Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Biopolymers ; : e23626, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258392

RESUMO

In this study, poly(lactic acid) (PLA)-tetrapropylammonium chloride (TCL)-poly(ethylene glycol) (PEG) nonwoven networks were produced using PLA, PEG with different concentrations (3, 5, 7, and 9 wt%), and TCL. PEG is included as a plasticizer in PLA polymer, which has high biocompatibility but a brittle structure. The importance of this study is to investigate the effect of TCL salt on the characterization of PLA-PEG nanofibers. For this research, the cytotoxicity test system responsible for the fibroblast cell line (L929) was evaluated with the liquid absorption capacity (LAC) and drying time tests for its use in wound dressings. The addition of TCL salt reduced bead formation in PLA-PEG nanofibers and increased the homogeneity of fiber dispersion. The smoothest and most homogeneous nonwoven networks were obtained as PLA-5TCL-PEG. It was also reported that this nonwoven network exhibited liquid absorption behavior with a maximum increase of 150% compared to the PLA-PEG nonwoven network and had the highest Young's modulus value of 12.97 MPa. In addition to these tests, evaluations were made with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), drying time test, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and mechanical tests. In addition, high cell viability was observed in L292 mouse fibroblast cells at the end of the 24th hour, again with the effect of TCL salt. In addition, antibacterial activity was tested against gram-negative E. coli and gram-positive S. aureus bacteria, and it was observed that there was no antibacterial activity. Since PLA-TCL-PEG nonwoven webs have a maximum cell viability of 133.27%, they are recommended as a potential dermal wound dressing.

2.
Eur J Med Chem ; 279: 116807, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39243453

RESUMO

Natural product evodiamine (Evo) and its synthetic derivatives represent an attractive dual Topo 1/2 inhibitors with broad-spectrum antitumor efficacy. However, the clinical applications of these compounds have been impeded by their poor aqueous solubility. Herein, a series of water-soluble 10-substituted-N(14)-phenylevodiamine derivatives were designed and synthesized. The most potent compound 45 featuring a quaternary ammonium salt fragment achieved robust aqueous solubility and nanomolar potency against a panel of human hepatoma cell lines Huh7, HepG2, SK-Hep-1, SMMC-7721, and SMMC-7721/DOX (doxorubicin-resistant cell). Further studies revealed that 45 could inhibit Topo 1 and Topo 2, induce apoptosis, arrest the cell cycle at the G2/M stage and inhibit the migration and invasion. Compound 45 exhibited potent antitumor activity (TGI = 51.1 %, 10 mg/kg) in the Huh7 xenograft model with acceptable safety profile. In addition, a 21-day long-term dose toxicity study confirmed that the maximum tolerated dose of compound 45 was 20 mg/kg. Overall, this study presented a promising Evo-derived candidate for the treatment of hepatocellular carcinoma.

3.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275112

RESUMO

Food packaging films play a vital role in preserving and protecting food. The focus has gradually shifted to safety and sustainability in the preparation of functional food packaging materials. In this study, a bisquaternary ammonium salt of tannic acid (BQTA) was synthesized, and the bioplastics based on BQTA and polyvinyl alcohol (PVA) were created for packaging applications. The impact of BQTA on antibacterial effect, antioxidant capacity, opacity, ultraviolet (UV) protective activity, mechanical strength, thermal stability, and anti-fog of the resultant bioplastics was examined. In vitro antibacterial experiments confirmed that BQTA possesses excellent antimicrobial properties, and only a trace amount addition of BQTA in PVA composite film could inhibit about 100% of Escherichia coli and Staphylococcus aureus. Compared to BQTA/PVA bioplastics with pure PVA, the experiment findings demonstrate that BQTA/PVA bioplastics show strong antioxidant and UV protection action and the performance of fruit preservation. It also revealed a small improvement in thermal stability and tensile strength. The small water contact angle, even at low BQTA concentrations, gave BQTA/PVA bioplastics good anti-fog performance. Based on the findings, bioplastics of BQTA/PVA have the potential to be used to create packaging, and they can be applied as the second (inner) layer of the primary packaging to protect food freshness and nutrition due to their antioxidant activity and biocompatibility.


Assuntos
Antibacterianos , Antioxidantes , Escherichia coli , Embalagem de Alimentos , Álcool de Polivinil , Compostos de Amônio Quaternário , Staphylococcus aureus , Taninos , Álcool de Polivinil/química , Embalagem de Alimentos/métodos , Taninos/química , Taninos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Esterilização/métodos , Conservação de Alimentos/métodos , Resistência à Tração , Raios Ultravioleta , Testes de Sensibilidade Microbiana
4.
Int J Biol Macromol ; 279(Pt 2): 135236, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218171

RESUMO

An intelligent pH response indicator film is an easy-to-use device for the real-time monitoring of meat freshness during transport and storage. Therefore, a novel pH-sensitive anthocyanin indicator film composed of polyvinyl alcohol-blueberry anthocyanin (BA)-2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) called PAH-2.0 with 1.2 mg/mL HACC to monitor meat freshness using HACC as the colorimetric enhancer has been developed. BA and HACC were mixed and immobilized in the polyvinyl alcohol matrix by hydrogen bonds, as confirmed via Fourier-transform infrared spectroscopy and X-ray diffraction. The inclusion of HACC improved the color stability and antioxidant and antibacterial properties of the PAH-2.0 film. When applied to pork for freshness monitoring at 4 °C, three freshness stages, including fresh, sub-fresh, and spoiled, could be clearly distinguished based on the color variations of the PAH-2.0 film. The distinct hierarchical color change from purple to blue-violet and finally to grayish-blue was highly correlated with the indicators of pork freshness: pH values, total volatile basic nitrogen, and total viable count. This study provides a simple and promising approach for fabricating meat freshness indicator films with high color recognition accuracy, thereby offering new possibilities for visual meat freshness monitoring.

5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 845-852, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39170016

RESUMO

Objective: To design and prepare a high efficiency bilirubin adsorbent with good mechanical properties and biocompatibility. Methods: In this study, quaternary ammonium pyridine was designed and synthesized, and then modified polyether sulfone microspheres, or PES/p(4-VP-co-N-VP)@6 microspheres, were prepared by phase conversion and electrostatic spraying. The morphology of the polymer components and the microspheres were studied by means of nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy. The basic properties of the microspheres and their bilirubin adsorption efficiency were tested, and the adsorption mechanism was further explored. Blood cell counts and the clotting time of the microspheres were also measured. Results: The diameter of the modified polyether sulfone microspheres prepared in the study was approximately 700-800 µm. Compared with the original PES microspheres, the surface and internal structure of PES/p(4-VP-co-N-VP)@6 microspheres did not change significantly, and they also had a loose porous structure, with some micropores scattered around in addition to irregular large pores. Compared with the control group, the bilirubin removal effect of the modified microspheres was (94.91±0.73)% after static adsorption in bilirubin PBS buffer solution for 180 min, with the difference being statistically significant (P<0.0001). According to the findings for the clotting time, the activated partial thromboplastin time (APTT) of the blank plasma group, the control PES group, and the modified PES microsphere group were (27.57±1.25) s, (28.47±0.45) s, and (30.4±0.872) s, respectively, and the difference between the experimental group and the other two groups was statistically significant (P<0.01, P<0.05). There was no significant change in red blood cell and white blood cell counts. Conclusion: The microspheres prepared in the study have high efficiency in bilirubin adsorption, excellent mechanical properties and thermal stability, and good blood biocompatibility, and are expected to be used in the clinical treatment of patients with liver failure.


Assuntos
Bilirrubina , Microesferas , Polímeros , Sulfonas , Sulfonas/química , Polímeros/química , Adsorção , Bilirrubina/sangue , Humanos
6.
Se Pu ; 42(8): 783-791, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39086247

RESUMO

Quaternary ammonium salt bactericides are broad-spectrum bactericides often used in oral care products because of their high antibacterial efficacy, strong penetration, and low toxicity. However, the excessive use of quaternary ammonium salt bactericides may cause contact dermatitis, scalding poisoning, and even death. Existing methods to determine quaternary ammonium salt bactericides are unable to meet current requirements owing to the lack of determination components. Therefore, establishing a simple and accurate method for the simultaneous detection of more quaternary ammonium salt bactericides is necessary. In this study, a method that couples sample pretreatment with high performance liquid chromatography-evaporative light-scattering detection (HPLC-ELSD) was developed for the simultaneous determination of quaternary ammonium salt bactericides in oral care products, including dodecyltrimethylammonium chloride, dodecyldimethylbenzylammonium chloride, benzethonium chloride, tetradecyl trimethyl ammonium chloride, tetradecyldimethylbenzylammonium chloride, N-hexadecyltrimethylammonium chloride, benzyldimethylhexadecylammonium chloride, trimethylstearylammonium chloride, stearyldimethylbenzylammonium chloride, and docosyltrimethylammonium chloride. Some of these bactericides do not absorb ultraviolet light, so a universal evaporative light-scattering detector was used owing to testing cost and stability concerns. The paste samples contained thickening agents, which are highly soluble in water but insoluble in organic solvents; these agents can seriously affect the results of sample pretreatment and damage the chromatographic column. Hence, sample dehydration was necessary. In this study, four dehydration methods were compared. Anhydrous sodium sulfate (Na2SO4) was selected, and the amount of Na2SO4 was optimized. Based on the solubility of the 10 target compounds and extraction efficiency, three extraction solvents were compared, and ethanol was selected. Ultrasonic extraction was the primary extraction process used in this study. The effects of different ultrasonication times, temperatures, and powers on the extraction recoveries were also investigated. Ultimately, the optimized conditions were as follows: extraction of the dehydrated paste and powder samples using ethanol at room temperature (25 ℃) for 20 min under 100 W ultrasound power, and dilution of the liquid sample with ethanol. After extraction, the samples were separated on an Acclaim Surfactant column (150 mm×4.6 mm, 5 µm) with 50 mmol/L ammonium acetate aqueous solution (pH=5.5) (A) and acetonitrile (B) as mobile phases. The gradient elution program were as follows: 0-5.0 min, 75%A-35%A, 5.0-15.0 min, 35%A-20%A, 15.0-20.0 min, 20%A, 20.0-21.0 min, 20%A-75%A, 21.0-25.0 min, 75%A. An external standard method was used for quantitative determination. The 10 compounds were analyzed within 25 min. Linear equations, correlation coefficients, and linear ranges were obtained by analyzing a series of mixed standard working solutions. The limits of detection (LODs, S/N=3) and quantification (LOQs, S/N=10) of the 10 components were determined. Stearyldimethylbenzylammonium chloride and docosyltrimethylammonium chloride showed good linear relationships in the range of 10-200 mg/L, while the other compounds demonstrated good linear relationships in the range of 5-100 mg/L. In all cases, correlation coefficients (R2) of no less than 0.9992 were obtained. The LODs and LOQs were in the range of 1.42-3.31 mg/L and 4.25-9.94 mg/L, respectively. Ten analytes were spiked in blank matrices, such as toothpaste (paste), mouthwash (liquid), and dentifrice powder (powder) at three levels, and the recoveries and precisions were calculated. The average recoveries were 87.9%-103.1%, and the corresponding relative standard deviations (RSDs) did not exceed 5.5% (n=6). The developed method was used to detect 109 oral care products. Benzyldimethylhexadecylammonium chloride and stearyldimethylbenzylammonium chloride revealed high detection rates. Moreover, the amount of stearyldimethylbenzylammonium chloride in one toothpaste sample exceeded regulatory requirements. Given its advantages of good precision and accuracy, the developed method is suitable for the quantitative analysis of the 10 aforementioned compounds in typical oral care products. The study findings can serve as a reference for the quality and safety monitoring of oral care products.


Assuntos
Compostos de Amônio Quaternário , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/análise , Cromatografia Líquida de Alta Pressão , Antibacterianos/análise , Luz , Espalhamento de Radiação
7.
Water Sci Technol ; 90(1): 287-302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007320

RESUMO

Extracellular polymeric substances (EPS) are a critical influencing factor in sludge dewatering. Disrupting such EPS contributes to the release of bound water in sludge, enhancing the sludge dewatering performance. In This study, quaternized straw fibers that are destructive to the EPS structure and components in active sludge were prepared useing heterogeneous free radical graft polymerization. Straw fibers, dimethyl diallyl ammonium chloride (DMDAAC), ammonium persulfate (APS), and acrylamide (AM) were taken as the substrate, grafting monomer, catalyst, and cross-linking agent, respectively.The optimal processing conditions determined for the DMDAAC-based quaternization and graft modification of straw fibers were as follows: reaction temperature of 60 °C, reaction time of 5 h, 0.100 g of catalyst APS dosage per gram of straw, and 3.000 ml of DMDAAC dosage per gram of straw. The optimal processing conditions yielded 1.335 g of modified straw fibers per gram of straw, 33.67% grafting rate, and 31.70% substitution of the quaternary ammonium groups. The capillary suction time (CST) was conditioned from 243.3 ± 22.6 s in the original sludge to 134.5 ± 34.45 s. The specific resistance to filtration (SRF) was reduced from 8.82 ± 0.51 × 1012 m/kg in the original sludge to 4.59 ± 0.23 × 1012 m/kg.


Assuntos
Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio Quaternário/química , Compostos Alílicos/química
8.
Beilstein J Org Chem ; 20: 1504-1509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978748

RESUMO

We herein report the asymmetric organocatalytic addition of azlactones to allenoates. Upon using chiral quaternary ammonium salt catalysts, i.e., Maruoka's binaphthyl-based spirocyclic ammonium salts, the addition of various azlactones to allenoates proceeds in a ß-selective manner with moderate levels of enantioselectivities (up to 83:17 er). Furthermore, the obtained products can be successfully engaged in nucleophilic ring opening reactions, thus giving highly functionalized α-amino acid derivatives.

9.
Bioorg Med Chem Lett ; 109: 129824, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823729

RESUMO

Cancer, as a public health issue, is the leading cause of death worldwide. Tetrahydroisoquinoline derivatives have effective biological activities and can be used as potential therapeutic agents for antitumor drugs. In this work, we designed and synthesized a series of novel tetrahydroisoquinoline compounds and evaluated their antitumor activity in vitro on several representative human cancer cell lines. The results showed that the vast majority of compounds showed good inhibitory activities against the cancer cell lines of HCT116, MDA-MB-231, HepG2, and A375.


Assuntos
Antineoplásicos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Tetra-Hidroisoquinolinas , Humanos , Tetra-Hidroisoquinolinas/farmacologia , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga
10.
Water Res ; 257: 121743, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728775

RESUMO

Effective deep-dewatering is crucial for wastewater sludge management. Currently, the dominant methods focus on promoting cell lysis to release intracellular water, but these techniques often lead to secondary pollution and require stringent conditions, limiting their practical use. This study explores an innovative method using a commercially available complex quaternary ammonium salt surfactant, known as G-agent. This agent remarkably reduces the sludge water content from 98.6 % to 56.8 % with a low dosage (50 mg/g DS) and under neutral pH conditions. This approach surpasses Fenton oxidation in terms of dewatering efficiency and avoids the necessity for cell lysis and bound water release, thereby reducing the risk of secondary pollution in the filtrate, including heavy metals, nitrogen, phosphorus, and other contaminants. The G-agent plays a significant role in destabilizing flocs and enhancing flocculation during the conditioning and initial dewatering stages, effectively reducing the solid-liquid interfacial affinity of the sludge. In the compression filtration stage, the agent's solidification effect is crucial in forming a robust skeleton that improves pore connectivity within the filter cake, leading to increased water permeability, drainage performance and water flow-out efficiency. This facilitates deep dewatering of sludge without cell lysis. The study reveals that the G-agent primarily improves water flow-out efficiency rather than water flowability, indicating that cell lysis and bound water release are not indispensable prerequisites for sludge deep-dewatering. Furthermore, it presents an encouraging prospect for overcoming the limitations associated with conventional sludge deep-dewatering processes.


Assuntos
Floculação , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Filtração , Água/química , Tensoativos/química
11.
Gels ; 10(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38786225

RESUMO

In recent years, the quest to advance fuel cell technologies has intensified, driven by the imperative to reduce reliance on hydrocarbon-derived fuels and mitigate pollutant emissions. Proton exchange membranes are a critical material of fuel cell technologies. The potential of ionic liquid-based polymer inclusion membranes or ionogels for proton exchange membrane fuel cells (PEMFCs) has recently appeared. Thermal stability, SEM-EDX characterization, NMR and IR characterization, thermogravimetric analysis, ion exchange capacity, and water uptake are key properties of these membranes which need to be investigated. In this work, ionogel based on quaternary ammonium salts, such as [N8,8,8,1+][Cl-], [N8,8,8,1+][Br-], and [N8-10,8-10,8-10,1+][Cl-] in various compositions with poly(vinyl chloride) are extensively studied and characterized based on those key properties. The best properties were obtained when a quaternary ammonium cation was combined with a bromide anion. Finally, ionogels are tested in microbial fuel cells. Microbial fuel cells based on the ionogel reach a maximum of 147 mW/m2, which represents 55% of the reference membrane (Nafion 212). These results indicate that we still have the possibility of improvement through the appropriate selection of the cation and anion of the ionic liquid. Overall, the promise of ionogel membranes as a viable alternative in fuel cell applications has been demonstrated.

12.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731869

RESUMO

This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.


Assuntos
Compostos de Amônio Quaternário , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/farmacologia , Humanos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química
13.
Colloids Surf B Biointerfaces ; 238: 113914, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663310

RESUMO

Combining with various antibacterial mechanisms is the preferred strategy to fabricate coatings with effective antibacterial performance. Herein, Cu2O nanoparticles and dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride, a kind of quaternary ammonium salt (QAS), were simultaneously incorporated into a moisture-curable acrylic resin in order to achieve both contact-killing and release-killing abilities for antibacterial coatings. The surface morphology, surface composition and basic properties of the coatings were thoroughly characterized. The antibacterial performance of the coatings was determined by in-vitro bacteriostatic test. Under the constant total mass fraction of antibacterial agents, both Cu2O and QAS content possessed the highest value on the coating surface at Cu2O/QAS mass ratio of 1:1, and correspondingly, the coatings reached sterilizing rate above 99 % against both E. coli and S. loihica, indicating the existence of synergistic effect between Cu2O and QAS. The synergistic antibacterial mechanism of the coatings involved two aspects. Firstly, the combination of contact-killing and release-killing biocides resulted in high bactericidal and antibiofilm activity against different bacteria. Further, the grafting of QAS molecules on the surface of Cu2O particles brought about the spontaneous migration of nanoparticles to the coating surface. The interaction between Cu2O and QAS also inhibited the phase separation of QAS and prolonged the release of Cu2+ at the same time. The coatings, therefore, exhibited stable antibacterial performance at varied service conditions.


Assuntos
Antibacterianos , Cobre , Escherichia coli , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário , Propriedades de Superfície , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Escherichia coli/efeitos dos fármacos , Tamanho da Partícula , Nanopartículas/química , Nanopartículas Metálicas/química , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38656920

RESUMO

Interlayer engineering is crucial for achieving efficient and stable organic solar cells (OSCs). Herein, by introducing a commercialized brominated quaternary ammonium salt, hexamethonium bromide (HB), into a perylene diimide (PDI)-structured electron transport layer (ETL), a PDINN:HB hybrid ETL with enhanced charge collection ability and environmental/operational stability is realized. Molecular dynamics simulations and Kelvin probe force microscopy indicate that strong polar bromine and amine groups can form extra interfacial dipoles in the hybrid interlayer, while X-ray photoelectron spectroscopy and electron paramagnetic resonance suggest the hybrid ETL can interact with the Ag cathode, thereby regulating the energy level arrangement at the interface. As for the results, the PDINN:HB hybrid ETL enables improved power conversion efficiency (PCE) from 17.8 to 18.4% and 18.8 to 19.4% in PM6:C5-16 bulk heterojunction- and PM6/L8-BO pseudobulk heterojunction-based OSCs, respectively. The versatility of this method is further verified by introducing a range of brominated quaternary ammonium salts into PDINN, in which a superior PCE and stability are all obtained compared to the reference device.

15.
Heliyon ; 10(7): e28266, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560113

RESUMO

Aim: The current study evaluated the antibacterial activity of a newly developed quaternary ammonium polymethacrylate (QAPM)-containing bioactive glasses (BGs) via a two-step method by our group, namely BGs-HAEMB, and explored its cytotoxicity and biocompatibility. Methods: The antibacterial effects of the BGs-HAEMB against planktonic bacteria, bacterial biofilm formation, and experimental root canal biofilms of persistent pathogens (Enterococcus faecalis, Streptococcus sanguis and Porphyromonas endodontalis) associated with endodontic infection were evaluated in vitro by agar diffusion tests, direct contact tests and live/dead staining. The cytotoxicity and biocompatibility of BGs-HAEMB were evaluated by CCK-8 assays in vitro and a skin implantation model in vivo. Results: Compared to three clinically used endodontic sealers (Endofill, AH Plus, and iRoot SP), BGs-HAEMB exhibited the relatively strongest antibacterial effect against E. faecalis, S. sanguis and P. endodontalis after sitting for 14 and 28 days (P < 0.01). SEM images and CLSM images also showed that for each tested bacteria, BGs-HAEMB killed the most microorganism among all the experimental groups, regardless of treatment for 7 days or 28 days (P < 0.05). Besides, the BGs-HAEMB-treated groups showed a relatively low cytotoxicity (RGRs ranging from 88.6% to 102.9%) after 1, 3, and 7 days of exposure. Meanwhile, after 28 days of implantation, the inflammatory grade in BGs-HAEMB treated group was assessed as Grade I, in which the average numbers of inflammatory cells (6.7 ± 2.1) were less than 25. Conclusions: BGs-HAEMB exerted a long-term and stable antibacterial effect. The remarkable biocompatibility of BGs-HAEMB in vitro and in vivo confirmed its possible clinical application as a potential alternative in the development of the next generation of endodontic sealers.

16.
Water Res ; 256: 121539, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583335

RESUMO

Inorganic coagulants such as poly aluminum ferric chloride (Al/Fe) are applied conventionally to sewage sludge dewatering and can be retained in the sludge cake, causing its conductivity to increase and generate secondary pollution. To reduce these disadvantages, there is a need to develop alternative, more sustainable chemicals as substitutes for conventional inorganic coagulants. In the present investigation, the application of a polymeric chitosan quaternary ammonium salt (CQAS) is explored as a complete, or partial, replacement for Al/Fe in the context of sludge dewatering processes. Laboratory experiments using digested sewage sludge showed that CQAS could effectively substitute for over 80 % of the Al/Fe inorganic coagulant in the sludge dewatering process. This substitution resulted in a reduction of sludge cake conductivity by more than 50 %. Simulation of sludge dewatering curves and imaging of the sludge surface indicated that the addition of CQAS led to an increase in nanosized pores, and a decrease in the specific resistance of the sludge filter cake as the dosage of Al/Fe decreased to around 30 %. The variations of fluorescence emission, quantum yield and carboxylic and amino groups, suggested that the chelating of Al/Fe decreased due to the bridging effects of CQAS. The CQAS had different flocculation bridging effects on various EPS fractions, which varied the amount of protein chelated with Al/Fe in each fraction. This study provides new information about the benefits of replacing conventional inorganic coagulants with natural organic polymers for sewage sludge dewatering, in terms of reduced sludge cake conductivity and greater dry solids content.


Assuntos
Quitosana , Compostos Férricos , Esgotos , Esgotos/química , Quitosana/química , Compostos Férricos/química , Compostos de Amônio Quaternário/química , Floculação , Cloretos/química , Eliminação de Resíduos Líquidos/métodos , Alumínio/química
17.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 3): 314-317, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456052

RESUMO

The crystal structure of the tetra-ethyl-ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) (systematic name: tetra-ethyl-ammonium N-methane-sulfonyl-4-nitro-2-phen-oxy-anilinide), C8H20N+·C13H11N2O5S-, was determined using single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P21/c with one tetra-ethyl-ammonium cation and one nimesulide anion in the asymmetric unit. In the crystal, the ions are linked by C-H⋯N and C-H⋯O hydrogen bonds and C-H⋯π inter-actions. There are differences in the geometry of both the nimesulide anion and the tetra-ethyl-ammonium cation in polymorphs I [Rybczynska & Sikorski (2023 ▸). Sci. Rep. 13, 17268] and II of the title compound.

18.
Macromol Rapid Commun ; 45(9): e2300685, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38339795

RESUMO

The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.


Assuntos
Antibacterianos , Escherichia coli , Nanofibras , Polímeros , Polivinil , Staphylococcus aureus , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polivinil/química , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química , Membranas Artificiais , Testes de Sensibilidade Microbiana , Filtros de Ar , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Filtração/métodos , Tamanho da Partícula , Polímeros de Fluorcarboneto
19.
Heliyon ; 10(3): e25142, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322863

RESUMO

Natural gas hydrate has been a critical risk to the safety of offshore oil and gas well test and subsea transportation. Herein, the effect of three quaternary ammonium salt (QAS) surfactants with monoethylene glycol (MEG) to methane hydrate agglomeration in water-oil system was experimentally studied by a rocking cell. Based on the hydrate volume fraction and the slider trajectory, a classification method of the gas hydrate anti-agglomerants was established. All the QASs in this work show the capability of reducing hydrate agglomeration, among which N1,N3-didodecyl-N1,N1,N3,N3-tetramethylpropane-1,3-diaminium chloride (AA-2) has the best anti-agglomerating performance, and the slider moved at a large trajectory of 61-174 mm. The three QASs were compounded with 5, 10, and 15 wt% (based on water) MEG, respectively. Experimental results showed that AA-2 compounded with MEG (10 wt%) can effectively prevent hydrate agglomeration. The slider moved in the cell at the full trajectory range, showing the compound of grade A performance. The compound of QAS and MEG shows a synergistic effect. The addition of QAS can significantly reduce the required MEG dosage for the hydrate blockage prevention than the MEG only situation. Considering the economic factors of the filed hydrate management, the combination application of QAS + MEG may provide a promising option.

20.
Polymers (Basel) ; 16(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337304

RESUMO

Polyelectrolyte-surfactant complexes (PESCs) have garnered significant attention due to their extensive range of biological and industrial applications. Most present applications are predominantly used in liquid or emulsion states, which limits their efficacy in solid material-based applications. Herein, pre-hydrolyzed polyacrylonitrile (HPAN) and quaternary ammonium salts (QAS) are employed to produce PESC electrospun membranes via electrospinning. The formation process of PESCs in a solution is observed. The results show that the degree of PAN hydrolysis and the varying alkyl chain lengths of surfactants affect the rate of PESC formation. Moreover, PESCs/PCL hybrid electrospun membranes are fabricated, and their antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) are investigated. The resulting electrospun membranes exhibit high bactericidal efficacy, which enables them to serve as candidates for future biomedical and filtration applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA