Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Front Immunol ; 15: 1421175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091492

RESUMO

Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.


Assuntos
Fibrose , Granzimas , Degeneração Macular , Humanos , Animais , Degeneração Macular/patologia , Degeneração Macular/metabolismo , Degeneração Macular/etiologia , Granzimas/metabolismo , Retina/patologia , Retina/metabolismo , Retina/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/metabolismo
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125641

RESUMO

Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are common retinal diseases responsible for most blindness in working-age and elderly populations. Oxidative stress and mitochondrial dysfunction play roles in these pathogenesis, and new therapies counteracting these contributors could be of great interest. Some molecules, like coenzyme Q10 (CoQ10), are considered beneficial to maintain mitochondrial homeostasis and contribute to the prevention of cellular apoptosis. We investigated the impact of adding CoQ10 (Q) to a nutritional antioxidant complex (Nutrof Total®; N) on the mitochondrial status and apoptosis in an in vitro hydrogen peroxide (H2O2)-induced oxidative stress model in human retinal pigment epithelium (RPE) cells. H2O2 significantly increased 8-OHdG levels (p < 0.05), caspase-3 (p < 0.0001) and TUNEL intensity (p < 0.01), and RANTES (p < 0.05), caspase-1 (p < 0.05), superoxide (p < 0.05), and DRP-1 (p < 0.05) levels, and also decreased IL1ß, SOD2, and CAT gene expression (p < 0.05) vs. control. Remarkably, Q showed a significant recovery in IL1ß gene expression, TUNEL, TNFα, caspase-1, and JC-1 (p < 0.05) vs. H2O2, and NQ showed a synergist effect in caspase-3 (p < 0.01), TUNEL (p < 0.0001), mtDNA, and DRP-1 (p < 0.05). Our results showed that CoQ10 supplementation is effective in restoring/preventing apoptosis and mitochondrial stress-related damage, suggesting that it could be a valid strategy in degenerative processes such as AMD or DR.


Assuntos
Apoptose , Peróxido de Hidrogênio , Estresse Oxidativo , Epitélio Pigmentado da Retina , Ubiquinona , Humanos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Antioxidantes/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Suplementos Nutricionais
3.
Sci Rep ; 14(1): 18862, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143171

RESUMO

Cell adhesion to the extracellular matrix and its natural outcome of cell spreading, along with the maintenance of barrier activity, are essential behaviors of epithelial cells, including retinal pigment epithelium (RPE). Disruptions in these characteristics can result in severe vision-threatening diseases such as diabetic macular edema and age-related macular degeneration. However, the precise mechanisms underlying how RPE cells regulate their barrier integrity and cell spreading are not fully understood. This study aims to elucidate the relative importance of upper glycolytic components in governing these cellular behaviors of RPE cells. Electric Cell-Substrate Impedance Sensing (ECIS) technology was utilized to assess in real-time the effects of targeting various upper glycolytic enzymes on RPE barrier function and cell spreading by measuring cell resistance and capacitance, respectively. Specific inhibitors used included WZB117 for Glut1 inhibition, Lonidamine for Hexokinase inhibition, PFK158 for PFKFB3/PFK axis inhibition, and TDZD-8 for Aldolase inhibition. Additionally, the viability of RPE cells was evaluated using a lactate dehydrogenase (LDH) cytotoxicity assay. The most significant decrease in electrical resistance and increase in capacitance of RPE cells were observed due to dose-dependent inhibition of Glut1 using WZB117, as well as Aldolase inhibition with TDZD-8. LDH level analysis at 24-72 h post-treatment with WZB117 (1 and 10 µM) or TDZD-8 (1 µM) showed no significant difference compared to the control, indicating that the disruption of RPE functionality was not attributed to cell death. Lastly, inhibition of other upper glycolytic components, including PFKFB3/PFK with PFK158 or Hexokinase with Lonidamine, did not significantly affect RPE cell behavior. This study provides insights into the varied roles of upper glycolytic components in regulating the functionality of RPE cells. Specifically, it highlights the critical roles of Glut1 and Aldolase in preserving barrier integrity and promoting RPE cell adhesion and spreading. Such understanding will guide the development of safe interventions to treat RPE cell dysfunction in various retinal disorders.


Assuntos
Glicólise , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Glicólise/efeitos dos fármacos , Humanos , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Impedância Elétrica , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores
4.
Free Radic Biol Med ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173893

RESUMO

Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.

5.
Sci Rep ; 14(1): 19285, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164445

RESUMO

Age-related macular degeneration (AMD) and diabetic macular edema (DME) are significant causes of blindness worldwide. The prevalence of these diseases is steadily increasing due to population aging. Therefore, early diagnosis and prevention are crucial for effective treatment. Classification of Macular Degeneration OCT Images is a widely used method for assessing retinal lesions. However, there are two main challenges in OCT image classification: incomplete image feature extraction and lack of prominence in important positional features. To address these challenges, we proposed a deep learning neural network model called MSA-Net, which incorporates our proposed multi-scale architecture and spatial attention mechanism. Our multi-scale architecture is based on depthwise separable convolution, which ensures comprehensive feature extraction from multiple scales while minimizing the growth of model parameters. The spatial attention mechanism is aim to highlight the important positional features in the images, which emphasizes the representation of macular region features in OCT images. We test MSA-NET on the NEH dataset and the UCSD dataset, performing three-class (CNV, DURSEN, and NORMAL) and four-class (CNV, DURSEN, DME, and NORMAL) classification tasks. On the NEH dataset, the accuracy, sensitivity, and specificity are 98.1%, 97.9%, and 98.0%, respectively. After fine-tuning on the UCSD dataset, the accuracy, sensitivity, and specificity are 96.7%, 96.7%, and 98.9%, respectively. Experimental results demonstrate the excellent classification performance and generalization ability of our model compared to previous models and recent well-known OCT classification models, establishing it as a highly competitive intelligence classification approach in the field of macular degeneration.


Assuntos
Aprendizado Profundo , Degeneração Macular , Redes Neurais de Computação , Tomografia de Coerência Óptica , Humanos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/classificação , Degeneração Macular/patologia , Tomografia de Coerência Óptica/métodos , Edema Macular/diagnóstico por imagem , Edema Macular/classificação , Edema Macular/patologia , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/classificação , Retinopatia Diabética/patologia , Retinopatia Diabética/diagnóstico , Processamento de Imagem Assistida por Computador/métodos
6.
Immunotherapy ; : 1-12, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073397

RESUMO

Geographic atrophy (GA) remains a leading cause of central vision loss with no known cure. Until recently, there were no approved treatments for GA, often resulting in poor quality of life for affected patients. GA is characterized by atrophic lesions on the retina that may eventually threaten the fovea. Emerging treatments have demonstrated the ability to reduce the rate of lesion growth, potentially preserving visual function. Avacincaptad pegol (ACP; Astellas Pharma Inc), a complement component 5 inhibitor, is an FDA-approved treatment for GA that has been evaluated in numerous clinical trials. Here we review the current clinical trial landscape of ACP, including critical post hoc analyses that suggest ACP may reduce the risk of severe loss among patients with GA.


Geographic atrophy (GA) is an advanced form of eye disease age-related macular degeneration. In people with GA, light-sensitive cells at the back of the eye (the retina) start to die, forming lesions. GA lesions usually get bigger over time and can lead to blindness. New medicines are being studied that work by slowing the growth of GA lesions. Avacincaptad pegol (ACP) is one medicine that acts on the immune system and is designed to block the C5 protein, helping stop the immune system from attacking cells in the retina. Based on clinical studies, ACP was shown to slow the growth of GA over time and has been approved by the FDA. This review article summarizes research on ACP.

7.
Front Nutr ; 11: 1403987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988860

RESUMO

Objective: The association of age-related macular degeneration (AMD) with the intake of high and low fatty acids (FAs), respectively, remains controversial. To this end, we performed a comprehensive meta-analysis of all the existing studies on the association of various intake levels of FA subtypes with AMD to determine these associations. Methods: A systematic search of PubMed, Web of Science, Cochrane Library, and EMBASE databases was conducted from inception to September 2023. To compare the highest and lowest groups, odds ratio (OR) with 95% confidence intervals (CIs) was analyzed with a random-effects model/fixed-effects model. Results: A high intake of omega-3 LCPUFAs (OR:0.67; 95%CI:[0.51, 0.88]; p = 0.004), DHA (OR:0.80; 95%CI:[0.70, 0.90]; p < 0.001), EPA (OR:0.91; 95%CI:[0.86, 0.97]; p = 0.004), and simultaneous intake of DHA and EPA (OR:0.79; 95%CI:[0.67, 0.93]; p = 0.035) significantly reduced the risk of overall AMD. Conversely, a high intake of trans-FAs (OR: 2.05; 95%CI: [1.29, 3.25]; p = 0.002) was significantly related to an increased risk of advanced AMD compared to the low-intake group. The subgroup analysis results are shown in the articles. Conclusion: Increasing dietary intake of omega-3 LCPUFAs, specifically DHA, and EPA, or the simultaneous intake of DHA and EPA, is significantly associated with a reduced risk of overall AMD. Various subtypes of omega-3 also have a significant association with a reduced risk of different stages of AMD. The high intake of trans-fatty acids (TFAs) is significantly and positively correlated with the risk of advanced AMD. This could further support the idea that consuming foods rich in omega-3 LCPUFAs and reducing consumption of foods rich in TFAs may prevent AMD. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023467227.

8.
Bioengineering (Basel) ; 11(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39061793

RESUMO

The rapid advancement of computational infrastructure has led to unprecedented growth in machine learning, deep learning, and computer vision, fundamentally transforming the analysis of retinal images. By utilizing a wide array of visual cues extracted from retinal fundus images, sophisticated artificial intelligence models have been developed to diagnose various retinal disorders. This paper concentrates on the detection of Age-Related Macular Degeneration (AMD), a significant retinal condition, by offering an exhaustive examination of recent machine learning and deep learning methodologies. Additionally, it discusses potential obstacles and constraints associated with implementing this technology in the field of ophthalmology. Through a systematic review, this research aims to assess the efficacy of machine learning and deep learning techniques in discerning AMD from different modalities as they have shown promise in the field of AMD and retinal disorders diagnosis. Organized around prevalent datasets and imaging techniques, the paper initially outlines assessment criteria, image preprocessing methodologies, and learning frameworks before conducting a thorough investigation of diverse approaches for AMD detection. Drawing insights from the analysis of more than 30 selected studies, the conclusion underscores current research trajectories, major challenges, and future prospects in AMD diagnosis, providing a valuable resource for both scholars and practitioners in the domain.

9.
Biosensors (Basel) ; 14(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39056591

RESUMO

Wet Age-related macular degeneration (AMD) is the leading cause of vision loss in industrialized nations, often resulting in blindness. Biologics, therapeutic agents derived from biological sources, have been effective in AMD, albeit at a high cost. Due to the high cost of AMD treatment, it is critical to determine the binding affinity of biologics to ensure their efficacy and make quantitative comparisons between different drugs. This study evaluates the in vitro VEGF binding affinity of two drugs used for treating wet AMD, monoclonal antibody-based bevacizumab and fusion protein-based aflibercept, performing quantitative binding measurements on an Interferometric Reflectance Imaging Sensor (IRIS) system. Both biologics can inhibit Vascular Endothelial Growth Factor (VEGF). For comparison, the therapeutic molecules were immobilized on to the same support in a microarray format, and their real-time binding interactions with recombinant human VEGF (rhVEGF) were measured using an IRIS. The results indicated that aflibercept exhibited a higher binding affinity to VEGF than bevacizumab, consistent with previous studies using ELISA and SPR. The IRIS system's innovative and cost-effective features, such as silicon-based semiconductor chips for enhanced signal detection and multiplexed analysis capability, offer new prospects in sensor technologies. These attributes make IRISs a promising tool for future applications in the development of therapeutic agents, specifically biologics.


Assuntos
Interferometria , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Humanos , Bevacizumab , Receptores de Fatores de Crescimento do Endotélio Vascular , Técnicas Biossensoriais , Ligação Proteica , Proteínas Recombinantes de Fusão , Degeneração Macular/metabolismo
10.
Sci Rep ; 14(1): 16322, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009704

RESUMO

Age-related macular degeneration (AMD) is one of the leading causes of blindness. AMD is currently incurable; the best solution is to prevent its occurrence. To develop drugs for AMD, it is crucial to have a model system that mimics the symptoms and mechanisms in patients. It is most important to develop safer and more effective anti-AMD drug. In this study, the dose of A2E and the intensity of blue light were evaluated to establish an appropriate atrophic in vitro model of AMD and anti-AMD effect and therapeutic mechanism of Codonopsis lanceolata. The experimental groups included a control group an AMD group treated with A2E and blue light, a lutein group treated with 25 µM lutein after AMD induction, and three groups treated with different doses of C. lanceolata (10, 20, and 50 µg/mL) after AMD induction. Intrinsic apoptotic pathway (Bcl-2 family), anti-oxidative system (Keap1/Nrf2/HO-1 antioxidant response element), and anti-carbonyl effect (4-hydroxynonenal [4-HNE]) were evaluated using immunofluorescence, MTT, TUNEL, FACS, and western blotting analyses. A2E accumulation in the cytoplasm of ARPE-19 cells depending on the dose of A2E. Cell viability of ARPE-19 cells according to the dose of A2E and/or blue light intensity. The population of apoptotic or necrotic cells increased based on the A2E dose and blue light intensity. Codonopsis lanceolata dose-dependently prevented cell death which was induced by A2E and blue light. The antiapoptotic effect of that was caused by activating Keap1/Nrf2/HO-1 pathway, suppressing 4-HNE, and modulating Bcl-2 family proteins like increase of antiapoptotic proteins such as Bcl-2 and Bcl-XL and decrease of proapoptotic protein such as Bim. Based on these findings, 30 µM A2E and 20 mW/cm2 blue light on adult retinal pigment epithelium-19 cells was an appropriate condition for AMD model and C. lanceolata shows promise as an anti-AMD agent.


Assuntos
Apoptose , Codonopsis , Degeneração Macular , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Codonopsis/química , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Linhagem Celular , Aldeídos/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Luz/efeitos adversos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
11.
J Biol Chem ; 300(7): 107452, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852887

RESUMO

Rare variants (RVs) in the gene encoding the regulatory enzyme complement factor I (CFI; FI) that reduce protein function or levels increase age-related macular degeneration risk. A total of 3357 subjects underwent screening in the SCOPE natural history study for geographic atrophy secondary to age-related macular degeneration, including CFI sequencing and serum FI measurement. Eleven CFI RV genotypes that were challenging to categorize as type I (low serum level) or type II (normal serum level, reduced enzymatic function) were characterized in the context of pure FI protein in C3b and C4b fluid phase cleavage assays and a novel bead-based functional assay (BBFA) of C3b cleavage. Four variants predicted or previously characterized as benign were analyzed by BBFA for comparison. In all, three variants (W51S, C67R, and I370T) resulted in low expression. Furthermore, four variants (P64L, R339Q, G527V, and P528T) were identified as being highly deleterious with IC50s for C3b breakdown >1 log increased versus the WT protein, while two variants (K476E and R474Q) were ∼1 log reduced in function. Meanwhile, six variants (P50A, T203I, K441R, E548Q, P553S, and S570T) had IC50s similar to WT. Odds ratios and BBFA IC50s were positively correlated (r = 0.76, p < 0.01), while odds ratios versus combined annotation dependent depletion (CADD) scores were not (r = 0.43, p = 0.16). Overall, 15 CFI RVs were functionally characterized which may aid future patient stratification for complement-targeted therapies. Pure protein in vitro analysis remains the gold standard for determining the functional consequence of CFI RVs.


Assuntos
Complemento C3b , Fator I do Complemento , Genótipo , Atrofia Geográfica , Humanos , Fator I do Complemento/genética , Fator I do Complemento/metabolismo , Atrofia Geográfica/genética , Atrofia Geográfica/sangue , Atrofia Geográfica/metabolismo , Feminino , Masculino , Complemento C3b/metabolismo , Complemento C3b/genética , Idoso , Estudos de Coortes , Degeneração Macular/genética , Degeneração Macular/metabolismo , Pessoa de Meia-Idade
12.
Isr J Health Policy Res ; 13(1): 28, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835087

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) affects quality of life and independence, and its incidence and prevalence are increasing due to ageing of the population. Access to effective timely treatment can improve vision and reduce incidence of blindness. This study aimed to explore the perspectives of ophthalmologists in the Israeli public healthcare system regarding timely treatment of AMD patients. METHODS: Qualitative semi-structured interviews were conducted in 2020-2021 with 22 senior ophthalmologists, from 10 general hospitals and from two HMOs, representing different geographic regions. All interviewees specialize in retinal diseases and work with AMD patients. Interviews discussed patient pathways involved in the diagnosis and treatment of AMD, access to care, and obstacles to timely care. Thematic analysis was conducted. RESULTS: Based on the interviews, we describe the usual referral and treatment pathways. Themes included regional disparities, long wait times in some areas, a lack of retina specialists, differences in referral pathways, inappropriate use of emergency department to obtain timely treatment, and second-line treatment not fully covered by insurance, most affecting the weakest segments of the population. CONCLUSIONS: Loss of vision incurs high health and societal costs. In the context of insufficient medical manpower in Israel, the healthcare system will need to assess future resources to cope with accumulating burden of AMD cases over time in an ageing population. Precise referral information, and simultaneous referral to imaging and retinal clinics, may minimize delays in treatment. Awareness of AMD symptoms and the importance of early intervention could be highlighted by campaigns, particularly among high-risk groups. HIGHLIGHTS: • Interviews with hospital-based and community ophthalmologists showed regional disparities in AMD treatment, with long wait times and a lack of retina specialists in some areas. • Differences in referral pathways, inappropriate use of emergency department to obtain timely treatment, and second line treatment not fully covered by insurance were highlighted. • The healthcare system will need to assess future resources to cope with accumulating burden of AMD cases over time in an ageing population • Precise referral information, and simultaneous referral to imaging and retinal clinics, may minimize delays in treatment. • Awareness of AMD symptoms and the importance of early intervention should be emphasized in high-risk groups.


Assuntos
Degeneração Macular , Pesquisa Qualitativa , Humanos , Israel/epidemiologia , Degeneração Macular/terapia , Masculino , Feminino , Entrevistas como Assunto , Pessoa de Meia-Idade , Oftalmologistas/estatística & dados numéricos , Encaminhamento e Consulta/estatística & dados numéricos , Qualidade de Vida/psicologia , Acessibilidade aos Serviços de Saúde , Adulto , Idoso
14.
Front Immunol ; 15: 1366841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711521

RESUMO

Introduction: Age-related macular degeneration (AMD) is a prevalent, chronic and progressive retinal degenerative disease characterized by an inflammatory response mediated by activated microglia accumulating in the retina. In this study, we demonstrate the therapeutically effects and the underlying mechanisms of microglial repopulation in the laser-induced choroidal neovascularization (CNV) model of exudative AMD. Methods: The CSF1R inhibitor PLX3397 was used to establish a treatment paradigm for microglial repopulation in the retina. Neovascular leakage and neovascular area were examined by fundus fluorescein angiography (FFA) and immunostaining of whole-mount RPE-choroid-sclera complexes in CNV mice receiving PLX3397. Altered cellular senescence was measured by beta-galactosidase (SA-ß-gal) activity and p16INK4a expression. The effect and mechanisms of repopulated microglia on leukocyte infiltration and the inflammatory response in CNV lesions were analyzed. Results: We showed that ten days of the CSF1R inhibitor PLX3397 treatment followed by 11 days of drug withdrawal was sufficient to stimulate rapid repopulation of the retina with new microglia. Microglial repopulation attenuated pathological choroid neovascularization and dampened cellular senescence in CNV lesions. Repopulating microglia exhibited lower levels of activation markers, enhanced phagocytic function and produced fewer cytokines involved in the immune response, thereby ameliorating leukocyte infiltration and attenuating the inflammatory response in CNV lesions. Discussion: The microglial repopulation described herein are therefore a promising strategy for restricting inflammation and choroidal neovascularization, which are important players in the pathophysiology of AMD.


Assuntos
Aminopiridinas , Neovascularização de Coroide , Modelos Animais de Doenças , Microglia , Animais , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Camundongos Endogâmicos C57BL , Degeneração Macular/patologia , Degeneração Macular/metabolismo , Degeneração Macular/tratamento farmacológico , Inflamação , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Pirróis/farmacologia , Pirróis/uso terapêutico , Senescência Celular/efeitos dos fármacos
15.
J Clin Med ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731137

RESUMO

Drusen are one of the most characteristic pathologies of precursor lesion of age-related macular degeneration (AMD). Drusen comprise a yellowish white substance that accumulates typically under the retinal pigment epithelium (RPE), and their constituents are lipids, complement, amyloid, crystallin, and others. In the past, many researchers have focused on drusen and tried to elucidate the pathophysiology of AMD because they believed that disease progression from early AMD to advanced AMD might be based on drusen or drusen might cause AMD. In fact, it is well established that drusen are the hallmark of precursor lesion of AMD and a major risk factor for AMD progression mainly based on their size and number. However, the existence of advanced AMD without drusen has long been recognized. For example, polypoidal choroidal vasculopathy (PCV), which comprises the majority of AMD cases in Asians, often lacks drusen. Thus, there is the possibility that drusen might be no more than a biomarker of AMD and not a cause of AMD. Now is the time to reconsider the relationship between AMD and drusen. In this review, we focus on early AMD pathogenesis based on basic research from the perspective of cholesterol metabolism and hypoxic response in the retina, and we discuss the role of drusen.

16.
Aging Med (Milton) ; 7(2): 189-201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725692

RESUMO

Objectives: The aim of this study was to investigate the retinal morpho-functional characteristics of patients with neovascular wet age-related macular degeneration (nAMD) treated with intravitreal injection (IV) of aflibercept (AFL). Methods: The study was conducted on 35 patients previously diagnosed with type 1 nAMD who received a fixed-dosing regimen of aflibercept injections over 12 months. The goal was to assess trends in visual abilities over time by measuring visual acuity (VA), contrast sensitivity (CS), visual evoked potentials (VEPs), and spectral domain-optical coherence tomography (SD-OCT). The same psychophysical, electro-functional, and morphological tests administered at baseline (T0) were repeated 4 to 8 weeks after the last aflibercept injection (Tn), resulting in a total of six examinations. Results: At Tn, all subjects exhibited improved VA for both far and near distances compared to values detected at T0. Similarly, VEP amplitude and latency values at Tn showed a greater P100 improvement than those observed at T0. Additionally, the CS examination at Tn demonstrated improvement, particularly at high spatial stimulation frequencies. The Tn SD-OCT results highlighted a reduction in macular thickness compared to T0 values. Conclusions: This exploratory research indicates that intravitreal injections of AFL, following a fixed-dosing regimen, represent a valuable therapeutic approach for enhancing visual performance. This conclusion is supported by comprehensive statistical analysis of psychophysical, electro-functional, and morphological examinations within the same group of patients with nAMD, as demonstrated for the first time.

17.
Transl Res ; 272: 81-94, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38815899

RESUMO

Glyburide, a sulfonylurea drug used to treat type 2 diabetes, boasts neuroprotective effects by targeting the sulfonylurea receptor 1 (SUR1) and associated ion channels in various cell types, including those in the central nervous system and the retina. Previously, we demonstrated that glyburide therapy improved retinal function and structure in a rat model of diabetic retinopathy. In the present study, we explore the application of glyburide in non-neovascular ("dry") age-related macular degeneration (AMD), another progressive disease characterized by oxidative stress-induced damage and neuroinflammation that trigger cell death in the retina. We show that glyburide administration to a human cone cell line confers protection against oxidative stress, inflammasome activation, and apoptosis. To corroborate our in vitro results, we also conducted a case-control study, controlling for AMD risk factors and other diabetes medications. It showed that glyburide use in patients reduces the odds of new-onset dry AMD. A positive dose-response relationship is observed from this analysis, in which higher cumulative doses of glyburide further reduce the odds of new-onset dry AMD. In the quest for novel therapies for AMD, glyburide emerges as a promising repurposable drug given its known safety profile. The results from this study provide insights into the multifaceted actions of glyburide and its potential as a neuroprotective agent for retinal diseases; however, further preclinical and clinical studies are needed to validate its therapeutic potential in the context of degenerative retinal disorders such as AMD.

18.
Exp Eye Res ; 244: 109909, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710357

RESUMO

Neovascular age-related macular degeneration, also known as exudative or wet age-related macular degeneration, is the leading cause of blindness in the developed world. Photobiomodulation has the potential to target the up-stream hypoxic and pro-inflammatory drivers of choroidal neovascularization. This study investigated whether photobiomodulation attenuates characteristic pathological features of choroidal neovascularization in a rodent model. Experimental choroidal neovascularization was induced in Brown Norway rats with laser photocoagulation. A custom-designed, slit-lamp-mounted, 670 nm laser was used to administer retinal photobiomodulation every 3 days, beginning 6 days prior to choroidal neovascularization induction and continuing until the animals were killed 14 days later. The effect of photobiomodulation on the size of choroidal neovascular membranes was determined using isolectin-B4 immunohistochemistry and spectral domain-optical coherence tomography. Vascular leakage was determined with fluorescein angiography. The effect of treatment on levels of vascular endothelial growth factor expression was quantified with enzyme-linked immunosorbent assay. Treatment with photobiomodulation was associated with choroidal neovascular membranes that were smaller, had less fluorescein leakage, and a diminished presence of inflammatory cells as compared to sham eyes. These effects were not associated with a statistically significant difference in the level of vascular endothelial growth factor when compared to sham eyes. The data shown herein indicate that photobiomodulation attenuates pathological features of choroidal neovascularization in a rodent model by mechanisms that may be independent of vascular endothelial growth factor.


Assuntos
Neovascularização de Coroide , Modelos Animais de Doenças , Angiofluoresceinografia , Fotocoagulação a Laser , Terapia com Luz de Baixa Intensidade , Ratos Endogâmicos BN , Tomografia de Coerência Óptica , Fator A de Crescimento do Endotélio Vascular , Animais , Ratos , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/etiologia , Fotocoagulação a Laser/métodos , Terapia com Luz de Baixa Intensidade/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaio de Imunoadsorção Enzimática , Masculino , Microscopia com Lâmpada de Fenda , Imuno-Histoquímica
19.
Biomedicines ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672083

RESUMO

OBJECTIVE: Age-related macular degeneration (AMD), particularly its exudative form, is a primary cause of vision impairment in older adults. As diabetes becomes increasingly prevalent in aging, it is crucial to explore the potential relationship between diabetic retinopathy (DR) and AMD. This study aimed to assess the risk of developing overall, non-exudative, and exudative AMD in individuals with DR compared to those without retinopathy (non-DR) based on a nationwide population study in Taiwan. METHODS: A retrospective cohort study was conducted using the Taiwan National Health Insurance Database (NHIRD) (2000-2013). A total of 3413 patients were placed in the study group (DR) and 13,652 in the control group (non-DR) for analysis. Kaplan-Meier analysis and the Cox proportional hazards model were used to calculate the hazard ratios (HRs) and adjusted hazard ratios (aHRs) for the development of AMD, adjusting for confounding factors, such as age, sex, and comorbid conditions. RESULTS: Kaplan-Meier survival analysis indicated a significantly higher cumulative incidence of AMD in the DR group compared to the non-DR group (log-rank test, p < 0.001). Adjusted analyses revealed that individuals with DR faced a greater risk of overall AMD, with an aHR of 3.50 (95% CI = 3.10-3.95). For senile (unspecified) AMD, the aHR was 3.45 (95% CI = 3.04-3.92); for non-exudative senile AMD, it was 2.92 (95% CI = 2.08-4.09); and for exudative AMD, the aHR was 3.92 (95% CI = 2.51-6.14). CONCLUSION: DR is a significant risk factor for both overall, senile, exudative, and non-exudative AMD, even after adjusting for demographic and comorbid conditions. DR patients tend to have a higher prevalence of vascular comorbidities; however, our findings indicate that the ocular pathologies inherent to DR might have a more significant impact on the progression to AMD. Early detection and appropriate treatment of AMD is critically important among DR patients.

20.
Life (Basel) ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38672747

RESUMO

We investigated the factors associated with the success of switching to faricimab for type 1 macular neovascularization (MNV) refractory to intravitreal aflibercept (IVA). This retrospective cohort study included patients with type 1 MNV who were switched to faricimab because they were refractory to IVA at two centers. The primary endpoint was a more than two-week extension of the treatment interval after 6 months. In addition, factors related to the success or failure of extension and visual and anatomical outcomes were assessed. The analysis included 43 eyes from 43 patients. Extended dosing intervals of >2 weeks were identified in 14 eyes (32.6%). A short dosing interval before switching, absence of polypoidal lesions, and thin central choroidal thickness before switching were identified as factors involved in successful extension. For patients with refractory type 1 MNV, switching to faricimab is a safe and potential option to extend existing dosing intervals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA