnosis and identify the causal variants. RESULTS: We confirmed the common clinical manifestations of MMA reported previously. We also described four rare MMA cases with unusual symptoms or genetic variants, such as pulmonary hypertension or limb weakness in late-onset patients. We identified 15 MMACHC and 26 MMUT variants in 57 patients, including 6 novel MMUT variants. Two patients had only one MMAA variant each, and one patient had mild MMA due to mitochondrial DNA depletion syndrome caused by a SUCLA2 variant. Among 12 critically ill patients, isolated MMA was associated with higher C3, blood ammonia, and acidosis, while combined MMA was linked to hydrocephalus on skull MRI. MMACHC c.658-660delAAG and MMUT c.1280G > A variants were correlated with more severe phenotypes. CONCLUSIONS: Our study demonstrates the clinical and genotypic heterogeneity of MMA patients and indicates that metabolic screening and genetic analysis are useful tools to identify rare cases.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Metilmalonil-CoA Mutase , Humanos , Estudos Retrospectivos , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Feminino , Masculino , China , Metilmalonil-CoA Mutase/genética , Pré-Escolar , Lactente , Criança , Adolescente , Vitamina B 12/sangue , Vitamina B 12/metabolismo , Testes Genéticos , Mutação/genética , Recém-Nascido
19.
Am J Hum Genet ; 111(4): 714-728, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579669

RESUMO

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Assuntos
Argininossuccinato Liase , Acidúria Argininossuccínica , Humanos , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Sistemas CRISPR-Cas , Ureia , Edição de Genes/métodos
20.
J Inherit Metab Dis ; 47(4): 674-689, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38563533

RESUMO

The current German newborn screening (NBS) panel includes 13 inherited metabolic diseases (IMDs). In addition, a NBS pilot study in Southwest Germany identifies individuals with propionic acidemia (PA), methylmalonic acidemia (MMA), combined and isolated remethylation disorders (e.g., cobalamin [cbl] C and methylenetetrahydrofolate reductase [MTHFR] deficiency), cystathionine ß-synthase (CBS) deficiency, and neonatal cbl deficiency through one multiple-tier algorithm. The long-term health benefits of screened individuals are evaluated in a multicenter observational study. Twenty seven screened individuals with IMDs (PA [N = 13], MMA [N = 6], cblC deficiency [N = 5], MTHFR deficiency [N = 2] and CBS deficiency [N = 1]), and 42 with neonatal cbl deficiency were followed for a median of 3.6 years. Seventeen screened IMD patients (63%) experienced at least one metabolic decompensation, 14 of them neonatally and six even before the NBS report (PA, cbl-nonresponsive MMA). Three PA patients died despite NBS and immediate treatment. Fifteen individuals (79%) with PA or MMA and all with cblC deficiency developed permanent, mostly neurological symptoms, while individuals with MTHFR, CBS, and neonatal cbl deficiency had a favorable clinical outcome. Utilizing a combined multiple-tier algorithm, we demonstrate that NBS and specialized metabolic care result in substantial benefits for individuals with MTHFR deficiency, CBS deficiency, neonatal cbl deficiency, and to some extent, cbl-responsive MMA and cblC deficiency. However, its advantage is less evident for individuals with PA and cbl-nonresponsive MMA. SYNOPSIS: Early detection through newborn screening and subsequent specialized metabolic care improve clinical outcomes and survival in individuals with MTHFR deficiency and cystathionine-ß-synthase deficiency, and to some extent in cobalamin-responsive methylmalonic acidemia (MMA) and cblC deficiency while the benefit for individuals with propionic acidemia and cobalamin-nonresponsive MMA is less evident due to the high (neonatal) decompensation rate, mortality, and long-term complications.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Homocistinúria , Triagem Neonatal , Acidemia Propiônica , Humanos , Triagem Neonatal/métodos , Homocistinúria/diagnóstico , Recém-Nascido , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Acidemia Propiônica/diagnóstico , Feminino , Masculino , Alemanha , Lactente , Projetos Piloto , Pré-Escolar , Vitamina B 12/sangue , Criança , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Espasticidade Muscular , Transtornos Psicóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA