Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 112(7): e35445, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946669

RESUMO

In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two-diameter]), and a 20-60 V swept potential (49 nm [full-tapered]) (values in parentheses indicate the inner tube diameter at the top part of nanotube layers). The structures of the 50 nm (two-diameter) and 49 nm (full-tapered) samples had smaller inner diameters at the top part of nanotube layers than that of the 80 nm sample, while the outer diameters at the bottom part of nanotube layers were almost the same size as the 80 nm sample. The 80 nm sample, which had the largest nanotube diameter and length, exhibited the greatest burst release, followed by the 50 nm (two-diameter), 49 nm (full-tapered), and 45 nm samples. The initial burst released drug amounts and release rates from the 50 nm (two-diameter) and 49 nm (full-tapered) samples were significantly suppressed by the smaller tube top. On the other hand, the largest proportion of the slow released drug amount to the total released drug amount was observed for the 50 nm (two-diameter) sample. Thus, 50 nm (two-diameter) achieved suppressed initial burst release and large storage capacity. Therefore, this study has, for the first time, applied TiO2 nanotube layers with modulated diameters (two-diameter and full-tapered) to the realization of a localized drug delivery system (LDDS) with customized drug release properties.


Assuntos
Nanotubos , Titânio , Titânio/química , Nanotubos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Tamanho da Partícula
2.
ACS Appl Mater Interfaces ; 16(28): 36752-36762, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968082

RESUMO

This study presents a novel approach to fabricating anodic Co-F-WO3 layers via a single-step electrochemical synthesis, utilizing cobalt fluoride as a dopant source in the electrolyte. The proposed in situ doping technique capitalizes on the high electronegativity of fluorine, ensuring the stability of CoF2 throughout the synthesis process. The nanoporous layer formation, resulting from anodic oxide dissolution in the presence of fluoride ions, is expected to facilitate the effective incorporation of cobalt compounds into the film. The research explores the impact of dopant concentration in the electrolyte, conducting a comprehensive characterization of the resulting materials, including morphology, composition, optical, electrochemical, and photoelectrochemical properties. The successful doping of WO3 was confirmed by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence measurements, X-ray photoelectron spectroscopy (XPS), and Mott-Schottky analysis. Optical studies reveal lower absorption in Co-doped materials, with a slight shift in band gap energies. Photoelectrochemical (PEC) analysis demonstrates improved PEC activity for Co-doped layers, with the observed shift in photocurrent onset potential attributed to both cobalt and fluoride ions catalytic effects. The study includes an in-depth discussion of the observed phenomena and their implications for applications in solar water splitting, emphasizing the potential of the anodic Co-F-WO3 layers as efficient photoelectrodes. In addition, the research presents a comprehensive exploration of the electrochemical synthesis and characterization of anodic Co-F-WO3, emphasizing their photocatalytic properties for the oxygen evolution reaction (OER). It was found that Co-doped WO3 materials exhibited higher PEC activity, with a maximum 5-fold enhancement compared to pristine materials. Furthermore, the studies demonstrated that these photoanodes can be effectively reused for PEC water-splitting experiments.

3.
Micromachines (Basel) ; 15(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38930653

RESUMO

Anodic aluminum oxide (AAO) has been widely applied for the surface protection of electronic component packaging through a pore-sealing process, with the enhanced hardness value reaching around 400 Vickers hardness (HV). However, the traditional AAO fabrication at 0~10 °C for surface protection takes at least 3-6 h for the reaction or other complicated methods used for the pore-sealing process, including boiling-water sealing, oil sealing, or salt-compound sealing. With the increasing development of nanostructured AAO, there is a growing interest in improving hardness without pore sealing, in order to leverage the characteristics of porous AAO and surface protection properties simultaneously. Here, we investigate the effect of voltage on hardness under the same AAO thickness conditions in oxalic acid at room temperature from a normal level of 40 V to a high level of 100 V and found a positive correlation between surface hardness and voltage. The surface hardness values of AAO formed at 100 V reach about 423 HV without pore sealing in 30 min. By employing a hybrid pulse anodization (HPA) method, we are able to prevent the high-voltage burning effect and complete the anodization process at room temperature. The mechanism behind this can be explained by the porosity and photoluminescence (PL) intensity of AAO. For the same thickness of AAO from 40~100 V, increasing the anodizing voltage decreases both the porosity and PL intensity, indicating a reduction in pores, as well as anion and oxygen vacancy defects, due to rapid AAO growth. This reduction in defects in the AAO film leads to an increase in hardness, allowing us to significantly enhance AAO hardness without a pore-sealing process. This offers an effective hardness enhancement in AAO under economically feasible conditions for the application of hard coatings and protective films.

4.
J Funct Biomater ; 15(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921536

RESUMO

Titanium has a long history of clinical use, but the naturally forming oxide is not ideal for bacterial resistance. Anodization processes can modify the crystallinity, surface topography, and surface chemistry of titanium oxides. Anatase, rutile, and mixed phase oxides are known to exhibit photocatalytic activity (PCA)-driven bacterial resistance under UVA irradiation. Silver additions are reported to enhance PCA and reduce bacterial attachment. This study investigated the effects of silver-doping additions to three established anodization processes. Silver doping showed no significant influence on oxide crystallinity, surface topography, or surface wettability. Oxides from a sulfuric acid anodization process exhibited significantly enhanced PCA after silver doping, but silver-doped oxides produced from phosphoric-acid-containing electrolytes did not. Staphylococcus aureus attachment was also assessed under dark and UVA-irradiated conditions on each oxide. Each oxide exhibited a photocatalytic antimicrobial effect as indicated by significantly decreased bacterial attachment under UVA irradiation compared to dark conditions. However, only the phosphorus-doped mixed anatase and rutile phase oxide exhibited an additional significant reduction in bacteria attachment under UVA irradiation as a result of silver doping. The antimicrobial success of this oxide was attributed to the combination of the mixed phase oxide and higher silver-doping uptake levels.

5.
Environ Sci Pollut Res Int ; 31(30): 43186-43197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890254

RESUMO

Development of nanoporous structures utilizing a single step of anodization technique is well recognized as a cost-effective and straightforward approach for several applications. In the current work, anodized alumina was developed with nanoporous structure by utilizing oxalic acid as an electrolyte with a continuous voltage of 40 V. The formed nanoporous structure was subjected to desalination application because of its high absorbance of broadband solar spectrum energy. The desalination setup consists of two solar stills namely conventional and modified. The developed structure is placed in the modified still to examine its performance. It was observed that the structure distributing heat to surrounding water by absorbing photon energy from the sun through the nanopores and giving an efficient pathway to the water vapours for developing effective desalination. The nanoporous structure having ~ 45 nm average diameter. Furthermore, the band gap energy of nanoporous structure was found to be ~ 2.5 eV (absorption spectrum fitting) and ~ 2.8 eV (Tauc plot). The nanoporous structure possess the visible light spectra in solar region which helps the band gaps of nanoporous structure to provide an additional supply of energy for generating more water to evaporate. Moreover, the Urbach energy of the structure is 0.5 eV which reveals less defects in the modified still. The overall distillate yield of modified still was increased to 21% in contrast to conventional. Water quality analysis was also carried out before and after the desalination experiments, and the results were within acceptable limits set by World Health Organization (WHO).


Assuntos
Óxido de Alumínio , Nanoporos , Óxido de Alumínio/química , Energia Solar , Purificação da Água/métodos , Porosidade
6.
Materials (Basel) ; 17(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38730944

RESUMO

This study aimed to investigate the fabrication and characterization of hexagonal titanium dioxide nanotubes (hTNTs) compared to compact TiO2 layers, focusing on their structural, electrochemical, corrosion, and mechanical properties. The fabrication process involved the sonoelectrochemical anodization of titanium foil in various electrolytes to obtain titanium oxide layers with different morphologies. Scanning electron microscopy revealed the formation of well-ordered hexagonal TNTs with diagonals in the range of 30-95 nm and heights in the range of 3500-4000 nm (35,000-40,000 Å). The electrochemical measurements performed in 3.5% NaCl and Ringer's solution confirmed a more positive open-circuit potential, a lower impedance, a higher electrical conductivity, and a higher corrosion rate of hTNTs compared to the compact TiO2. The data revealed a major drop in the impedance modulus of hTNTs, with a diagonal of 46 ± 8 nm by 97% in 3.5% NaCl and 96% in Ringer's solution compared to the compact TiO2. Nanoindentation tests revealed that the mechanical properties of the hTNTs were influenced by their diagonal size, with decreasing hardness and Young's modulus observed with an increasing diagonal size of the hTNTs, accompanied by increased plastic deformation. Overall, these findings suggest that hTNTs exhibit promising structural and electrochemical properties, making them potential candidates for various applications, including biosensor platforms.

7.
Anal Sci ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727930

RESUMO

Analyzing pharmaceutical products is a quality control requirement in a production facility. This study presents a CuO electrode-based reusable non-enzymatic sensor as an alternative method for rapid analysis of glucose levels in glucose infusions. CuO is extensively employed as an electrode material in non-enzymatic glucose sensors. Conventionally, these electrodes are fabricated using chemical synthesis of CuO followed by immobilization to the electrode substrate. In contrast, here, Cu metal was mechanically modified to create a grooved surface, followed by electrochemical anodization and subsequent annealing process to grow a seamless CuO layer in situ with enhanced catalytic activity. The morphology of the electrodes was characterized using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The direct electrocatalytic activity of the developed CuO-modified electrode towards glucose oxidation in alkaline media was investigated by cyclic voltammetry in detail. The CuO-modified electrode commenced the oxidation process around 0.10 V vs. Ag pseudo-reference electrode, demonstrating a significant reduction in the overvoltage for glucose oxidation compared to the bare Cu electrode. The sensor is capable of detecting glucose at low oxidation potentials such as 0.2 V with a sensitivity value of 0.37 µA ppm-1, a wide linear range (80-2300 ppm), limit of quantification (LOQ) of 1 ppm, greater repeatability, 1% precision, 3% bias, a short response time (80 s), good reproducibility and excellent reusability (196 consecutive attempts). The enhanced performance and cost-effectiveness make this sensor a promising alternative method for product analysis in glucose injection solutions.

8.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727349

RESUMO

Ni nanowire array electrodes with an extremely large surface area were made through an electrochemical reduction process utilizing an anodized alumina template with a pore length of 320 µm, pore diameter of 100 nm, and pore aspect ratio of 3200. The electrodeposited Ni nanowire arrays were preferentially oriented in the (111) plane regardless of the deposition potential and exhibited uniaxial magnetic anisotropy with easy magnetization in the axial direction. With respect to the magnetic properties, the squareness and coercivity of the electrodeposited Ni nanowire arrays improved up to 0.8 and 550 Oe, respectively. It was also confirmed that the magnetization reversal was suppressed by increasing the aspect ratio and the hard magnetic performance was improved. The electrocatalytic performance for hydrogen evolution on the electrodeposited Ni nanowire arrays was also investigated and the hydrogen overvoltage was reduced down to ~0.1 V, which was almost 0.2 V lower than that on the electrodeposited Ni films. Additionally, the current density for hydrogen evolution at -1.0 V and -1.5 V vs. Ag/AgCl increased up to approximately -580 A/m2 and -891 A/m2, respectively, due to the extremely large surface area of the electrodeposited Ni nanowire arrays.

9.
Small ; : e2400891, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639019

RESUMO

Capillary metal tubes have attracted considerable interest for flexible electronics, portable devices, trace sampling, and detection. Tailoring the microstructure and wettability inside the capillary tubes is of paramount importance, yet it presents great difficulty because of the spatial confinement. Here, the coupling effect is revealed between the fluidic and electric field induced by bubble motion in a confined space during anodic oxidation. By controlling the bubble regeneration and flow rate, uniform and superhydrophilic TiO2 nanotube arrays are developed throughout the inner surface of an ultrafine Ti tube with a diameter of 0.4 mm and length of 1000 mm, equivalent to an aspect ratio of 2500 that is the largest value being ever reported. The inner surface of a capillary tube is further coated with a polytetrafluoroethylene layer and explored as a sensing needle for liquid detection in terms of concentration and species. This study provides an innovative approach to tailor the microstructure and wettability in a confined space for functional capillary tubes.

10.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541444

RESUMO

Titanium is the most used material for implant production. To increase its biocompatibility, continuous research on new coatings has been performed by the scientific community. The aim of the present paper is to prepare new coatings on the surfaces of the pure Ti Grade 2 and the Ti6Al4V alloy. Three types of coatings were achieved by applying anodization and chemical vapor deposition (CVD) methods: TiO2 nanotubes (TNTs) were formed by anodization, carbon nanotubes (CNTs) were obtained through a metal-catalyst-free CVD process, and a bilayer coating (TiO2 nanotubes/carbon nanostructures) was prepared via successive anodization and CVD processes. The morphology and structure of the newly developed coatings were characterized using SEM, EDX, AFM, XRD, and Raman spectroscopy. It was found that after anodization, the morphology of the TiO2 layer on pure Ti consisted of a "sponge-like" structure, nanotubes, and nano-rods, while the TNTs layer on the Ti alloy comprised mainly nanotubes. The bilayer coatings on both materials demonstrated different morphologies: the pure Ti metal was covered by a layer of nanotubular and nano-rod TiO2 structures, followed by a dense carbon layer decorated with carbon nanoflakes, and on the Ti alloy, first, a TNTs layer was formed, and then carbon nano-rods were deposited using the CVD method.

11.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470740

RESUMO

The use of heterogeneous photocatalysis in biologically contaminated water purification processes still requires the development of materials active in visible light, preferably in the form of thin films. Herein, we report nanotube structures made of TiO2/Ag2O/Au0, TiO2/Ag2O/PtOx, TiO2/Cu2O/Au0, and TiO2/Cu2O/PtOx obtained via one-step anodic oxidation of the titanium-based alloys (Ti94Ag5Au1, Ti94Cu5Pt1, Ti94Cu5Au1, and Ti94Ag5Pt1) possessing high visible light activity in the inactivation process of methicillin-susceptible S. aureus and other pathogenic bacteria-E. coli, Clostridium sp., and K. oxytoca. In the samples made from Ti-based alloys, metal/metal oxide nanoparticles were formed, which were located on the surface and inside the walls of the NTs. The obtained results showed that oxygen species produced at the surface of irradiated photocatalysts and the presence of copper and silver species in the photoactive layers both contributed to the inactivation of bacteria. Photocatalytic inactivation of E. coli, S. aureus, and Clostridium sp. was confirmed via TEM imaging of bacterium cell destruction and the detection of CO2 as a result of bacteria cell mineralization for the most active sample. These results suggest that the membrane ruptures as a result of the attack of active oxygen species, and then, both the membrane and the contents are mineralized to CO2.

12.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38470770

RESUMO

Conventional sandwich structure photoelectrochemical UV detectors cannot detect UV light below 300 nm due to UV filtering problems. In this work, we propose to place the electron collector inside the active material, thus avoiding the effect of electrodes on light absorption. We obtained a TiO2-nanotubes@Ti@quartz photoanode structure by precise treatment of a commercial Ti mesh by anodic oxidation. The structure can absorb any light in the near-UV band and has superior stability to other metal electrodes. The final encapsulated photoelectrochemical UV detectors exhibit good switching characteristics with a response time below 100 ms. The mechanism of the oxidation conditions on the photovoltaic performance of the device was investigated by the electrochemical impedance method, and we obtained the optimal synthesis conditions. Response tests under continuous spectroscopy confirm that the response range of the device is extended from 300-400 nm to 240-400 nm. This idea of a built-in collector is an effective way to extend the response range of a photoelectrochemical detector.

13.
Chem Asian J ; 19(7): e202400001, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38403839

RESUMO

Bacterial contamination of implant surfaces is one of the primary causes of their failure, and this threat has been further exacerbated due to the emergence of drug-resistant bacteria. Nanostructured mechanobactericidal surfaces that neutralize bacteria via biophysical forces instead of traditional biochemical routes have emerged as a potential remedy against this issue. Here, we report on the bactericidal activity of titania nanotubes (TNTs) prepared by anodization, a well-established and scalable method. We investigate the differences in bacterial behavior between three different topographies and demonstrate the applicability of this technique on complex three-dimensional (3D) geometries. It was found that the metabolic activity of bacteria on such surfaces was lower, indicative of disturbed intracellular processes. The differences in deformations of the cell wall of Gram-negative and positive bacteria were investigated from electron micrographs Finally, nanoindentation experiments show that the nanotubular topography was durable enough against forces typically experienced in daily life and had minimal deformation under forces exerted by bacteria. Our observations highlight the potential of the anodization technique for fabricating mechanobactericidal surfaces for implants, devices, surgical instruments, and other surfaces in a healthcare setting in a cheap, scalable way.


Assuntos
Nanoestruturas , Nanotubos , Nanoestruturas/química , Nanotubos/química , Titânio/química , Antibacterianos/farmacologia , Antibacterianos/química , Propriedades de Superfície
14.
ACS Appl Mater Interfaces ; 16(4): 4430-4438, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232230

RESUMO

Anodic titanium dioxide (TiO2) nanostructures, i.e., obtained by electrochemical anodization, have excellent control over the nanoscale morphology and have been extensively investigated in biomedical applications owing to their sub-100 nm nanoscale topography range and beneficial effects on biocompatibility and cell interactions. Herein, we obtain TiO2 nanopores (NPs) and nanotubes (NTs) with similar morphologies, namely, 15 nm diameter and 500 nm length, and investigate their characteristics and impact on stem cell adhesion. We show that the transition of TiO2 NPs to NTs occurs via a pore/wall splitting mechanism and the removal of the fluoride-rich layer. Furthermore, in contrast to the case of NPs, we observe increased cell adhesion and proliferation on nanotubes. The enhanced mesenchymal stem cell adhesion/proliferation seems to be related to a 3-fold increase in activated integrin clustering, as confirmed by immunogold labeling with ß1 integrin antibody on the nanostructured layers. Moreover, computations of the electric field and surface charge density show increased values at the inner and outer sharp edges of the top surfaces of the NTs, which in turn can influence cell adhesion by increasing the bridging interactions mediated by proteins and molecules in the environment. Collectively, our results indicate that the nanoscale surface architecture of the lateral spacing topography can greatly influence stem cell adhesion on substrates for biomedical applications.


Assuntos
Nanoporos , Nanotubos , Propriedades de Superfície , Nanotubos/química , Comunicação Celular , Adesão Celular , Titânio/química
15.
Heliyon ; 10(2): e24247, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293466

RESUMO

In this research, the effect of anodization time on the length of the titanium oxide nanotube arrays (TNAs) and photovoltaic parameters of back-side illuminated dye-sensitized solar cells (DSSCs) were investigated. The TNAs were characterized using X-ray diffraction (X-ray) or (XRD), and scanning electron microscopy (SEM). Anodic TNAs having tube lengths from 7.9 to 20.17 µm were produced in ethylene glycol containing ammonium fluoride-NH4F by increasing the anodizing time from 20 min to 6 h. Based on I-V curves, the power conversion efficiency (PCE) of back-side illuminated dye sensitized solar cells (DSSCs) increased for TNAs grown for up to 120 min, but decreased afterward. Using electrochemical impedance spectroscopy (EIS), we understand that the resistance of the TNAs decreased from 94.82 Ω cm-2 for TNAs anodized for 20 min down to 50.43 Ω cm-2 for those TNAs anodized for 120 min, however, it increases for TNAs anodized for longer periods of time. Furthermore, the short circuit current density (Jsc) increased from 3.14 to 5.67 mA cm-2 during 2 h anodic oxidation for TNAs, and leading to enhanced efficiency of about 200 % (from 1.19 % to 2.45 %). We interpret this behaviour with the top surface morphology evolution of TNAs as a function of anodization time which is associated with the formation of top surface nanograss and bundling the tubes for specific durations.

16.
Heliyon ; 10(1): e23722, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205290

RESUMO

Titanium oxide nanopowder (TiO2 NPs) was synthesized via anodization in 0.7 M perchloric acid then annealed in nitrogen at 450 °C for 3 h to prepared the Titanium Oxide Nitrogen annealed nanoparticles (TiO2 NPs-N2) powder as catalytic support. Using a photodeposition process, gold was added with isopropanol as a sacrificial donor and H[AuCl4] acid, producing gold nanoparticles on nitrogen-annealed titanium oxide nanoparticles (Au-NPs on TiO2-NPs-N2). The mass loading of Au NPs was 2.86 × 10-4 (g/cm2). TEM images of Au NPs on TiO2-NPs-N2 suggest circular particles with a tendency to agglomerate. Cyclic voltammetry (CV) was used to investigate the electrocatalytic performance of the Au NPs/TiO2-NPs-N2 catalysts in ferrocyanide, KOH, and H2SO4, and the results were compared to those of a polycrystalline Au electrode that is readily accessible in the market. In KOH, H2SO4, and (2 M KOH + 0.1 M glycerol) solutions, the Au NPs/TiO2-NPs-N2 electrode displayed a startlingly high electrocatalytic performance. Using CV, the electrocatalytic oxygen reduction reaction (ORR) of Au NPs/TiO2-NPs-N2 and Au-NPs against glycerol oxidation in basic media was studied. The results indicated that Au NPs/TiO2-NPs-N2 is a promising support material for improving the electrocatalytic activity for acidic and basic oxidation. The electrode made of Au NPs/TiO2-NTs-N2 has steady electrocatalytic activity and may be reused repeatedly. TiO2 NPs and Au NPs/TiO2NPs-N2 showed satisfactory antibacterial activity against some human pathogenic bacteria using the disc diffusion method.

17.
ACS Appl Mater Interfaces ; 16(1): 376-388, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131318

RESUMO

The aim of the experiment was to evaluate the biocompatibility of four 3D-printed biomaterials planned for use in the surgical treatment of finger amputees: Ti-6Al-4 V (Ti64), ZrO2-Al2O3 ceramic material (ATZ20), and osteoconductive (anodized Ti64) and antibacterial (Hydroxyapatite, HAp) coatings that adhere well to materials dedicated to finger bone implants. The work concerns the correlation of mechanical, microstructural, and biological properties of dedicated materials. Biological tests consisted of determining the overall cytotoxicity of the organism on the basis of in vivo tests carried out in accordance with the ISO 10993-6 and ISO 10993-11 standards. Clinical observations followed by diagnostic examinations, histopathological evaluation, and biochemical characterization showed no significant differences between control and tested groups of animals. The wound healed without complication, and no pathological effects were found. The wear test showed the fragility of the hydroxyapatite thin layer and the mechanical stability of the zirconia-based ceramic substrate. Electron microscopy observations revealed the layered structure of tested substrates and coatings.


Assuntos
Materiais Biocompatíveis , Próteses e Implantes , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Durapatita/farmacologia , Cerâmica/farmacologia , Titânio/farmacologia , Titânio/química , Ligas/farmacologia , Ligas/química , Propriedades de Superfície , Teste de Materiais
18.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063695

RESUMO

Electrochemical anodization is already a well-established process, owing to its multiple benefits for creating high-grade titanium dioxide nanotubes with suitable characteristics and tunable shapes. Nevertheless, more research is necessary to fully comprehend the basic phenomena at the anode-electrolyte interface during anodization. In a recent paper, we proposed the use of sawtooth-shaped voltage pulses for Ti anodization, which controls the pivoting point of the balance between the two processes that compete to create nanotubes during a self-organization process: oxide etching and oxidation. Under these conditions, pulsed anodization clearly reveals the history of nanotube growth as recorded in the nanotube morphology. We show that by selecting the suitable electrolyte and electrical discharge settings, a nanoporous structure may be generated as a repeating pattern along the nanotube wall axis. We report the findings in terms of nanotube morphology, crystallinity, surface chemistry, photocatalytic activity, and surface hydrophilicity as they relate to the electrical parameters of electrochemical anodization. Aside from their fundamental relevance, our findings could lead to the development of a novel form of TiO2 nanotube array layer.

19.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139637

RESUMO

Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup.

20.
ACS Appl Mater Interfaces ; 15(48): 55232-55243, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38014813

RESUMO

Promoting osseointegration is an essential step in improving implant success rates. Lithium has gradually gained popularity for promoting alkaline phosphatase activity and osteogenic gene expression in osteoblasts. The incorporation of lithium into a titanium surface has been reported to change its surface charge, thereby enhancing its biocompatibility. In this study, we applied anodization as a novel approach to immobilizing Li on a titanium surface and evaluated the changes in its surface characteristics. The objective of this study was to determine the effect of Li treatment of titanium on typical proteins, such as albumin, laminin, and fibronectin, in terms of their adsorption level as well as on the attachment of osteoblast cells. Titanium disks were acid-etched by 66 wt % H2SO4 at 120 °C for 90 s and set as the control group. The etched samples were placed in contact with an anode, while a platinum bar served as the counter electrode. Both electrodes were mounted on a custom electrochemical cell filled with 1 M LiCl. The samples were anodized at constant voltages of 1, 3, and 9 V. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results showed no significant differences in the topography. However, the ζ potentials of the 3 V group were higher than those of the control group at a physiological pH of 7.4. Interestingly, the adsorption level of the extracellular matrix protein was mostly enhanced on the 3 V-anodized surface. The number of attached cells on the Li-anodized surfaces increased. The localization of vinculin at the tips of the stretching cytoplasmic projections was observed more frequently in the osteoblasts on the 3 V-anodized surface. Although the optimal concentration or voltage for Li application should be investigated further, this study suggests that anodization could be an effective method to immobilize lithium ions on a titanium surface and that modifying the surface charge characteristics enables a direct protein-to-material interaction with enhanced biological adhesion.


Assuntos
Lítio , Titânio , Adesão Celular , Lítio/farmacologia , Adsorção , Titânio/farmacologia , Titânio/metabolismo , Comunicação Celular , Osteoblastos , Íons/metabolismo , Propriedades de Superfície , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...