Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.785
Filtrar
1.
J Biochem Mol Toxicol ; 38(8): e23784, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39095945

RESUMO

Acrylamide (AA) is a carcinogenic compound that affects people due to its frequent use in laboratories and industry as well as the high-temperature cooking of foods with high hydrocarbon content. AA is known to cause severe reproductive abnormalities. The main aim of this study is to evaluate the protective effect of rutin (RU), a phytoactive compound, against AA-induced reproductive toxicity in female rats. Initially, rats were exposed to AA (40 mg/kg for 10 days). Therapy of RU was given after AA intoxication consecutively for 3 days. After 24 h of the last treatment, all the animals were sacrificed. The study evaluated reproductive hormones, oxidative stress markers, membrane-bound enzymes, DNA damage, histological findings, and an in silico approach to determine the protective efficacy of RU. The results indicated that RU significantly protected against inflammation, oxidative stress, and DNA damage induced by AA, likely due to its antioxidant properties.


Assuntos
Acrilamida , Dano ao DNA , Inflamação , Estresse Oxidativo , Rutina , Animais , Rutina/farmacologia , Feminino , Estresse Oxidativo/efeitos dos fármacos , Acrilamida/toxicidade , Dano ao DNA/efeitos dos fármacos , Ratos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Ratos Wistar , Simulação por Computador , Antioxidantes/farmacologia , Antioxidantes/metabolismo
2.
J Food Sci ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098813

RESUMO

Glutaraldehyde is the conventionally used cross-linker for the activation and cross-linking of support matrices used in enzyme immobilization. However, the toxic nature of glutaraldehyde makes it unsafe for food applications, propelling the need for nontoxic cross-linkers. Genipin reacts with the primary and secondary amines generating a dark-blue colored pigment and is an attractive alternative to glutaraldehyde as a cross-linker for enzyme immobilization. Apart from its excellent cross-linking properties, genipin possesses added advantages over glutaraldehyde such as proven health benefits, biocompatibility, and biodegradability. The present study explores the application of chitosan beads cross-linked with the natural and nontoxic agent, genipin, for immobilizing l-asparaginase, aimed at its subsequent use in mitigating acrylamide formation in food products. The immobilized l-asparaginase exhibited improved functionalities such as stability, reusability, and reduction in acrylamide formation in deep-fried cassava chips. One of the limitations observed during application in the food process was the mechanical fragility of the chitosan beads during speedy stirring. This can be overcome by increasing the concentration and time of contact of the coagulant bath during the formation of chitosan beads. The drying of the enzyme-bound chitosan beads will also lead to shrinkage and prevent breakage during stirring. This study conclusively demonstrated the applicability of immobilizing l-asparaginase on genipin cross-linked chitosan beads in food-related processes.

3.
J Sci Food Agric ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39099404

RESUMO

BACKGROUND: Roasting is an essential step in making roasted teas, and its role in producing flavors has been widely studied. However, the variation of potential hazardous compounds during the tea roasting process is still vague. The present study established an effective method based on liquid chromatography-triple quadrupole-tandem mass spectrometry to simultaneously determine the variation of acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and free amino acids during the tea roasting process. Meanwhile, the effects of several tea polyphenols on the formation of AA and 5-HMF were investigated by a wet-to-dry thermal model reaction. RESULTS: Medium-temperature roasted teas had the highest levels of AA and 5-HMF, with ranges of 0.13-0.15 µg g-1 and 68.72-123.98 µg g-1, respectively. Quantitative results showed that the levels of monosaccharides and amino acids decreased during roasting, which might contribute to the formation of 5-HMF and AA. Meanwhile, the decrease of epigallocatechin gallate (EGCG), epigallocatechin (EGC), and epicatechin (EC) might be related to their inhibitory effects on 5-HMF and AA. Thermal model reaction results showed that EGCG and EC significantly inhibited 5-HMF formation with a decline rate of 33.33% and 72.22%, respectively, mainly by trapping glucose. Gallic acid (GA) also had an inhibitory effect on the formation of AA (decreased by 92.86%) and 5-HMF (44.44%), mainly through impeding the preliminary reaction of asparagine and glucose. CONCLUSION: The roasting temperature determined the levels of AA and 5-HMF in teas. Catechins inhibited the formation of 5-HMF and AA mostly through trapping monosaccharides, while the inhibitory effect of GA was achieved by impeding the reaction. © 2024 Society of Chemical Industry.

4.
ACS Biomater Sci Eng ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177479

RESUMO

Polysaccharide-based hydrogels are suitable for use in the field of flexible bioelectronics due to their benign mechanical properties and biocompatibility. However, the preparation of hydrogel sensors with high performance without affecting their physicochemical properties (e.g., flexibility, toughness, self-healing, and antibacterial activity) remains a challenge and needs to be solved. Herein, a metal ion cross-linking reinforced, double network hydrogel was formed from a 2-acrylamide-2-methylpropanesulfonic acid (AMPS) copolymer interpenetrating κ-carrageenan (CAR), followed by immersing the gel in a Cu2+ ion solution to obtain an antibacterial CAR/P(AM-co-AMPS)-Cu2+ conductive hydrogel. LiCl was added as the electrolyte. The presence of the LiCl electrolyte and sulfonated molecular chain units not only gives the hydrogel good electrical conductivity (conductivity up to 2.68 S/m) but also improves the sensitivity of the hydrogel as a stress-strain sensor, with a hydrogel sensitivity GF of up to 3.76 in the 20%-100% strain range and response time of up to 280 ms. The CAR double-helical structure and sol-gel properties and the interaction of multiple noncovalent bonds between polymers provide the hydrogel with excellent self-healing, with a self-healing efficiency of 68%. In addition, the electrostatic interaction of Cu2+ with Escherichia coli cells can inhibit their growth, exhibiting good antibacterial properties with an inhibition circle diameter of 20.5 mm. This work could provide an effective strategy for antibacterial multifunctional CAR-based bionic sensors.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39186609

RESUMO

The development and optimization of holographic materials represent a great challenge today. These materials must be synthesized according to the characteristics that are desirable in photonic devices whose application is the object of investigation. In certain holographic sensors and biosensors, it is essential that the recording material be stable in liquid media. Furthermore, the holographic gratings stored in them must have temporal and structural stability, so that they can act as transducers of the analytical signal. Therefore, it is essential to optimize its storage in terms of the chemical composition of the material and the optical parameters of recording. This work focuses on the study of the storage optimization of unslanted transmission volume phase holograms in photohydrogels based on acrylamide and N,N'-methylenebis(acrylamide). Hydrogel matrices, also composed of acrylamide and N,N'-methylenebis(acrylamide), with different degrees of cross-linking were used and analyzed by scanning electron microscopy and UV-visible spectroscopy. The best results in terms of diffraction efficiency were reached for hydrogel matrices with an acrylamide/N,N'-methylenebis(acrylamide) molar ratio between 19.9 and 26. This relationship was also optimized in the incubator solution used to incorporate the components necessary for the formation of the holograms in the hydrogel matrices. The maximum diffraction efficiency, about 35%, was achieved when using an incubation solution with an acrylamide/N,N'-methylenebis(acrylamide) molar ratio of 4.35. The influence of the physical thickness of the hydrogel layers, the intensity, and the exposure time on the diffraction efficiency was also investigated and optimized. In addition, the behavior of the hologram was analyzed after a washing stage with PBST. A simple model that considered the effects of bending and attenuation of holographic gratings was proposed and used to obtain the optical parameters of the holograms.

6.
Food Chem Toxicol ; 192: 114927, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134133

RESUMO

Grilled foods are an important source of acrylamide, which has neurotoxic, genotoxic, and carcinogenic properties. The current study aims to evaluate the level of acrylamide in beef, chicken, and fish products, especially those requiring high cooking temperatures, using High Performance Liquid Chromatography (HPLC). Reduction of acrylamide by organic acids i.e., (citric acid, malic acid, tartaric acid, and lactic acid) and fruit extracts of lemon, apple, and grape has also been investigated. The results revealed that the highest mean acrylamide concentration was found in chicken products (grilled chicken) which recorded 8.32 µg/100 g, followed by beef products (beef grilled) with a concentration of 7.91 µg/100 g, and fish products (pan-fried fish burgers) which recorded 6.77 µg/100 g). Furthermore, the mixture of organic acid has the highest effect on reducing the level of acrylamide in a chemical model system. Moreover, the fruit extract mixture was more effective in reducing the percentage of acrylamide in the grilled chicken than organic acids mixture. Finally, the addition of fruit extract improved the sensory properties of grilled chickens. In sum, this study offers novel and promising natural strategies to decrease acrylamide in meat products toward further future application in meat industry to deliver safe food to consumers.

7.
Mol Neurobiol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162929

RESUMO

Acrylamide (ACR) is a water-soluble monomer with broad consumer applications, even in foods due to thermal processes. Acute exposure to ACR may lead to neurotoxic effects such as ataxia and skeletal muscle weakness in humans and experimental animals. Oxidative stress is the primary pathway in ACR toxicity; therefore, this study aimed to evaluate the possible protective effect of benzo[b]thiophene analogs as an antioxidant drug for ACR poisoning. For this purpose, adult zebrafish were chosen as the experimental model considering the 3Rs of research. Hydroxyl containing benzo[b]thiophene analogs, 1-(3-hydroxybenzo[b]thiophen-2-yl) ethanone (BP) and 1-(3-hydroxybenzo[b]thiophen-2-yl) propan-1-one hydrate (EP) were injected via intraperitoneal (i.p.) route at an effective dose of 5 mg/kg one hour before the exposure of ACR (0.75 mM) for three days. ACR fish showed aberrant socio-behavior with low exploration, tight circling, negative scototaxis, disrupted aggression, and tight shoaling. These results indicated depression comorbid and anxiety-like phenotype. BP and EP partially reduced the aberrant socio-behavior. BP and EP elevated the antioxidant defense and reduced the oxidative damage in the brain caused by ACR. Cellular and tissular alterations caused by ACR were visualized through histopathological study. BP and EP administration reduced and repaired the cellular changes via the antioxidant mechanism. BP and EP altered the axonal growth and regeneration gene and synaptic vesicle cycle gene expression necessary for neurotransmission. This combined gain-of-function of redox mechanism at molecular, cellular, and tissular levels explains the behavioral improvement at the organismal level of the organization.

8.
Cell Biosci ; 14(1): 106, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180059

RESUMO

BACKGROUND: The impact of acrylamide (ACR) on learning and memory has garnered considerable attention. However, the targets and mechanisms are still unclear. RESULTS: Elongation factor 2 (eEF2) was significantly upregulated in the results of serum proteomics. Results from in vitro and in vivo experiments indicated a notable upregulation of Eukaryotic elongation factor 2 kinase (eEF2K), the sole kinase responsible for eEF2 phosphorylation, following exposure to ACR (P < 0.05). Subsequent in vitro experiments using eEF2K siRNA and in vivo experiments with eEF2K-knockout mice demonstrated significant improvements in abnormal indicators related to ACR-induced learning and memory deficits (P < 0.05). Proteomic analysis of the hippocampus revealed Lpcat1 as a crucial downstream protein regulated by eEF2K. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that eEF2K may play a role in the process of ACR-induced learning and memory impairment by affecting ether lipid metabolism. CONCLUSIONS: In summary, eEF2K as a pivotal treatment target in the mechanisms underlying ACR-induced learning and memory impairment, and studies have shown that it provides robust evidence for potential clinical interventions targeting ACR-induced impairments.

9.
Food Sci Biotechnol ; 33(10): 2399-2415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39145124

RESUMO

The levels of acrylamide (AA), four polycyclic aromatic hydrocarbons (PAH4), and heterocyclic aromatic amines (HAAs) in 184 air-fried agricultural, fishery, and animal products were measured using GC-MS and UPLC-MS/MS. Among the tested samples, sea algae exhibited the highest levels of PAH4 and eight specific HAAs (HAA8), while root and tuber crops had the greatest amount of AA. Agricultural and fisheries products had higher levels of all three contaminants, while livestock products had an inverse correlation between PAH4 and HAA8. The margin of exposure in the Korean population is considered "unlikely a concern" for all samples for PAH4 and HAA8, however, that for AA in cereal, vegetable, and root and tuber crops is deemed "may be a concern", with a value < 10,000 in all age groups. These findings suggest a need to evaluate dietary AA exposure in certain food categories and further research to minimize AA formation during air frying. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01639-4.

10.
Food Sci Biotechnol ; 33(10): 2333-2342, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39145120

RESUMO

Acrylamide is a well-recognized hazardous compound with known carcinogenic, genotoxic, neurotoxic, and reproductive toxic effects. This research aimed to investigate how different legume species and roasting durations influence acrylamide formation during air-fryer roasting. The study also examined the relationship between acrylamide formation and the levels of free asparagine and free sugars in different bean species. Asparagine content varies substantially across different bean species. Sucrose was the predominant sugar across all bean species, with smaller amounts of galactose and glucose. Air-fryer-roasted Wandu kong (garden pea) showed the highest acrylamide formation, followed by Ultari kong (kidney bean) and Heoktae (black soybean), in that order. Beans roasted for longer periods in an air fryer contained significantly higher levels of acrylamide. This study revealed a strong positive correlation between acrylamide formation and the level of free asparagine in the beans, highlighting the risks associated with certain legume species and air-fryer roasting durations.

11.
Food Sci Biotechnol ; 33(10): 2323-2331, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39145123

RESUMO

Red bell pepper (Capsicum annuum L.) is a popular and nutritious vegetable. In this study, oven cooking (OV), air-frying (AF), and infrared grilling (IR) were used to cook red bell peppers at different temperatures (170, 180, 190, and 200 °C). Changes in the total phenolic content, ascorbic acid content, antioxidant activity, and sugar and acrylamide content in red bell peppers were evaluated before and after cooking. The total phenolic and ascorbic acid contents decreased significantly after cooking (p < 0.05). Among the three evaluated methods, OV-cooked red bell peppers exhibited the highest antioxidant activity. The acrylamide content showed the lowest levels in OV 170 °C (93.67 ± 3.22 µg/kg dw) and the highest in AF 200 °C (1985.38 ± 76.39 µg/kg dw) samples. Compared to the AF and IR methods, OV was identified as the best way to preserve the antioxidant activity of red bell peppers while reducing acrylamide production. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01623-y.

12.
Insects ; 15(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39194808

RESUMO

The research context involves analyzing the potential benefits derived from integrating insect protein into everyday food items. Utilizing methods consistent with established food science protocols, wheat bread was prepared with variations of 0%, 5%, 10%, and 15% Tenebrio molitor larvae powder, derived from larvae cultivated on brewery spent grain. A substrate selected for its superior nutritional content and a substrate with agar-agar gels were used. The tests included basic bread tests; sugar, acrylamide, amino, and fatty acid (FA) tests; and sensory acceptability. The results have shown that the acrylamide levels in bread with larvae remained below harmful thresholds, suggesting that using T. molitor can be a safe alternative protein source. The incorporation of powdered T. molitor larvae (p-TMLs) into bread was observed to increase certain sugar levels, such as glucose, particularly at higher larval concentrations. The addition of T. molitor significantly raised the protein and fat levels in bread. The inclusion of larvae enriched the bread with essential amino acids, enhancing the nutritional value of the bread significantly. The FA profile of the bread was altered by the inclusion of p-TMLs, increasing the levels of monounsaturated FAs. Despite the nutritional benefits, higher concentrations of larvae decreased the sensory acceptability of the bread. This suggests that there is a balance to be found between enhancing the nutritional content and maintaining consumer appeal. These findings highlight the potential for using p-TMLs as a sustainable, nutritious ingredient in bread making, although the sensory qualities at higher concentrations might limit consumer acceptance.

13.
Biopolymers ; : e23620, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109846

RESUMO

Welan gum (WG) has a wide range of applications, but it is not yet suitable for applications such as oil recovery profile control that have complex requirements for viscosity, gelation properties, and so forth. Grafting modification is an important strategy for improving the property of WG, but there are few reports on controllable modification of WG to customize it for specific application. Acrylamide (AM) dosage was identified as the key factor affecting the grafting ratio of AM onto WG by a uniform experimental design. The grafting ratio can be directly adjusted between 99% and 378% based on the positive correlation with dosage of AM, and viscosity can be adjusted between 206 and 327 mPa s based on the negative correlation with grafting ratio. The 50% weight loss temperature of W11 with a grafting ratio of 110% raised from 314 to 336°C after grafting. The viscosity of the hydrogel formed with WG11 reached 15,654 mPa s, nearly nine times higher than that of unmodified WG. In addition, the gelation time can be controlled within 5 days, so that it can be injected to the optimal area in oilfield profile, avoiding pipeline blockage. This study enables adjusting viscosity of WG grafted with AM by controlling the grafting rate, and enhances gelation performance and thermal stability of WG, which will expand the application of WG in oil recovery and other fields.

14.
Biosens Bioelectron ; 264: 116628, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39133994

RESUMO

Acrylamide (AA) in heat-processed foods has emerged as a global health problem, mainly carcinogenic, neurotoxic, and reproductive toxicity, and an increasing number of researchers have delved into elucidating its toxicological mechanisms. Studies have demonstrated that exposure of HepG2 by AA in a range of concentrations can induce the upregulation of miR-21 and miR-221. Monitoring the response of intracellular miRNAs can play an important role in unraveling the mechanisms of AA toxicity. Here, multicolor aggregation induced emission nano particle (AIENP) probes were constructed from three AIE dyes for simultaneous imaging of intracellular AA and AA-induced miR-21/miR-221 by combining the recognition function of AA aptamers and the signal amplification of a DNAzyme walker. The surface of these nanoparticles contains carboxyl groups, facilitating their linkage to a substrate chain modified with a fluorescent quencher group via an amide reaction. Optimization experiments were conducted to determine the optimal substrate-to-DNAzyme ratio, confirming its efficacy as a walker for signal amplification. Sensitive detection of AA, miR-21 and miR-221 was achieved in extracellular medium, with detection limits of 0.112 nM for AA, 0.007 pM and 0.003 pM for miR-21 and miR-221, respectively, demonstrating excellent selectivity. Intracellularly, ZIF-8 structure collapsed, releasing Zn2+, activating DNAzyme cleavage activity, and the fluorescence of multicolor AIENPs within HepG2 cells gradually recovered with increasing stimulation time (0-12 h) and concentrations of AA (0-500 µM). This dynamic response unveiled the relationship between AA exposure and miR-21/miR-221 expression, further validating the carcinogenicity of AA.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39028331

RESUMO

Acrylamide (ACR) is a toxic, probably carcinogenic compound commonly found in fried foods and used in the production of many industrial consumer products. ACR-induced acute kidney injury is mediated through several signals. In this research, we investigated, for the first time, the therapeutic effects of phytochemicals apocynin (APO) and/or umbelliferone (UMB) against ACR-induced nephrotoxicity in rats and emphasized the underlying molecular mechanism. To achieve this goal, five groups of rats were randomly assigned: the control group received vehicle (0.5% CMC; 1 ml/rat), ACR (40 mg/kg, i.p.), ACR + APO (100 mg/kg, P.O.), ACR + UMB (50 mg/kg, P.O.), and combination group for 10 days. In ACR-intoxicated rats, there was a significant reduction in weight gain while the levels of blood urea, uric acid, creatinine, and Kim-1 were elevated, indicating renal injury. Histopathological injury was also observed in the kidneys of ACR-intoxicated rats, confirming the biochemical data. Moreover, MDA, TNF-α, and IL-1ß levels were raised; and GSH and SOD levels were decreased. In contrast, treatment with APO, UMB, and their combination significantly reduced the kidney function biomarkers, prevented tissue damage, and decreased inflammatory cytokines and MDA. Mechanistically, it suppressed the expression of NLRP-3, ASC, GSDMD, caspase-1, and IL-1ß, while it upregulated Nrf-2 and HO-1 in the kidneys of ACR-intoxicated rats. In conclusion, APO, UMB, and their combination prevented ACR-induced nephrotoxicity in rats by attenuating oxidative injury and inflammation, suppressing NLRP-3 inflammasome signaling, enhancing antioxidants, and upregulating Nrf-2 and HO-1 in the kidneys of ACR-induced rats.

16.
Food Chem Toxicol ; 191: 114850, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986831

RESUMO

Food emulsifiers like glycerol monostearate (G) and Tween 80 (TW) are commonly used to help formation and maintain stability of emulsions. However, certain food contaminants and emulsifiers often co-occur in the same food item due to food culture and cooking methods. For this reason, the present study investigated interaction of toxic effect of emulsifiers (G and TW) and process contaminants (acrylamide (AA) and benzo [a]pyrene (BAP)) on zebrafish. Adult zebrafish were exposed to emulsifiers, food contaminants, or the combination through diet for 2 h and 7 days. Oxidative stress and inflammation caused by food contaminants were increased when food emulsifiers were present. These combined treatments also induced more severe morphological changes than the contaminant alone treatments. In the gut, disruption of villi structure and increased number of goblet cells was observed and in the liver there were increased lipid deposition, infiltration of immune cells, glycogen depletion and focal necrosis. Increased accumulation of AA and BAP in the liver and gut were detected after addition of emulsifiers, suggesting that emulsifiers can enhance absorption of diet-borne contaminants. Our results showed food emulsifiers and contaminants can interact synergistically and increase risk.


Assuntos
Emulsificantes , Contaminação de Alimentos , Inflamação , Estresse Oxidativo , Peixe-Zebra , Animais , Estresse Oxidativo/efeitos dos fármacos , Emulsificantes/toxicidade , Inflamação/induzido quimicamente , Inflamação/metabolismo , Contaminação de Alimentos/análise , Benzo(a)pireno/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Acrilamida/toxicidade , Polissorbatos/toxicidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-38972620

RESUMO

Acrylamide (ACR), a ubiquitous compound with diverse route of exposure, has been demonstrated to have detrimental effects on human and animal health. The mechanisms underlying its toxicity is multifaceted and not fully elucidated. This study aims to provide further insight into novel pathways underlying ACR toxicity by leveraging on Drosophila melanogaster as a model organism. The concentrations of acrylamide (25, 50 and 100 mg/kg) and period of exposure (7-days) used in this study was established through a concentration response curve. ACR exposure demonstrably reduced organismal viability, evidenced by decline in survival rate, offspring emergence and deficits in activity, sleep and locomotory behaviors. Using a high-resolution respirometry assay, the role of mitochondria respiratory system in ACR-mediated toxicity in the flies was investigated. Acrylamide caused dysregulation in mitochondrial bioenergetics and respiratory capacity leading to an impaired OXPHOS activity and electron transport, ultimately contributing to the pathological process of ACR-toxicity. Furthermore, ACR exacerbated apoptosis and induced oxidative stress in D. melanogaster. The up-regulation of mRNA transcription of Reaper, Debcl and Dark genes and down-regulation of DIAP1, an ubiquitylation catalyzing enzyme, suggests that ACR promotes apoptosis through disruption of caspase and pro-apoptotic protein ubiquitination and a mitochondria-dependent pathway in Drosophila melanogaster. Conclusively, this study provides valuable insights into the cellular mechanism underlying ACR-mediated toxicity. Additionally, our study reinforces the utility of D. melanogaster as a translational tool for elucidating the complex mechanisms of ACR toxicity.


Assuntos
Acrilamida , Drosophila melanogaster , Mitocôndrias , Estresse Oxidativo , Animais , Drosophila melanogaster/efeitos dos fármacos , Acrilamida/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Morte Celular/efeitos dos fármacos
18.
Int J Biol Macromol ; 276(Pt 1): 133745, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986991

RESUMO

Acrylamide, a Maillard reaction product, formed in fried food poses a serious concern to food safety due to its neurotoxic and carcinogenic nature. A "Green Approach" using L-Asparaginase enzyme from GRAS-status bacteria synergized with hydrocolloid protective coating could be effective in inhibiting acrylamide formation. To fill this void, the present study reports a new variant of type-II L-asparaginase (AsnLb) from Levilactobacillus brevis NKN55, a food-grade bacterium isolated using a unique metabolite profiling approach. The recombinant AsnLb enzyme was characterized to study acrylamide inhibition ability and showed excellent specificity towards L-asparagine (157.2 U/mg) with Km, Vmax of 0.833 mM, 4.12 mM/min respectively. Pretreatment of potato slices with AsnLb (60 IU/mL) followed by zein-pectin nanocomplex led to >70% reduction of acrylamide formation suggesting synergistic effect of this dual component system. The developed strategy can be employed as a sustainable treatment method by food industries for alleviating acrylamide formation and associated health hazard in fried foods.


Assuntos
Acrilamida , Asparaginase , Coloides , Pectinas , Zeína , Asparaginase/química , Asparaginase/metabolismo , Acrilamida/química , Pectinas/química , Zeína/química , Coloides/química , Solanum tuberosum/química , Culinária
19.
Toxicol Res (Camb) ; 13(4): tfae109, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39036523

RESUMO

Background: Acrylamide (AA) is a toxic substance formed when cooking starch-based foods at high temperatures. Studies have shown that AA can cause neurotoxicity, reproductive toxicity and so on. However, there remains limited understanding of the potential skeletal toxicity of AA. Objective: The aim of this study was to investigate the potential skeletal toxicity of AA, as well as the potential bone protective effects of Resveratrol (RVT). Methods: Based on the daily intake of adult women, adult female mice was treated with AA at 0, 0.01, 0.1, 1 mg/kg/d or AA/RVT (1 mg/kg/d AA +10 mg/kg/d RVT) for 8 weeks, and skeletal toxicity were evaluated by RT-qPCR and histopathological techniques. Results: The results found that exposure to AA (0.1 or 1 mg/kg/d) after 8 weeks, osteogenesis exhibited pathological damage characteristics such as inhibition of growth plate function, and reduction of fibrous tissue, and cartilage exhibited pathological damage characteristics such as irregular cell morphology and arrangement, and damage to the tidal line. The results of cellular functional gene testing showed a decrease in the expression of functional genes in osteoblasts and chondrocytes. Meanwhile, after further co-treatment with AA (1 mg/kg/d) and resveratrol (RVT) (10 mg/kg/d), we found that RVT restored AA-induced damage to osteogenesis and cartilage, and reduced the high apoptosis and oxidative stress levels in osteogenesis/cartilage after AA exposure. Conclusion: In summary, this study confirmed the skeletal toxicity of AA on female adult mice, and further clarified the antioxidant protective effect of RVT on this toxicity.

20.
Pest Manag Sci ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072976

RESUMO

BACKGROUND: Acrylamide-based bait has super water absorption making it highly attractive to subterranean termites that are lured by wood with high water content. This study investigated the control efficiency of these baits on subterranean termites. In particular, we evaluated the water-absorption capacity, attractiveness to subterranean termites, and control efficiency of these baits on subterranean termites through wooden blocks (Populus deltoides and three types of particleboards). RESULTS: The results indicated a substantial water absorption capacity of acrylamide (70.6%; control: 14.8%) and a strong attraction for feeding subterranean termites (P. deltoides: 198 highest; 81 lowest subterranean termites individuals; combination of neem leaves and walnut shells: 168 highest; 36 lowest subterranean termites individuals). When acrylamide was combined with boric acid at the highest concentration, it resulted in the lowest wood consumption rates (P. deltoides: 24.1%; control: 63.8%, combination of neem leaves and walnut shells: 32.5%; control: 62.1%). CONCLUSIONS: In conclusion, this research supports the commercial viability of employing innovative acrylamide-based toxic baits and particleboards for subterranean termite management. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA