Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.410
Filtrar
1.
J Environ Sci (China) ; 148: 210-220, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095158

RESUMO

Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol (SOA) and plays an important role in controlling the abundance, properties, as well as climate and health impacts of aerosols. However, our knowledge on this heterogeneous chemistry remains inadequate. In this study, the heterogeneous oxidation of α-pinene ozonolysis SOA by hydroxyl (OH) radicals was investigated under both low and high relative humidity (RH) conditions, with an emphasis on the evolution of molecular composition of SOA and its RH dependence. It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60% at 25% RH and 95% at 90% RH. The heterogeneous oxidation strongly changes the molecular composition of SOA. The dimer-to-monomer signal ratios increase dramatically with rising OH exposure, in particular under high RH conditions, suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers. In addition, the typical SOA tracer compounds such as pinic acid, pinonic acid, hydroxy pinonic acid and dimer esters (e.g., C17H26O8 and C19H28O7) have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions, which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods. Our study sheds lights on the heterogeneous oxidation chemistry of monoterpene SOA and would help to understand their evolution and impacts in the atmosphere.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monoterpenos Bicíclicos , Umidade , Radical Hidroxila , Oxirredução , Aerossóis/química , Radical Hidroxila/química , Monoterpenos Bicíclicos/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Ozônio/química , Modelos Químicos , Atmosfera/química , Monoterpenos/química
2.
J Environ Sci (China) ; 148: 46-56, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095180

RESUMO

Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.


Assuntos
Aerossóis , Poluentes Atmosféricos , Modelos Químicos , Termodinâmica , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Material Particulado/química , Material Particulado/análise , Concentração de Íons de Hidrogênio , Tamanho da Partícula
3.
Sci Rep ; 14(1): 18814, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138292

RESUMO

Exposure assessments to metalworking fluids (MWF) is difficult considering the complex nature of MWF. This study describes a comprehensive exposure assessment to straight and water-based MWFs among workers from 20 workshops. Metal and organic carbon (OC) content in new and used MWF were determined. Full-shift air samples of inhalable particulate and gaseous fraction were collected and analysed gravimetrically and for metals, OC, and aldehydes. Exposure determinants were ascertained through observations and interviews with workers. Determinants associated with personal inhalable particulate and gaseous fractions were systematically identified using mixed models. Similar inhalable particle exposure was observed for straight and water-based MWFs (64-386 µg/m3). The gaseous fraction was the most important contributor to the total mass fraction for both straight (322-2362 µg/m3) and water-based MWFs (101-699 µg/m3). The aerosolized particles exhibited low metal content irrespective of the MWF type; however, notable concentrations were observed in the sumps potentially reaching hazardous concentrations. Job activity clusters were important determinants for both exposure to particulate and gaseous fractions from straight MWF. Current machine enclosures remain an efficient determinant to reduce particulate MWF but were inefficient for the gaseous fraction. Properly managed water-based MWF meaning no recycling and no contamination from hydraulic fluids minimizes gaseous exposure. Workshop temperature also influenced the mass fractions. These findings suggest that exposures may be improved with control measures that reduce the gaseous fraction and proper management of MWF.


Assuntos
Poluentes Ocupacionais do Ar , Exposição por Inalação , Metalurgia , Exposição Ocupacional , Material Particulado , Exposição Ocupacional/análise , Humanos , Exposição por Inalação/análise , Material Particulado/análise , Poluentes Ocupacionais do Ar/análise , Metais/análise , Adulto , Água/química , Masculino , Gases/análise , Monitoramento Ambiental/métodos , Pessoa de Meia-Idade , Feminino
4.
Sci Total Environ ; 951: 175307, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142408

RESUMO

Anthropogenically derived aerosols have been hypothesized to influence convective precipitation by increasing the available pool of cloud condensation nuclei. Here, we present a synthesis of aerosol size distribution and subsaturated hygroscopicity measurements between 15 and 250 nm diameter particles during the TRacking Aerosol Convection interactions ExpeRiment (TRACER). We found that the aerosol is externally mixed and can be described by a quasi-two-component description comprising a more and less hygroscopic mode. The mean hygroscopicity parameters for these modes across all sizes were 0.03 ± 0.04 and 0.22 ± 0.08 with no significant dependence on particle size. The number fraction of the more hygroscopic mode is 40 % for particles between 15 and 40 nm and gradually increases to ~70 % for particles >100 nm. Winds from the southerly direction feature particles with larger hygroscopicity parameters and have a larger fraction of particles in the more hygroscopic mode. The hygroscopicity parameter exhibits diurnal cycles that are consistent with condensation of a species with a hygroscopicity parameter ~0.1 which corresponds to values expected for secondary organic aerosol. We also identified nine small particle events that were attributed to particle formation by nucleation. The data are consistent with new particle formation having occurred aloft, followed by downward mixing with daytime turbulence. The species that are responsible for modal growth had hygroscopicity parameters varying between 0.05 and 0.34. These values systematically depended on the wind sector, suggesting that the chemical composition of the precursors differed. Hourly cloud condensation nuclei (CCN) and cloud droplet number concentration (CDNC) values derived from the aerosol size distribution, subsaturated hygroscopicity measurements, and adiabatic parcel model simulations showed a dynamic range of a factor of 2-3 in CDNC depending on the wind sector, with lower values associated with southerly onshore flow.

5.
Expert Opin Drug Deliv ; : 1-16, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39136493

RESUMO

INTRODUCTION: The deposition of inhaled medications is the first step in the pulmonary pharmacokinetic process to produce a therapeutic response. Not only lung dose but more importantly the distribution of deposited drug in the different regions of the lung determines local bioavailability, efficacy, and clinical safety. Assessing aerosol deposition patterns has been the focus of intense research that combines the fields of physics, radiology, physiology, and biology. AREAS COVERED: The review covers the physics of aerosol transport in the lung, experimental, and in-silico modeling approaches to determine lung dose and aerosol deposition patterns, the effect of asthma, chronic obstructive pulmonary disease, and cystic fibrosis on aerosol deposition, and the clinical translation potential of determining aerosol deposition dose. EXPERT OPINION: Recent advances in in-silico modeling and lung imaging have enabled the development of realistic subject-specific aerosol deposition models, albeit mainly in health. Accurate modeling of lung disease still requires additional refinements in existing imaging and modeling approaches to better characterize disease heterogeneity in peripheral airways. Nevertheless, recent patient-centric innovation in inhaler device engineering and the incorporation of digital technology have led to more consistent lung deposition and improved targeting of the distal airways, which better serve the clinical needs of patients.

6.
Sci Total Environ ; 951: 175501, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147067

RESUMO

The present research investigates the dynamics and underlying causes contributing to the exceptional intensity of Super Cyclonic Storm (SuCS) Amphan (16th to 21st May 2020) over the Bay of Bengal (BoB), as well as its impact on aerosol redistribution along the four cities of eastern coast and north-eastern India. Notably, the SuCS was formed during the first phase of the COVID-19 lockdown in India, giving it a unique aspect of study and analysis. Our analysis based on 30 years of climatology data from Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) reanalysis reveals 'positive' monthly anomalous winds (0.8 to 1.6 m/s) prevailed over the central BoB for May 2020. The present study further found the evolution of 'barrier layer thickness'(BLT) leading up to landfall, noting a thickening trend from 8 to 3 days before landfall, contributing to maintaining warmer sea surface temperatures near the coast. Additionally, utilizing European Centre for Medium-Range Weather Forecasts (ECMWF), reanalysis version-5 (ERA-5) data, a mean positive sea surface temperature (SST) anomaly of 0.8 to 1 °C was observed 'before' cyclone period (10-15 May 2020) near the cyclogenesis point. A detailed examination of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical cross-section plots during the cyclone's intensification stage reveals the presence of high-altitude clouds composed primarily of ice crystals. Further, analysis also indicates that the cyclone transported Sea-salt PM2.5 aerosols from the ocean, dispersing them in the landfall region.The aerosol optical Depth (AOD) data obtained from the National Aeronautics and Space Administration's (NASA) 'Clouds and the Earth's Radiant Energy System (CERES)' mission and MERRA-2 were also analysed, revealing that the cyclone redistributed aerosols over the Bengal basin region (mainly over 'Kolkata') and three other nearby cities along the track of the cyclone (i.e., Bhubaneswar (Odisha) Agartala (Tripura) and Shillong (Meghalaya) respectively).

7.
J Environ Manage ; 368: 122185, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151337

RESUMO

Land use and land cover change (LUCC) can alter surface properties, such as albedo, roughness, and vegetation coverage, directly affecting dust emissions and aerosol concentrations, leading to variations in direct radiative forcing (DRF) of dust aerosols and consequently impacting the climate. This study utilized the Weather Research and Forecasting model with Chemistry (WRF-Chem) to quantify the impact of LUCC in northern China from 2000 to 2020 on dust aerosol DRF. Results indicated that LUCC's influence on shortwave radiative forcing of dust was significantly greater than its influence on longwave radiative forcing and exhibited obvious seasonal variations. Overall, LUCC can cause net direct radiative forcing to increase by 5.3 W m-2 at the surface and decrease by 7.8 W m-2 in the atmosphere. Different types of LUCC transformation showed distinct impacts on dust aerosol DRF, with the conversion from sparse vegetation to barren land had the most significant effect on net radiative intensity, resulting in a decrease of 8.1 W m-2 at the surface, an increase of 12.2 W m-2 in the atmosphere, and an increase of 4.1 W m-2 at the top of the atmosphere. Conversely, the conversion from barren land to sparse vegetation led to surface cooling and atmospheric warming. These findings are of great significance for enhancing our knowledge of the effects of LUCC on the radiative balance of dust aerosols.

8.
Front Public Health ; 12: 1415157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131570

RESUMO

The risk of Legionella transmission in built environments remains a significant concern. Legionella can spread within buildings through aerosol transmission, prompting the exploration of airborne transmission pathways and proposing corresponding prevention and control measures based on building characteristics. To this end, a comprehensive literature review on the transmission risk of Legionella in built environments was performed. Four electronic databases (PubMed, Web of Science, Google Scholar, and CNKI) were searched from inception to March 2024 for publications reporting the risk of Legionella transmission in built environments. Relevant articles and gray literature reports were hand-searched, and 96 studies were finally included. Legionella pollution comes from various sources, mainly originates in a variety of built environments in which human beings remain for extended periods. The sources, outbreaks, national standards, regulations, and monitoring techniques for Legionella in buildings are reviewed, in addition to increases in Legionella transmission risk due to poor maintenance of water systems and long-distance transmission events caused by aerosol characteristics. Air and water sampling using various analytical methods helps identify Legionella in the environment, recognize sources in the built environments, and control outbreaks. By comparing the standard regulations of national organizations globally, the authors further highlight gaps and deficiencies in Legionella surveillance in China. Such advancements offer essential insights and references for understanding and addressing Legionella transmission risk in the built environment, with the potential to contribute to safeguarding public health and building environment safety.


Assuntos
Ambiente Construído , Legionella , Legionella/isolamento & purificação , Humanos , Legionelose/transmissão , Legionelose/prevenção & controle , Microbiologia do Ar , Surtos de Doenças/prevenção & controle , Monitoramento Ambiental , Microbiologia da Água , China/epidemiologia
9.
Anaesth Crit Care Pain Med ; : 101414, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089455

RESUMO

BACKGROUND: Asthma is a common chronic respiratory disease affecting 1-29% of the population in different countries. Exacerbations represent a change in symptoms and lung function from the patient's usual condition that requires emergency department (ED) admission. Recently, the use of a High-Flow Nasal Cannula (HFNC) plus an in-line vibrating mesh nebulizer (VMN) for aerosol drug delivery has been advocated in clinical practice. Thus, this pilot observational study aims to investigate the feasibility of HFNC treatment with VMN for in-line bronchodilator delivery in patients with severe asthma. METHODS: This study was conducted from May 2022 to May 2023. Subjects ≥ 18 years old with a previous diagnosis of asthma who were admitted to the ED during severe exacerbation were included. The primary endpoint was the change in peak expiratory flow ratio (PEFR) after 2-h of treatment with bronchodilator delivered by HFNC with in-line VMN. Additional outcomes were changes in forced expiratory volume in 1 second (FEV1) and clinical variables before treatment. RESULTS: 30 patients mean age of 43 (SD ± 16) years, mostly female (67%) were studied. A significant change in PEFR (147 ± 31 L/m vs. 220 ± 38 L/m; p < 0.001) was observed after treatment with HFNC and in-line VMN with significant improvement in clinical variables. And no subjects required invasive mechanical ventilation (IMV) during the study. CONCLUSIONS: HFNC treatment with in-line VMN for bronchodilator delivery appears feasible and safe for patients with severe asthma exacerbation. These preliminary promising results should be confirmed with appropriately large-designed studies.

10.
Vet Res ; 55(1): 100, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135123

RESUMO

High pathogenicity avian influenza viruses (HPAIVs) have caused major epizootics in recent years, with devastating consequences for poultry and wildlife worldwide. Domestic and wild ducks can be highly susceptible to HPAIVs, and infection leads to efficient viral replication and massive shedding (i.e., high titres for an extended time), contributing to widespread viral dissemination. Importantly, ducks are known to shed high amounts of virus in the earliest phase of infection, but the dynamics and impact of environmental contamination on the epidemiology of HPAIV outbreaks are poorly understood. In this study, we monitored mule ducks experimentally infected with two H5N8 clade 2.3.4.4b goose/Guangdong HPAIVs sampled in France in 2016-2017 and 2020-2021 epizootics. We investigated viral shedding dynamics in the oropharynx, cloaca, conjunctiva, and feathers; bird-to-bird viral transmission; and the role of the environment in viral spread and as a source of samples for early detection and surveillance. Our findings showed that viral shedding started before the onset of clinical signs, i.e., as early as 1 day post-inoculation (dpi) or post-contact exposure, peaked at 4 dpi, and lasted for up to 14 dpi. The detection of viral RNA in aerosols, dust, and water samples mirrored viral shedding dynamics, and viral isolation from these environmental samples was successful throughout the experiment. Our results confirm that mule ducks can shed high HPAIV titres through the four excretion routes tested (oropharyngeal, cloacal, conjunctival, and feather) while being asymptomatic and that environmental sampling could be a non-invasive tool for early viral RNA detection in HPAIV-infected farms.


Assuntos
Patos , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Doenças das Aves Domésticas , Eliminação de Partículas Virais , Animais , Patos/virologia , Influenza Aviária/virologia , Vírus da Influenza A Subtipo H5N8/fisiologia , Vírus da Influenza A Subtipo H5N8/patogenicidade , Doenças das Aves Domésticas/virologia , França/epidemiologia
11.
Biosens Bioelectron ; 264: 116658, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39137520

RESUMO

To facilitate rapid monitoring of airborne viruses, they must be collected with high efficiency and concentrated in a small volume of a liquid sample. In addition, the development of low-cost miniaturized samplers is essential for multipoint monitoring. Thus, in an attempt to fulfill these requirements, this study developed a microfluidic condensation bioaerosol sampler (MCBS). The developed sampler comprised two parts: a virus growth section and a virus droplet-to-liquid sample conversion section, each of which was fabricated on a chip using microfluidic technology. The condensation nucleus growth technique used in the virus growth section grew nanometer-sized airborne viruses into micro-sized droplets, making it possible to collection of viruses easier and with high efficiency. In addition, the virus droplet-to-liquid sample conversion section controlled the transport of droplets based on electrowetting technology. This enabled the collected airborne viruses to be concentrated in tens of microliters of the liquid sample. To evaluate the performance of both the sections, the virus dropletization, virus collection efficiency, and virus droplet-to-liquid sample conversion efficiency were evaluated through quantitative experiments. H1N1 and HCOV-229E viruses were used to conduct quantitative experiments on MCBS. We could obtain virus liquid samples with at 72.8- and 89.9-times higher concentration through 1:1 evaluation with a commercial sampler. Thus, the developed sampler facilitated efficient collection and concentration of airborne viruses in a compact, cost-effective manner. This is expected to facilitate rapid and accurate multipoint monitoring of viral aerosols.

12.
Respir Care ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137952

RESUMO

BACKGROUND: The optimal setup for continuously administering albuterol with heliox remains unclear, especially for pediatric patients. This study aimed to evaluate the efficiency of continuous albuterol delivery with heliox using different nebulizer setups in a pediatric model. METHODS: A pediatric manikin with simulated spontaneous breathing was used to receive continuous albuterol (20 mg/h) with heliox (80/20) in 3 setups: (1) The MiniHEART nebulizer, driven by oxygen at 3 L/min, was attached to a Y-piece, linking to a non-rebreather mask and a valved reservoir with 11 L/min heliox; (2) a vibrating mesh nebulizer (VMN) placed at the humidifier inlet of high-flow nasal cannula (HFNC) with 11 L/min heliox and the manikin's mouth sealed; and (3) a VMN placed between a valved reservoir with 11 L/min heliox and a non-rebreather mask. Both tight-fitting and loose-fitting mask configurations were tested in the setup with vibrating mesh nebulizer and mask. Heliox of 70/30 was tested with a VMN and a loose-fitting mask. Albuterol was delivered continuously to the nebulizer via an infusion pump at 8 mL (20 mg)/h for each 20-min run and each experiment was repeated five times. A collecting filter placed between the manikin's trachea and lung model was removed after each run, and the drug was eluted and assayed via ultraviolet spectrophotometry (276 nm). RESULTS: During continuous albuterol nebulization using heliox, the VMN either in line with HFNC or with a tight-fitting mask achieved the highest and similar inhaled dose (8.5 ± 0.4 vs 8.8 ± 0.7%, P = .35), while the MiniHEART nebulizer yielded the lowest aerosol deposition (1.5 ± 0.2%). The inhaled dose was lower with the loose-fitting mask than with the tight-fitting mask (5.9 ± 0.9 vs 8.8 ± 0.7%, P=.009), and heliox of 80/20 delivered a higher inhaled dose than heliox of 70/30 (5.9 ± 0.9 vs 3.9 ± 0.4%, P=.009). CONCLUSIONS: When administering continuous albuterol with heliox in a pediatric model, utilizing a VMN in line with HFNC during closed-mouth breathing yielded a higher inhaled dose compared to both the MiniHEART nebulizer and VMN with a loose-fitting mask.

13.
Environ Sci Technol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138123

RESUMO

Respiratory particles produced during vocalized and nonvocalized activities such as breathing, speaking, and singing serve as a major route for respiratory pathogen transmission. This work reports concomitant measurements of exhaled carbon dioxide volume (VCO2) and minute ventilation (VE), along with exhaled respiratory particles during breathing, exercising, speaking, and singing. Exhaled CO2 and VE measured across healthy adult participants follow a similar trend to particle number concentration during the nonvocalized exercise activities (breathing at rest, vigorous exercise, and very vigorous exercise). Exhaled CO2 is strongly correlated with mean particle number (r = 0.81) and mass (r = 0.84) emission rates for the nonvocalized exercise activities. However, exhaled CO2 is poorly correlated with mean particle number (r = 0.34) and mass (r = 0.12) emission rates during activities requiring vocalization. These results demonstrate that in most real-world environments vocalization loudness is the main factor controlling respiratory particle emission and exhaled CO2 is a poor surrogate measure for estimating particle emission during vocalization. Although measurements of indoor CO2 concentrations provide valuable information about room ventilation, such measurements are poor indicators of respiratory particle concentrations and may significantly underestimate respiratory particle concentrations and disease transmission risk.

14.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124892

RESUMO

Because of the increasing popularity of e-cigarettes, monitoring the e-cigarette market has become important for national health authorities to guarantee safety and quality. In the EU, the Tobacco Products Directive requires emission studies for e-cigarette products. The absence of industry guidelines for studying these emissions and the lack of proper validation in the literature led us to develop and validate a method using the total error approach for the determination of nicotine in e-cigarette aerosols. A commercial vaping device was used to generate aerosols, which were then collected on Cambridge filter pads and measured for nicotine concentration by UHPLC-DAD after extraction. The method was successfully validated by generating accuracy profiles, which show that the ß-expectation tolerance intervals remained below the acceptance limits of ±20%. Within-run repeatability and intermediate precision were considered acceptable since the highest RSD value obtained was below 5%. The method was applied to 15 commercial e-liquids. A complete validation of a method for the analysis of e-cigarette emissions is presented, including several parameters that impact the accuracy and reproducibility. Similar systematic approaches for method development and validation could be used for other e-cigarette emission analysis methods to ensure the reliability of the measurements.


Assuntos
Aerossóis , Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Aerossóis/análise , Nicotina/análise , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos , Vaping
15.
Artigo em Inglês | MEDLINE | ID: mdl-39136917

RESUMO

This study focuses on understanding how aerosols are transported over long distances, especially during extreme events. Leveraging the integrated vapour transport (IVT) based atmospheric river (AR) algorithm to integrated aerosol transport (IAT) to detect the aerosol atmospheric rivers (AARs) for key aerosol species such as black carbon (BC), organic carbon (OC), dust (DU), sea salt (SS), and sulphate (SU). The present study also assesses the occurrence, intensity, and societal impacts of AARs globally during 2015-2022 on a spatiotemporal resolution of 1.5° × 1.5° and 6 h, respectively. The detection algorithm found a total number of 128,261 AARs found globally for key aerosol species. However, the availability of BC, OC, and SU AARs is most common and intense in densely populated areas like the Indus-Brahmaputra-Ganga (IBG) plains (~ 15-20 AAR days/year), Eastern China (~ 25-40 AAR days/year), and Japan (~ 20-30 AAR days/year), where human activities including agriculture burning contribute to their formation. DU AARs, on the other hand, are more prevalent in Northern Africa (~ 15 AAR days/year), the Gulf (~ 5-10 AAR days/year), the USA, and the Amazon rainforests. SS AARs share similar characteristics with atmospheric rivers and are more intense in higher latitudes and over the oceans (~ 30-40 AAR days/year). The study also validates its findings by analysing recent extreme events involving BC and DU worldwide. The potential applications of specific AARs could assist us in identifying the causes of snow darkening, reducing snow cover area, and accelerating melting rate. Moreover, AARs could aid in quantifying the health risks associated with severe air pollution.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39098969

RESUMO

In this contribution, we report the study of nuclear resonance magnetic spectroscopy techniques (1H-NMR, 13C-NMR, and 2D-NMR) efficiency in the characterisation of the functional composition of water-soluble organic compounds (WSOC) from atmospheric aerosols. The chosen site was our scientific and technical center of research (CRAPC) situated in Algerian Bou-Ismail city. where the concentrations of PM10 were found to be between 15.66 and 142.19 µg.m-3. As results, 1H-NMR analysis showed the coexistence of biological material and emissions from urban and biomass burning. The dominant source was identified by quantitative integration of each 1H NMR spectral region. By using the HSQC technique, many peaks are revealed in biogenic samples including biomass burning. On the other hand, the identification of the source of various organic compounds and their functional composition is possible through specific NMR spectra, which can also be used to adjust the surrounding organic aerosol sources.

17.
Colloids Surf B Biointerfaces ; 244: 114134, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39121569

RESUMO

Active pharmaceutical ingredient (API) embedded dry powder for inhalation (AeDPI) shows higher drug loading and delivery dose for directly treating various lung infections. Inspired by the dandelion, we propose a novel kind of AeDPI microparticle structure fabricated by spray freeze drying technology, which would potentially enhance the alveoli deposition efficiency. When inhaling, such microparticles are expected to be easily broken-up into fragments containing API that acts as 'seed' and could be delivered to alveoli aided by the low density 'pappus' composed of excipient. Herein, itraconazole (ITZ), a first-line drug for treating pulmonary aspergillosis, was selected as model API. TPGS, an amphiphilic surfactant, was used to achieve stable primary ITZ nanocrystal (INc) suspensions for spray freeze drying. A series of microparticles were prepared, and the dandelion-like structure was successfully achieved. The effects of feed liquid compositions and freezing parameters on the microparticle size, morphology, surface energy, crystal properties and in vitro aerosol performance were systematically investigated. The optimal sample (SF(-50)D-INc7Leu3-2) in one-way experiment showed the highest fine particle fraction of ∼ 68.96 % and extra fine particle fraction of ∼ 36.87 %, equivalently ∼ 4.60 mg and ∼ 2.46 mg could reach the lung and alveoli, respectively, when inhaling 10 mg dry powders. The response surface methodology (RSM) analysis provided the optimized design space for fabricating microparticles with higher deep lung deposition performance. This study demonstrates the advantages of AeDPI microparticle with dandelion-like structure on promoting the delivery efficiency of high-dose drug to the deep lung.

18.
PNAS Nexus ; 3(8): pgae291, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108300

RESUMO

Atmospheric sulfate aerosols contribute significantly to air pollution and climate change. Sulfate formation mechanisms during winter haze events in northern China have recently received considerable attention, with more than 10 studies published in high-impact journals. However, the conclusions from in-field measurements, laboratory studies, and numerical simulations are inconsistent and even contradictory. Here, we propose a physically based yet simple method to clarify the debate on the dominant sulfate formation pathway. Based on the hazes evolving in the synoptic scale, first, a characteristic sulfate formation rate is derived using the Eulerian mass conservation equation constrained by in situ observations. Then, this characteristic value is treated as a guideline to determine the dominant sulfate formation pathway with a 0D chemical box model. Our observation-derived results establish a linkage between studies from laboratory experiments and chemical transport model simulations. A convergent understanding could therefore be reached on sulfate formation mechanisms in China's wintertime haze. This method is universal and can be applied to various haze conditions and different secondary products.

19.
Sci Total Environ ; 950: 175207, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097012

RESUMO

Secondary organic aerosol (SOA) is a major component of atmospheric fine particulate matter. Both particle viscosity and particle-phase chemistry play a crucial role in the formation and evolution of SOA; however, our understanding on how these two factors together with gas-phase chemistry collectively determine the formation of SOA is still limited. Here we developed a kinetic aerosol multilayer model coupled with gas-phase and particle-phase chemistry to simulate SOA formation. We take the atmospherically important α-pinene + OH oxidation system as an example application of the model. The simulations show that although the particle viscosity has negligible to small influences on the total SOA mass concentration, it strongly changes the concentration and distribution of individual compounds within the particle. This complicated effect of particle viscosity on SOA formation is a combined result of inhibited condensation or evaporation of specific organics due to slowed particle-phase diffusion. Furthermore, the particle-phase reactions alter the volatility and abundance of specific compounds and exacerbate their non-uniform distribution in highly viscous particles. Our results highlight an important species-specific effect of particle viscosity and particle-phase chemistry on SOA formation and demonstrate the capability of our model for quantifying such complicated effects on SOA formation and evolution.

20.
Sci Total Environ ; 950: 175168, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094653

RESUMO

A large fraction of fine particulate matter (PM2.5) and ozone (O3) in the troposphere originates from secondary formation through photochemical processes, which remarkably contributes to the deterioration of regional air quality in China. The photochemical reactions initiated by hydroxyl radicals (OH) play vital roles in secondary PM2.5 and O3 formation. In contrast, the OH levels in polluted areas are underestimated by current chemical transport models (CTMs) because of the strongly unknown daytime sources of tropospheric nitric acid (HONO), which has been recognized as the dominant source of primary OH in polluted areas of China. In this study, the atmospheric HONO levels at two urban sites were found to be significantly underestimated by the WRF-Chem model based on available information on HONO sources. The HONO levels could be well reproduced by the WRF-Chem model after incorporating two new potential HONO sources from the photochemical reactions of NOx, as proposed in our previous study based on chamber experiment results. Comparing the simulations with available information of HONO sources, the simulated levels of atmospheric OH, secondary inorganic and organic aerosols (SIA and SOA), PM2.5 and daily maximum 8-h average (MDA8) O3 were evidently elevated or were closer to the observations over the North China Plain (NCP), with elevation percentages of 0.48-20.1 %, and a decrement percentage of -5.79 % for pNO3-. Additionally, the compensating errors in modeling PM2.5 and the gap in MDA8 O3 levels between observation and simulation in 2 + 26 cities became evidently smaller. The results of this study indicated that the empirical parameterization of two new potential HONO sources through photochemical reactions of NOx improved the model performance in modeling PM2.5 and O3 by narrowing the gap in daytime HONO levels between simulation and observation, although their detailed chemical mechanisms are still unknown and should be further investigated and explicitly parameterized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA