Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Drug Des Devel Ther ; 18: 2367-2379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911033

RESUMO

Background: Anthraquinone drugs are widely used in the treatment of tumors. However, multidrug resistance and severe cardiac toxicity limit its use, which have led to the discovery of new analogues. In this paper, 4-Deoxy-ε-pyrromycinone (4-Deo), belonging to anthraquinone compounds, was first been studied with the anti-tumor effects and the safety in vitro and in vivo as a new anti-tumor drug or lead compound. Methods: The quantitative analysis of 4-Deo was established by UV methodology. The anti-cancer effect of 4-Deo in vitro was evaluated by cytotoxicity experiments of H22, HepG2 and Caco2, and the anti-cancer mechanism was explored by cell apoptosis and cycle. The tumor-bearing mouse model was established by subcutaneous inoculation of H22 cells to evaluate the anti-tumor effect of 4-Deo in vivo. The safety of 4-Deo was verified by the in vitro safety experiments of healthy cells and the in vivo safety experiments of H22 tumor-bearing mice. Tumor tissue sections were labeled with CRT, HMGB1, IL-6 and CD115 to explore the preliminary anti-cancer mechanism by immunohistochemistry. Results: In vitro experiments demonstrated that 4-Deo could inhibit the growth of H22 by inducing cell necrosis and blocking cells in S phase, and 4-Deo has less damage to healthy cells. In vivo experiments showed that 4-Deo increased the positive area of CRT and HMGB1, which may inhibit tumor growth by triggering immunogenic cell death (ICD). In addition, 4-Deo reduced the positive area of CSF1R, and the anti-tumor effect may be achieved by blocking the transformation of tumor-associated macrophages (TAMs) to M2 phenotype. Conclusion: In summary, this paper demonstrated the promise of 4-Deo for cancer treatment in vitro and in vivo. This paper lays the foundation for the study of 4-Deo, which is beneficial for the further development anti-tumor drugs based on the lead compound of 4-Deo.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Antraquinonas/farmacologia , Antraquinonas/química , Antraquinonas/síntese química , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade , Camundongos Endogâmicos BALB C
2.
Clin Transl Oncol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703335

RESUMO

BACKGROUND: Cuproptosis, as a unique modality of regulated cell death, requires the involvement of ubiquitin-binding enzyme UBE2D2. However, the prognostic and immunotherapeutic values of UBE2D2 in pan-cancer remain largely unknown. METHODS: Using UCSC Xena, TIMER, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) databases, we aimed to explore the differential expression pattern of UBE2D2 across multiple cancer types and to evaluate its association with patient prognosis, clinical features, and genetic variations. The association between UBE2D2 and immunotherapy response was assessed by gene set enrichment analysis, tumor microenvironment, immune gene co-expression and drug half maximal inhibitory concentration (IC50) analysis. RESULTS: The mRNA and protein levels of UBE2D2 were markedly elevated in most cancer types, and UBE2D2 exhibited prognostic significance in liver hepatocellular carcinoma (LIHC), kidney chromophobe (KICH), uveal melanomas (UVM), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and kidney renal papillary cell carcinoma (KIRP). UBE2D2 expression was correlated with clinical features, tumor mutation burden, microsatellite instability, and anti-tumor drug resistance in several tumor types. Gene enrichment analysis showed that UBE2D2 was significantly associated with immune-related pathways. The expression level of UBE2D2 was correlated with immune cell infiltration, including CD4 + T cells、Macrophages M2、CD8 + T cells in pan-cancer. PDCD1, CD274 and CTLA4 expression levels were positively correlated with UBE2D2 level in multiple cancers. CONCLUSIONS: We comprehensively investigated the potential value of UBE2D2 as a prognostic and immunotherapeutic predictor for pan-cancer, providing a novel insight for cancer immunotherapy.

3.
Acta Pharm Sin B ; 14(4): 1742-1758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572099

RESUMO

Mitochondrial membrane remodeling can trigger the release of mitochondrial DNA (mtDNA), leading to the activation of cellular oxidative stress and immune responses. While the role of mitochondrial membrane remodeling in promoting inflammation in hepatocytes is well-established, its effects on tumors have remained unclear. In this study, we designed a novel Pt(IV) complex, OAP2, which is composed of oxaliplatin (Oxa) and acetaminophen (APAP), to enhance its anti-tumor effects and amplify the immune response. Our findings demonstrate that OAP2 induces nuclear DNA damage, resulting in the production of nuclear DNA. Additionally, OAP2 downregulates the expression of mitochondrial Sam50, to promote mitochondrial membrane remodeling and trigger mtDNA secretion, leading to double-stranded DNA accumulation and ultimately synergistically activating the intracellular cGAS-STING pathway. The mitochondrial membrane remodeling induced by OAP2 overcomes the limitations of Oxa in activating the STING pathway and simultaneously promotes gasdermin-D-mediated cell pyroptosis. OAP2 also promotes dendritic cell maturation and enhances the quantity and efficacy of cytotoxic T cells, thereby inhibiting cancer cell proliferation and metastasis. Briefly, our study introduces the first novel small-molecule inhibitor that regulates mitochondrial membrane remodeling for active immunotherapy in anti-tumor research, which may provide a creative idea for targeting organelle in anti-tumor therapy.

4.
Enzyme Microb Technol ; 175: 110406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330706

RESUMO

The chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol has attracted increasing attentions in recent years in the field of pharmaceuticals because of its important use as a building block in the synthesis of novel anti-tumor drugs targeting tropomyosin receptor kinases. In the present study, a ω-transaminase (ωTA) library consisting of 21 (R)-enantioselective enzymes was constructed and screened for the asymmetric biosynthesis of (R)-2-(1-aminoethyl)-4-fluorophenol from its prochiral ketone. Using (R)-α-methylbenzylamine, D-alanine, or isopropylamine as amino donor, 18 ωTAs were identified with target activity and the enzyme AbTA, which was originally identified from Arthrobacter sp. KNK168, was found to be a potent candidate. The E. coli whole cells expressing AbTA could be used as catalysts. The optimal temperature and pH for the activity were 35-40 °C and pH8.0, respectively. Simple alcohols (such as ethanol, isopropanol, and methanol) and dimethyl sulfoxide were shown to be good cosolvents. High activities were detected when using ethanol and dimethyl sulfoxide at the concentrations of 5-20%. In the scaled-up reaction of 1-liter containing 13 mM ketone substrate, about 50% conversion was achieved in 24 h. 6.4 mM (R)-2-(1-aminoethyl)-4-fluorophenol was generated. After a simple and efficient process of product isolation and purification (with 98.8% recovery), 0.986 g yellowish powder of the product (R)-2-(1-aminoethyl)-4-fluorophenol with high (R)-enantiopurity (up to 100% enantiomeric excess) was obtained. This study established an overall process for the biosynthesis of the high value pharmaceutical chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol by ωTA. Its applicable potential was exemplified by gram-scale production.


Assuntos
Antineoplásicos , Fenóis , Transaminases , Dimetil Sulfóxido , Escherichia coli , Cetonas , Antineoplásicos/farmacologia , Catálise , Etanol
5.
J Nat Med ; 78(2): 355-369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265611

RESUMO

Chemotherapy is still a prevalent strategy for clinical lung cancer treatment. However, the inevitable emerged drug resistance has become a great hurdle to therapeutic effect. Studies have demonstrated that the primary cause of drug resistance is a decrease in the chemotherapeutic medicine concentration. Several lectins have been confirmed to be effective as chemotherapy adjuvants, enhancing the anti-tumor effects of chemotherapy drugs. Here, we combined phytohemagglutinin (PHA), which has been reported possess anti-tumor effects, with chemotherapy drugs Cisplatin (DDP) and Adriamycin (ADM) on lung cancer cells to detect the sensitivities of PHA as a chemotherapy adjuvant. Our results demonstrated that the PHA significantly enhanced the sensitivity of lung cancer cells to DDP and ADM, and Western blot showed that PHA combined with DDP or ADM enhance cytotoxic effects by inhibiting autophagy and promoting apoptosis. More importantly, we found PHA enhanced the chemotherapeutic drugs cytotoxicity by changing the cell membrane to increase the intracellular chemotherapeutic drugs concentration. Besides, the combination of PHA and ADM increased the ADM concentration in the multidrug-resistant strain A549-R cells and achieved the drug sensitization effect. Our results suggest that PHA combined with chemotherapy can be applied in the treatment of lung cancer cells and lung cancer multidrug-resistant strains, and provide a novel strategy for clinical tumor chemotherapy and a new idea to solve the problem of drug resistance in clinical lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Phaseolus , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Fito-Hemaglutininas/farmacologia , Fito-Hemaglutininas/metabolismo , Fito-Hemaglutininas/uso terapêutico , Phaseolus/metabolismo , Permeabilidade da Membrana Celular , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Apoptose , Proliferação de Células
6.
Acta Naturae ; 15(3): 100-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908773

RESUMO

Tumor cells endure continuous DNA replication stress, which opens the way to cancer development. Despite previous research, the prognostic implications of DNA replication stress on lung adenocarcinoma (LUAD) have yet to be investigated. Here, we aimed to investigate the potential of DNA replication stress-related genes (DNARSs) in predicting the prognosis of individuals with LUAD. Differentially expressed genes (DEGs) originated from the TCGA-LUAD dataset, and we constructed a 10-gene LUAD prognostic model based on DNARSs-related DEGs (DRSDs) using Cox regression analysis. The receiver operating characteristic (ROC) curve demonstrated excellent predictive capability for the LUAD prognostic model, while the Kaplan-Meier survival curve indicated a poorer prognosis in a high-risk (HR) group. Combined with clinical data, the Riskscore was found to be an independent predictor of LUAD prognosis. By incorporating Riskscore and clinical data, we developed a nomogram that demonstrated a capacity to predict overall survival and exhibited clinical utility, which was validated through the calibration curve, ROC curve, and decision curve analysis curve tests, confirming its effectiveness in prognostic evaluation. Immune analysis revealed that individuals belonging to the low-risk (LR) group exhibited a greater abundance of immune cell infiltration and higher levels of immune function. We calculated the immunopheno score and TIDE scores and tested them on the IMvigor210 and GSE78220 cohorts and found that individuals categorized in the LR group exhibited a higher likelihood of deriving therapeutic benefits from immunotherapy intervention. Additionally, we predicted that patients classified in the HR group would demonstrate enhanced sensitivity to Docetaxel using anti-tumor drugs. To summarize, we successfully developed and validated a prognostic model for LUAD by incorporating DNA replication stress as a key factor.

7.
Front Endocrinol (Lausanne) ; 14: 1236946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732122

RESUMO

Immune checkpoint inhibitor (ICI)- and phosphatidylinositol-3-kinase inhibitor (PI3Ki)-related diabetes mellitus are common side effects of anti-tumor drug use that present mainly as hyperglycemia. Here, we present two case reports of diabetes mellitus caused by the use of tremelimumab and apalutamide, respectively, in cancer treatment, and a comprehensive, comparative review of the literature on these forms of diabetes. Case 1 presented with diabetic ketoacidosis and was diagnosed with ICI-related diabetes mellitus and treated with insulin. Case 2 was diagnosed with PI3Ki-related diabetes mellitus, and her blood glucose level returned to normal with the use of metformin and dapagliflozin. We systematically searched the PubMed database for articles on ICI- and PI3Ki-related diabetes mellitus and characterized the differences in clinical features and treatment between these two forms of diabetes.


Assuntos
Antineoplásicos , Diabetes Mellitus , Cetoacidose Diabética , Hiperglicemia , Feminino , Humanos , Antineoplásicos/efeitos adversos , Inibidores de Checkpoint Imunológico , Fosfatidilinositóis
8.
Front Mol Biosci ; 10: 1239952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609372

RESUMO

DNA origami is a cutting-edge DNA self-assembly technique that neatly folds DNA strands and creates specific structures based on the complementary base pairing principle. These innovative DNA origami nanostructures provide numerous benefits, including lower biotoxicity, increased stability, and superior adaptability, making them an excellent choice for transporting anti-tumor agents. Furthermore, they can considerably reduce side effects and improve therapy success by offering precise, targeted, and multifunctional drug delivery system. This comprehensive review looks into the principles and design strategies of DNA origami, providing valuable insights into this technology's latest research achievements and development trends in the field of anti-tumor drug delivery. Additionally, we review the key function and major benefits of DNA origami in cancer treatment, some of these approaches also involve aspects related to DNA tetrahedra, aiming to provide novel ideas and effective solutions to address drug delivery challenges in cancer therapy.

9.
Front Physiol ; 14: 1129889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457025

RESUMO

C2H2 zinc finger (C2H2-ZF) proteins are the majority group of human transcription factors and they have many different molecular functions through different combinations of zinc finger domains. Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the main reason for cancer-related deaths worldwide. More and more findings support the abnormal expression of C2H2-ZF protein in the onset and progression of HCC. The C2H2-ZF proteins are involved in various biological functions in HCC, such as EMT, stemness maintenance, metabolic reprogramming, cell proliferation and growth, apoptosis, and genomic integrity. The study of anti-tumor drug resistance also highlights the pivotal roles of C2H2-ZF proteins at the intersection of biological functions (EMT, stemness maintenance, autophagy)and chemoresistance in HCC. The involvement of C2H2-ZF protein found recently in regulating different molecules, signal pathways and pathophysiological activities indicate these proteins as the possible therapeutic targets, and diagnostic or prognostic biomarkers for HCC.

10.
Anticancer Res ; 43(6): 2519-2525, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247928

RESUMO

BACKGROUND/AIM: Antitumor drug resistance is a major hurdle in treating patients with malignant tumors. Casein kinase 2α (CK2α) expression is highly enhanced in oxaliplatin-resistant CRC cells. We investigated whether CK2α expression is associated with oxaliplatin resistance in CRC cells. MATERIALS AND METHODS: To determine the effect of CK2α on drug resistance in CRC, we assessed the cell viability, adenosine triphosphate-binding cassette (ABC) transporter expression, apoptosis, and sphere formation according to CK2α expression in oxaliplatin-resistant CRC cells. RESULTS: CK2α expression was significantly increased in oxaliplatin-resistant CRC cells compared with that in wild-type CRC cells. In addition, the mRNA expression of ABC transporters, including ABCA12, ABCC2, and ABCE1, was significantly enhanced in oxaliplatin-resistant CRC cells, whereas this effect was blocked by the knockdown of CK2α. Furthermore, a cell viability test showed that oxaliplatin resistance was inhibited by decreasing CK2α expression, resulting in the induction of apoptosis and suppression of sphere formation. CONCLUSION: CK2α regulates cell survival, apoptosis, sphere formation, and drug resistance in oxaliplatin-resistant CRC cells by regulating ABC transporters. Therefore, targeting CK2α in drug-resistant CRC cells may be a novel strategy for treating patients with CRC.


Assuntos
Caseína Quinase II , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico
11.
Acta Pharmaceutica Sinica ; (12): 3539-3548, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1004637

RESUMO

Cancer and cardiovascular diseases are the two major causes of death worldwide. The application of anti-tumor drugs has significantly improved the prognosis of patients, the cardiovascular toxicity caused by the application of them has become an important factor affecting the survival and prognosis of cancer patients. Therefore, the prevention and treatment of cardiovascular toxicity related to cancer treatment is increasingly important. The cardiovascular toxicity associated with anti-tumor drugs exhibits different clinical manifestations and involves multiple pathological mechanisms. This article reviews the current research progress from the perspective of the characteristics, molecular mechanisms and prevention and treatment strategies of cardiovascular toxicity caused by cancer drugs.

12.
Acta Pharmaceutica Sinica ; (12): 571-580, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-965624

RESUMO

Sphingosine kinase (SphK), sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) are involved in the tumor biological processes such as tumor cell proliferation and migration, and play an important role in the development of cancer. In recent years, researchers have increasingly focused on the interaction between cancer cells and the tumor microenvironment. The tumor microenvironment is genetically stable and can be induced to an antitumor phenotype, which has significant therapeutic advantages. Studies have shown that SphK/S1P/S1PR can regulate multiple aspects of the tumor microenvironment. This review summarizes the effects of SphK and S1P/S1PR signaling on the tumor microenvironment from four perspectives: tumor immune microenvironment, cancer associated fibroblasts, tumor angiogenesis and tumor hypoxic microenvironment, and also outlines potential drug research related to these signal molecules, aiming to elucidate the role of SphK/S1P/S1PR in tumor occurrence and development and provide new ideas for the research of anti-tumor drugs.

13.
Mol Ther Nucleic Acids ; 30: 553-568, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36457699

RESUMO

Breast cancer is the most commonly diagnosed and leading cause of cancer death among women worldwide. Mitogen-activated protein kinase-interacting kinases (MNKs) promote the expression of several oncogenic proteins and are overexpressed in several types of cancer. In human cells, there are four isoforms of MNKs. The truncated isoform MNK1b, first described in our laboratory, has a higher basal activity and is constitutively active. Aptamers are emerging in recent years as potential therapeutic agents that show significant advantages over drugs of other nature. We have previously obtained and characterized a highly specific aptamer against MNK1b, named apMNK2F, with a dissociation constant in the nanomolar range, which produces significant inhibition of proliferation, migration, and colony formation in breast cancer cells. Furthermore, its sequence analysis predicted two G-quadruplex structures. In this work, we show the optimization process of the aptamer to reduce its size, improving its stability. The obtained aptamer, named apMNKQ2, is able to inhibit proliferation, colony formation, migration, and invasion in breast cancer cells. In murine models of breast cancer, apMNKQ2 has demonstrated its efficacy in reducing tumor volume and the number of metastases. In conclusion, apMNKQ2 could be used as an anti-tumor drug in the future.

14.
Front Pharmacol ; 13: 1079566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569318

RESUMO

Background: Although immune microenvironment-related chemokines, extracellular matrix (ECM), and intrahepatic immune cells are reported to be highly involved in hepatitis B virus (HBV)-related diseases, their roles in diagnosis, prognosis, and drug sensitivity evaluation remain unclear. Here, we aimed to study their clinical use to provide a basis for precision medicine in hepatocellular carcinoma (HCC) via the amalgamation of artificial intelligence. Methods: High-throughput liver transcriptomes from Gene Expression Omnibus (GEO), NODE (https://www.bio.sino.org/node), the Cancer Genome Atlas (TCGA), and our in-house hepatocellular carcinoma patients were collected in this study. Core immunosignals that participated in the entire diseases course of hepatitis B were explored using the "Gene set variation analysis" R package. Using ROC curve analysis, the impact of core immunosignals and amino acid utilization related gene on hepatocellular carcinoma patient's clinical outcome were calculated. The utility of core immunosignals as a classifier for hepatocellular carcinoma tumor tissue was evaluated using explainable machine-learning methods. A novel deep residual neural network model based on immunosignals was constructed for the long-term overall survival (LS) analysis. In vivo drug sensitivity was calculated by the "oncoPredict" R package. Results: We identified nine genes comprising chemokines and ECM related to hepatitis B virus-induced inflammation and fibrosis as CLST signals. Moreover, CLST was co-enriched with activated CD4+ T cells bearing harmful factors (aCD4) during all stages of hepatitis B virus pathogenesis, which was also verified by our hepatocellular carcinoma data. Unexpectedly, we found that hepatitis B virus-hepatocellular carcinoma patients in the CLSThighaCD4high subgroup had the shortest overall survival (OS) and were characterized by a risk gene signature associated with amino acids utilization. Importantly, characteristic genes specific to CLST/aCD4 showed promising clinical relevance in identifying patients with early-stage hepatocellular carcinoma via explainable machine learning. In addition, the 5-year long-term overall survival of hepatocellular carcinoma patients can be effectively classified by CLST/aCD4 based GeneSet-ResNet model. Subgroups defined by CLST and aCD4 were significantly involved in the sensitivity of hepatitis B virus-hepatocellular carcinoma patients to chemotherapy treatments. Conclusion: CLST and aCD4 are hepatitis B virus pathogenesis-relevant immunosignals that are highly involved in hepatitis B virus-induced inflammation, fibrosis, and hepatocellular carcinoma. Gene set variation analysis derived immunogenomic signatures enabled efficient diagnostic and prognostic model construction. The clinical application of CLST and aCD4 as indicators would be beneficial for the precision management of hepatocellular carcinoma.

15.
Chemosphere ; 308(Pt 2): 136354, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087734

RESUMO

Recently, the potential toxic effects of various pharmaceuticals on the thyroid endocrine system have raised considerable concerns. In this study, we evaluated the adverse effects of sorafenib and sunitinib, two widely used anti-tumor drugs, on the developmental toxicities and thyroid endocrine disruption by using zebrafish (Danio rerio) model. Zebrafish embryos/larvae were exposed to different contentions (0, 10, 50 and 100 nM) of sorafenib and sunitinib for 96 hpf. The results revealed that waterborne exposure to sorafenib and sunitinib exhibited remarkable toxic effects on the survival and development in zebrafish embryos/larvae, which was accompanied by obvious disturbances of thyroid endocrine system (e.g., decreased T3 and T4 content, increased TSH content) and genes' transcription changes within the hypothalamus-pituitary-thyroid (HPT) axis. In addition, we verified a strikingly abnormal thyroid gland organogenesis in zebrafish larvae in response to sorafenib and sunitinib, by assessing the development of thyroid follicles using the WISH staining of tg, the Tg (tg:GFP) zebrafish transgenic line, and histopathological analysis. Taken together, our results indicated sorafenib and sunitinib exposure could induce obvious developmental toxicities and thyroid function disruption in zebrafish embryos/larvae, which might involve a regulatory mechanism, at least in part, by destroying the thyroid follicle structure, and by disturbing the balance of the HPT axis.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Disruptores Endócrinos/toxicidade , Larva , Preparações Farmacêuticas , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/toxicidade , Sunitinibe/toxicidade , Glândula Tireoide , Tireotropina , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia
16.
Front Pharmacol ; 13: 956501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016573

RESUMO

Autophagy, originally described as a mechanism for intracellular waste disposal and recovery, has been becoming a crucial biological process closely related to many types of human tumors, including breast cancer, osteosarcoma, glioma, etc., suggesting that intervention of autophagy is a promising therapeutic strategy for cancer drug development. Therefore, a high-quality database is crucial for unraveling the complicated relationship between autophagy and human cancers, elucidating the crosstalk between the key autophagic pathways, and autophagic modulators with their remarkable antitumor activities. To achieve this goal, a comprehensive database of autophagic modulators (AMTDB) was developed. AMTDB focuses on 153 cancer types, 1,153 autophagic regulators, 860 targets, and 2,046 mechanisms/signaling pathways. In addition, a variety of classification methods, advanced retrieval, and target prediction functions are provided exclusively to cater to the different demands of users. Collectively, AMTDB is expected to serve as a powerful online resource to provide a new clue for the discovery of more candidate cancer drugs.

17.
Zhongguo Fei Ai Za Zhi ; 25(7): 448-451, 2022 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-35899440

RESUMO

With the boom of China's innovative pharmaceutical industry, licensing-in model has gradually become an important research and development model for innovative pharmaceutical companies. The in-licensed drugs at different stages need different research and development (R&D) strategy in China. The pharmaceutical companies take the responsibility to comprehensively collate the oversea clinical data and conduct a detailed analysis of clinical pharmacology, safety, efficacy and ethnic sensitivity. Clinical R&D strategy should be made based on the results of the above data and analysis. We encourage high-quality drugs which fill unmet clinical needs licensed in, and as early as possible, so as to conduct multi-regional clinical trials (MRCTs). The clinical R&D strategy in China is particularly important for the drug's approval. Guidelines published by the National Medical Products Administration (NMPA) and clinical associations should be followed. Communications about clinical R&D strategy with Center of Drug Evaluation (CDE) are encouraged.
.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , China , Indústria Farmacêutica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Preparações Farmacêuticas
18.
Front Pharmacol ; 13: 907031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774614

RESUMO

Epigenetic modification, especially DNA methylation, plays a nonnegligible role in the occurrence and development of tumors. Increasing studies are indicating that traditional Chinese medicine (TCM) plays a considerable anti-tumor role by regulating the process of DNA methylation modification. Studies on TCM regulating DNA methylation modification mostly focus on the whole genome and abnormal methylation status by active ingredients or single compounds and Chinese herb formula (CHF). The balance and overall concept of TCM theory coincides with the balance of DNA methylation modification in the tumor environment. Regardless of how TCM modulates epigenetics in tumor, it has been shown to bet a class of potentially reliable epigenetic drug.

19.
Adv Healthc Mater ; 11(18): e2200863, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35841538

RESUMO

For high-throughput anti-cancer drug screening, microwell arrays may serve as an effective tool to generate uniform and scalable tumor spheroids. However, microwell arrays are commonly anchored in non-oxygen-permeable culture plates, leading to limited oxygen supply for avascular spheroids. Herein, a polydimethylsiloxane (PDMS)-based oxygen-permeable microwell device is introduced for generating highly viable and functional hepatocellular carcinoma (HCC) spheroids. The PDMS sheets at the bottom of the microwell device provide a high flux of oxygen like in vivo neighboring hepatic sinusoids. Owing to the better oxygen supply, the generated HepG2 spheroids are larger in size and exhibit higher viability and proliferation with less cell apoptosis and necrosis. These spheroids also exhibit lower levels of anaerobic cellular respiration and express higher levels of liver-related functions. In anti-cancer drug testing, spheroids cultured in PDMS plates show a significantly stronger resistance against doxorubicin because of the stronger stem-cell and multidrug resistance phenotype. Moreover, higher expression of vascular endothelial growth factor-A produces a stronger angiogenesis capability of the spheroids. Overall, compared to the spheroids cultured in conventional non-oxygen-permeable plates, these spheroids can be used as a more favorable model for early-stage HCCs and be applied in high-throughput anti-cancer drug screening.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Técnicas de Cultura de Células , Dimetilpolisiloxanos , Doxorrubicina/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Oxigênio/metabolismo , Esferoides Celulares/metabolismo , Fator A de Crescimento do Endotélio Vascular
20.
Zhonghua Zhong Liu Za Zhi ; 44(6): 587-592, 2022 Jun 23.
Artigo em Chinês | MEDLINE | ID: mdl-35754235

RESUMO

Single-arm trial refers to a clinical trial design that does not set up parallel control group, adopts open design, and does not involve randomization and blind method. These features, on the one hand, speed up the process of clinical trials, significantly shorten the time to market and meet the needs of patients with advanced malignancies, but also lead to the uncertainty of single-arm clinical trials themselves. Recently, the US Food and Drug Administration held a meeting of the oncologic drug advisory committee to discuss six tumor indications that have been accelerated approved, which once again triggered the discussion of single-arm trials. The basis of accelerated approval by single-arm trial is actually a compromise on the level of evidence-based medical evidence requirements after assessing the benefit risk. Therefore, the sponsor should strictly grasp the applicable conditions of single-arm trial in anti-tumor drugs and conduct single-arm trial scientifically. Post-marketing clinical trial should be implement as early as possible to ensure the benefit of patients. Based on the characteristics of single-arm trial, combined with two guidance relevant to single-arm trial issued by National Medical Products Administration recently, this article is supposed to propose and summarize the strategy of single-arm trial supporting the marketing of anti-tumor drugs.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Marketing , Neoplasias/tratamento farmacológico , Projetos de Pesquisa , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...