Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Toxicol ; 6: 1460271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100892

RESUMO

[This corrects the article DOI: 10.3389/ftox.2024.1376118.].

2.
Front Toxicol ; 6: 1376118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938663

RESUMO

In vitro toxicology research has accelerated with the use of in silico, computational approaches and human in vitro tissue systems, facilitating major improvements evaluating the safety and health risks of novel consumer products. Innovation in molecular and cellular biology has shifted testing paradigms, with less reliance on low-throughput animal data and greater use of medium- and high-throughput in vitro cellular screening approaches. These new approach methodologies (NAMs) are being implemented in other industry sectors for chemical testing, screening candidate drugs and prototype consumer products, driven by the need for reliable, human-relevant approaches. Routine toxicological methods are largely unchanged since development over 50 years ago, using high-doses and often employing in vivo testing. Several disadvantages are encountered conducting or extrapolating data from animal studies due to differences in metabolism or exposure. The last decade saw considerable advancement in the development of in vitro tools and capabilities, and the challenges of the next decade will be integrating these platforms into applied product testing and acceptance by regulatory bodies. Governmental and validation agencies have launched and applied frameworks and "roadmaps" to support agile validation and acceptance of NAMs. Next-generation tobacco and nicotine products (NGPs) have the potential to offer reduced risks to smokers compared to cigarettes. These include heated tobacco products (HTPs) that heat but do not burn tobacco; vapor products also termed electronic nicotine delivery systems (ENDS), that heat an e-liquid to produce an inhalable aerosol; oral smokeless tobacco products (e.g., Swedish-style snus) and tobacco-free oral nicotine pouches. With the increased availability of NGPs and the requirement of scientific studies to support regulatory approval, NAMs approaches can supplement the assessment of NGPs. This review explores how NAMs can be applied to assess NGPs, highlighting key considerations, including the use of appropriate in vitro model systems, deploying screening approaches for hazard identification, and the importance of test article characterization. The importance and opportunity for fit-for-purpose testing and method standardization are discussed, highlighting the value of industry and cross-industry collaborations. Supporting the development of methods that are accepted by regulatory bodies could lead to the implementation of NAMs for tobacco and nicotine NGP testing.

3.
Toxicol Sci ; 194(2): 178-190, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37280087

RESUMO

In vivo models (mostly rodents) are currently accepted by regulatory authorities for assessing acute inhalation toxicity. Considerable efforts have been made in recent years to evaluate in vitro human airway epithelial models (HAEM) as replacements for in vivo testing. In the current work, an organotypic in vitro rat airway epithelial model (RAEM), rat EpiAirway, was developed and characterized to allow a direct comparison with the available HAEM, human EpiAirway, in order to address potential interspecies variability in responses to harmful agents. The rat and human models were evaluated in 2 independent laboratories with 14 reference chemicals, selected to cover a broad range of chemical structures and reactive groups, as well as known acute animal and human toxicity responses, in 3 replicate rounds of experiments. Toxicity endpoints included changes in tissue viability (MTT assay), epithelial barrier integrity (TEER, transepithelial electrical resistance), and tissue morphology (histopathology). The newly developed rat EpiAirway model produced reproducible results across all replicate experiments in both testing laboratories. Furthermore, a high level of concordance was observed between the RAEM and HAEM toxicity responses (determined by IC25) in both laboratories, with R2=0.78 and 0.88 when analyzed by TEER; and R2=0.92 for both when analyzed by MTT. These results indicate that rat and human airway epithelial tissues respond similarly to acute exposures to chemicals. The new in vitro RAEM will help extrapolate to in vivo rat toxicity responses and support screening as part of a 3Rs program.


Assuntos
Anemia Refratária com Excesso de Blastos , Humanos , Ratos , Animais , Sistema Respiratório , Administração por Inalação , Epitélio , Heme
4.
J Nanobiotechnology ; 18(1): 129, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912214

RESUMO

Liquid deposit mimicking surface aerosolization in the airway is a promising strategy for targeting bronchopulmonary tumors with reduced doses of nanoparticle (NPs). In mimicking and studying such delivery approaches, the use of human in vitro 3D culture models can bridge the gap between 2D cell culture and small animal investigations. Here, we exposed airway epithelia to liquid-apical gadolinium-based AGuIX® NPs in order to determine their safety profile. We used a multiparametric methodology to investigate the NP's distribution over time in both healthy and tumor-bearing 3D models. AGuIX® NPs were able to target tumor cells in the absence of specific surface functionalization, without evidence of toxicity. Finally, we validated the therapeutic potential of this hybrid theranostic AGuIX® NPs upon radiation exposure in this model. In conclusion, 3D cell cultures can efficiently mimic the normal and tumor-bearing airway epitheliums, providing an ethical and accessible model for the investigation of nebulized NPs.


Assuntos
Epitélio/efeitos dos fármacos , Gadolínio/uso terapêutico , Nanopartículas/uso terapêutico , Sistema Respiratório/efeitos dos fármacos , Células A549/patologia , Animais , Técnicas de Cultura de Células , Ciclo Celular , Proliferação de Células , Sistemas de Liberação de Medicamentos/métodos , Gadolínio/química , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-32247552

RESUMO

Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue equivalents. In light of these advancements, a "Use of 3D Tissues in Genotoxicity Testing" working group (WG) met at the 7th IWGT meeting in Tokyo in November 2017 to discuss progress with these models and how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have reached an advanced state of validation following over 10 years of development, while liver and airway model-based genotoxicity assays show promise but are at an early stage of development. Further effort in liver and airway model-based assays is needed to address the lack of coverage of the three main endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now sufficiently validated to undergo an independent peer review of the validation study, followed by development of individual OECD Test Guidelines.


Assuntos
Dano ao DNA/efeitos dos fármacos , Metagenômica/tendências , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Dano ao DNA/genética , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Testes para Micronúcleos
6.
Eur J Pharm Sci ; 145: 105233, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31978589

RESUMO

Pulmonary drug delivery has gained great interest as an important subject of research over the past decades given the lung diseases which are affecting millions of people suffer from these diseases. Drug delivery into the respiratory system is influenced by many anatomical and physiological factors such as lung morphometry, breathing patterns, fluid dynamics, particle properties, etc. The respiratory airway structure is one of these parameters which greatly influences the deposition pattern of inhaled drug particles. There have been a wide variety of major morphometric studies, conducted using cadavers to increase an understanding of the respiratory airway anatomy and provide important information for developing realistic airway models. Casting as one of the first methods, was utilized for morphometric studies providing a hollow model for in vitro investigations. The above-mentioned morphometric data were utilized to describe the first idealized airway model as a simple symmetric description of the branching airways, later followed by more realistic asymmetric models. However, even these asymmetric airway models were not good enough to reflect the anatomical complexities of the human respiratory airway and contained several major limitations which made them inefficient. Further attempts alongside with the progress of technology led to introduction of the stochastic and image-based models which provided more realistic and efficient tools for numerical and experimental investigations. The main objective of this study is to provide a comprehensive review about the development of different perspectives of the respiratory airway modeling over the past decades. The following sections will present useful information about anatomy of the human respiratory tract, and different viewpoints of the respiratory airway modeling, including their historical routes, strengths, and deficiencies.


Assuntos
Pulmão/anatomia & histologia , Pulmão/fisiologia , Modelos Biológicos , Mecânica Respiratória/fisiologia , Sistema Respiratório/anatomia & histologia , Administração por Inalação , Aerossóis/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Humanos , Pulmão/efeitos dos fármacos , Mecânica Respiratória/efeitos dos fármacos , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos
7.
Expert Opin Drug Deliv ; 16(1): 7-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463458

RESUMO

INTRODUCTION: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption. AREAS COVERED: This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies. EXPERT OPINION: Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hidrodinâmica , Modelos Biológicos , Administração por Inalação , Aerossóis/administração & dosagem , Asma/tratamento farmacológico , Simulação por Computador , Composição de Medicamentos , Humanos , Nebulizadores e Vaporizadores , Equivalência Terapêutica
8.
J Aerosol Med Pulm Drug Deliv ; 31(2): 103-108, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28880765

RESUMO

BACKGROUND: Current in vitro approaches to assess lung deposition, dissolution, and cellular transport behavior of orally inhaled products (OIPs) have relied on compendial impactors to collect drug particles that are likely to deposit in the airway; however, the main drawback with this approach is that these impactors do not reflect the airway and may not necessarily represent drug deposition behavior in vivo. The aim of this article is to describe the development and method validation of a novel hybrid in vitro approach to assess drug deposition and permeation behavior in a more representative airway model. METHODS: The medium-sized Virginia Commonwealth University (VCU) mouth-throat (MT) and tracheal-bronchial (TB) realistic upper airway models were used in this study as representative models of the upper airway. The TB model was modified to accommodate two Snapwell® inserts above the first TB airway bifurcation region to collect deposited nebulized ciprofloxacin-hydrochloride (CIP-HCL) droplets as a model drug aerosol system. Permeation characteristics of deposited nebulized CIP-HCL droplets were assessed across different synthetic membranes using the Snapwell test system. RESULTS: The Snapwell test system demonstrated reproducible and discriminatory drug permeation profiles for already dissolved and nebulized CIP-HCL droplets through a range of synthetic permeable membranes under different test conditions. The rate and extent of drug permeation depended on the permeable membrane material used, presence of a stirrer in the receptor compartment, and, most importantly, the drug collection method. CONCLUSIONS: This novel hybrid in vitro approach, which incorporates a modified version of a realistic upper airway model, coupled with the Snapwell test system holds great potential to evaluate postairway deposition characteristics, such as drug permeation and particle dissolution behavior of OIPs. Future studies will expand this approach using a cell culture-based setup instead of synthetic membranes, within a humidified chamber, to assess airway epithelia transport behavior in a more representative manner.


Assuntos
Aerossóis , Ciprofloxacina/administração & dosagem , Sistemas de Liberação de Medicamentos , Modelos Anatômicos , Administração por Inalação , Brônquios/metabolismo , Ciprofloxacina/farmacocinética , Liberação Controlada de Fármacos , Humanos , Pulmão/metabolismo , Reprodutibilidade dos Testes , Distribuição Tecidual , Traqueia/metabolismo
9.
Pediatr Pulmonol ; 50(3): 276-283, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24482309

RESUMO

OBJECTIVES: The oral route has been considered superior to the nasal route for aerosol delivery to the lower respiratory tract (LRT) in adults and children. However, there are no data comparing aerosol delivery via the oral and nasal routes in infants. The aim of this study was to compare nasal and oral delivery of aerosol in anatomically correct replicas of infants' faces containing both nasal and oral upper airways. METHODS: Three CT-derived upper respiratory tract ("URT") replicas representing infants/toddlers aged 5, 14 and 20 months were studied and aerosol delivery to the "lower respiratory tract" (LRT) by either the oral or nasal route for each of the replicas was measured at the "tracheal" opening. A radio-labeled (99mDTPA) normal saline solution aerosol was generated by a soft-mist inhaler (SMIRespimat® Boehringer Ingelheim, Germany) and aerosol was delivered via a valved holding chamber (Respichamber® TMI, London, Canada) and an air-tight mask (Unomedical, Inc., McAllen, TX). A breath simulator was connected to the replicas and an absolute filter at the "tracheal" opening captured the aerosol representing "LRT" dose. Age-appropriate mask dimensions and breathing patterns were employed for each of the airway replicas. Two different tidal volumes (Vt ) were used for comparing the nasal versus oral routes. RESULTS: Nasal delivery to the LRT exceeded that of oral delivery in the 5- and 14-month models and was equivalent in the 20-month model. Differences between nasal and oral delivery diminished with "age"/size. Similar findings were observed with lower and higher tidal volumes (Vt ). CONCLUSION: Nasal breathing for aerosol delivery to the "LRT" is similar to, or more efficient than, mouth breathing in infant/toddler models, contrary to what is observed in older children and adults. Pediatr Pulmonol. 2015; 50:276-283. © 2014 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA