Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Biochem Pharmacol ; 225: 116303, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38797272

RESUMO

Biotherapeutics hold great promise for the treatment of several diseases and offer innovative possibilities for new treatments that target previously unaddressed medical needs. Despite successful transitions from preclinical to clinical stages and regulatory approval, there are instances where adverse reactions arise, resulting in product withdrawals. As a result, it is essential to conduct thorough evaluations of safety and effectiveness on an individual basis. This article explores current practices, challenges, and future approaches in conducting comprehensive preclinical assessments to ensure the safety and efficacy of biotherapeutics including monoclonal antibodies, toxin-conjugates, bispecific antibodies, single-chain antibodies, Fc-engineered antibodies, antibody mimetics, and siRNA-antibody/peptide conjugates.


Assuntos
Anticorpos Monoclonais , Avaliação Pré-Clínica de Medicamentos , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Imunoconjugados/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-38691205

RESUMO

Two-pore physiologically based pharmacokinetic (PBPK) modeling has demonstrated its potential in describing the pharmacokinetics (PK) of different-size proteins. However, all existing two-pore models lack either diverse proteins for validation or interspecies extrapolation. To fill the gap, here we have developed and optimized a translational two-pore PBPK model that can characterize plasma and tissue disposition of different-size proteins in mice, rats, monkeys, and humans. Datasets used for model development include more than 15 types of proteins: IgG (150 kDa), F(ab)2 (100 kDa), minibody (80 kDa), Fc-containing proteins (205, 200, 110, 105, 92, 84, 81, 65, or 60 kDa), albumin conjugate (85.7 kDa), albumin (67 kDa), Fab (50 kDa), diabody (50 kDa), scFv (27 kDa), dAb2 (23.5 kDa), proteins with an albumin-binding domain (26, 23.5, 22, 16, 14, or 13 kDa), nanobody (13 kDa), and other proteins (110, 65, or 60 kDa). The PBPK model incorporates: (i) molecular weight (MW)-dependent extravasation through large and small pores via diffusion and filtration, (ii) MW-dependent renal filtration, (iii) endosomal FcRn-mediated protection from catabolism for IgG and albumin-related modalities, and (iv) competition for FcRn binding from endogenous IgG and albumin. The finalized model can well characterize PK of most of these proteins, with area under the curve predicted within two-fold error. The model also provides insights into contribution of renal filtration and lysosomal degradation towards total elimination of proteins, and contribution of paracellular convection/diffusion and transcytosis towards extravasation. The PBPK model presented here represents a cross-modality, cross-species platform that can be used for development of novel biologics.

3.
Crit Rev Biotechnol ; : 1-23, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797692

RESUMO

Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.

4.
J Chromatogr A ; 1720: 464772, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38452560

RESUMO

The polishing step in the downstream processing of therapeutic antibodies removes residual impurities from Protein A eluates. Among the various classes of impurities, antibody fragments are especially challenging to remove due to the broad biomolecular diversity generated by a multitude of fragmentation patterns. The current approach to fragment removal relies on ion exchange or mixed-mode adsorbents operated in bind-and-gradient-elution mode. However, fragments that bear strong similarity to the intact product or whose biophysical features deviate from the ensemble average can elude these adsorbents, and the lack of a chromatographic technology enabling robust antibody polishing is recognized as a major gap in downstream bioprocessing. Responding to this challenge, this study introduces size-exclusion mixed-mode (SEMM) silica resins as a novel chromatographic adsorbent for the capture of antibody fragments irrespective of their biomolecular features. The pore diameter of the silica beads features a narrow distribution and is selected to exclude monomeric antibodies, while allowing their fragments to access the pores where they are captured by the mixed-mode ligands. The static and dynamic binding capacity of the adsorbent ranged respectively between 30-45 and 25-33 gs of antibody fragments per liter of resin. Selected SEMM-silica resins also demonstrated the ability to capture antibody aggregates, which adsorb on the outer layer of the beads. Optimization of the SEMM-silica design and operation conditions - namely, pore size (10 nm) and ligand composition (quaternary amine and alkyl chain) as well as the linear velocity (100 cm/h), ionic strength (5.7 mS/cm), and pH (7) of the mobile phase - afforded a significant reduction of both fragments and aggregates, resulting into a final antibody yield up to 80% and monomeric purity above 97%.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Humanos , Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/métodos , Imunoglobulina G/metabolismo , Fragmentos de Imunoglobulinas , Ligantes
5.
Discov Nano ; 19(1): 28, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353903

RESUMO

The horizon of nanomedicine research is moving toward the design of therapeutic tools able to be completely safe per se, and simultaneously be capable of becoming toxic when externally activated by stimuli of different nature. Among all the stimuli, ultrasounds come to the fore as an innovative approach to produce cytotoxicity on demand in presence of NPs, without invasiveness, with high biosafety and low cost. In this context, zinc oxide nanoparticles (NPs) are among the most promising metal oxide materials for theranostic application due to their optical and semi-conductor properties, high surface reactivity, and their response to ultrasound irradiation. Here, ZnO nanocrystals constitute the stimuli-responsive core with a customized biomimicking lipidic shielding, resembling the composition of natural extracellular vesicles. This core-shell hybrid structure provides high bio- and hemocompatibility towards healthy cells and is here proofed for the treatment of Burkitt's Lymphoma. This is a very common haematological tumor, typically found in children, for which consolidated therapies are so far the combination of chemo-therapy drugs and targeted immunotherapy. In this work, the proposed safe-by-design antiCD38-targeted hybrid nanosystem exhibits an efficient selectivity toward cancerous cells, and an on-demand activation, leading to a significant killing efficacy due to the synergistic interaction between US and targeted hybrid NPs. Interestingly, this innovative treatment does not significantly affect healthy B lymphocytes nor a negative control cancer cell line, a CD38- acute myeloid leukemia, being thus highly specific and targeted. Different characterization and analyses confirmed indeed the effective formation of targeted hybrid ZnO NPs, their cellular internalization and the damages produced in Burkitt's Lymphoma cells only with respect to the other cell lines. The presented work holds promises for future clinical applications, as well as translation to other tumor types.

6.
Protein Sci ; 33(1): e4824, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945533

RESUMO

The atomic-resolution structural information that X-ray crystallography can provide on the binding interface between a Fab and its cognate antigen is highly valuable for understanding the mechanism of interaction. However, many Fab:antigen complexes are recalcitrant to crystallization, making the endeavor a considerable effort with no guarantee of success. Consequently, there have been significant steps taken to increase the likelihood of Fab:antigen complex crystallization by altering the Fab framework. In this investigation, we applied the surface entropy reduction strategy coupled with phage-display technology to identify a set of surface substitutions that improve the propensity of a human Fab framework to crystallize. In addition, we showed that combining these surface substitutions with previously reported Crystal Kappa and elbow substitutions results in an extraordinary improvement in Fab and Fab:antigen complex crystallizability, revealing a strong synergistic relationship between these sets of substitutions. Through comprehensive Fab and Fab:antigen complex crystallization screenings followed by structure determination and analysis, we defined the roles that each of these substitutions play in facilitating crystallization and how they complement each other in the process.


Assuntos
Complexo Antígeno-Anticorpo , Fragmentos Fab das Imunoglobulinas , Humanos , Cristalização/métodos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/química , Complexo Antígeno-Anticorpo/química , Antígenos/química , Cristalografia por Raios X , Conformação Proteica
7.
Curr Issues Mol Biol ; 45(10): 8112-8125, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37886955

RESUMO

Oligomerization of antibody fragments via modification with polyethylene glycol (pegylation) may alter their function and properties, leading to a multivalent interaction of the resulting constructs with the target antigen. In a recent study, we generated pegylated monomers and multimers of scFv fragments of GD2-specific antibodies using maleimide-thiol chemistry. Multimerization enhanced the antigen-binding properties and demonstrated a more efficient tumor uptake in a syngeneic GD2-positive mouse cancer model compared to monomeric antibody fragments, thereby providing a rationale for improving the therapeutic characteristics of GD2-specific antibody fragments. In this work, we obtained pegylated conjugates of scFv fragments of GD2-specific antibodies with maytansinoids DM1 or DM4 using tetravalent PEG-maleimide (PEG4). The protein products from the two-stage thiol-maleimide reaction resolved by gel electrophoresis indicated that pegylated scFv fragments constituted the predominant part of the protein bands, and most of the scFv formed pegylated monomers and dimers. The conjugates retained the ability to bind ganglioside GD2 comparable to that of the parental scFv fragment and to specifically interact with GD2-positive cells. Both induced significant inhibitory effects in the GD2-positive B78-D14 cell line, in contrast to the GD2-negative B16 cell line. The decrease in the B78-D14 cell viability when treated with scFv-PEG4-DM4 was more prominent than that for scFv-PEG4-DM1, and was characterized by a twofold lower half-maximal inhibitory concentration (IC50). Unlike the parental scFv fragment, the product of scFv and PEG4 conjugation (scFv-PEG4), consisting predominantly of pegylated scFv multimers and monomers, induced direct cell death in the GD2-positive B78-D14 cells. However, the potency of scFv-PEG4 was low in the selected concentration range, thus demonstrating that the cytotoxic effect of DM1 and DM4 within the antibody fragment-drug conjugates was primary. The suggested approach may contribute to development of novel configurations of antibody fragment-drug conjugates for cancer treatment.

8.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855377

RESUMO

Protein L is a multidomain protein from Peptostreptococcus magnus with binding affinity to kappa light chain of human immunoglobulin (Ig) which is used for the purification of antibody fragments by affinity chromatography. The advances in protein engineering and computational biology approaches lead to the development of engineered affinity ligands with improved properties including binding affinity. In this study, molecular dynamics simulations (MDs) and Osprey software were used to design single B domains of the Protein L with higher affinity to antibody fragments. The modified B domains were then polymerized to ligand with six B domains by homology modeling methods. The results showed that single B domain mutants of MB1 (Thr865Trp) and MB2 (Thr847Met-Thr865Trp) had higher binding affinity to Fab compared to the wild single B domain. Also, MDs and molecular docking results showed that the polymerized Proteins L including the wild and mutated six B domains (6B0, 6B1, and 6B2) were stable during MDs and the two mutants of 6B1 and 6B2 showed higher binding affinity to Fab relative to the wild type.Communicated by Ramaswamy H. Sarma.

9.
Methods Mol Biol ; 2702: 247-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679623

RESUMO

The most common and robust in vitro technology to generate monoclonal human antibodies is phage display. This technology is a widely used and powerful key technology for recombinant antibody selection. Phage display-derived antibodies are used as research tools, in diagnostic assays, and by 2022, 14 phage display-derived therapeutic antibodies were approved. In this review, we describe a fast high-throughput antibody (scFv) selection procedure in 96-well microtiter plates. The given detailed protocol allows the antibody selection ("panning"), screening, and identification of monoclonal antibodies in less than 2 weeks. Furthermore, we describe an on-rate panning approach for the selection of monoclonal antibodies with fast on-rates.


Assuntos
Anticorpos Monoclonais , Bacteriófagos , Humanos , Anticorpos Monoclonais/genética , Bioensaio , Técnicas de Visualização da Superfície Celular , Tecnologia
10.
Biochemistry (Mosc) ; 88(9): 1191-1204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770388

RESUMO

Biotechnological and biomedical applications of antibodies have been on a steady rise since the 1980s. As unique and highly specific bioreagents, monoclonal antibodies (mAbs) have been widely exploited and approved as therapeutic agents. However, the use of mAbs has limitations for therapeutic applications. Antibody fragments (AbFs) with preserved antigen-binding sites have a significant potential to overcome the disadvantages of conventional mAbs, such as heterogeneous tissue distribution after systemic administration, especially in solid tumors, and Fc-mediated bystander activation of the immune system. AbFs possess better biodistribution coefficient due to lower molecular weight. They preserve the functional features of mAbs, such as antigen specificity and binding, while at the same time, ensuring much better tissue penetration. An additional benefit of AbFs is the possibility of their production in bacterial and yeast cells due to the small size, more robust structure, and lack of posttranslational modifications. In this review, we described current approaches to the AbF production with recent examples of AbF synthesis in bacterial and yeast expression systems and methods for the production optimization.

11.
Eur J Case Rep Intern Med ; 10(8): 003978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554479

RESUMO

Nerium oleander is a plant containing cardiac glycosides, and intoxication with its leaves is a medical emergency. We report the case of a 73-year-old man who took a decoction of oleander leaves for a reckless purpose. Upon arrival in the emergency room, he presented an altered state of consciousness, drooling and vomiting. He was bradycardic with intermittent third-degree atrioventricular block and typical downsloping ST-segment depression related to glycosides toxicity. Despite initial treatment with atropine, isoprenaline and repeated bolus of digoxin-specific antibody (Fab) fragments, symptoms were persistent 12 hours after admission. Suspecting that the patient not only drank the decoction but also ingested the leaves and had slow gastric emptying, we performed gastric lavage without benefit. We subsequently performed a gastroscopy that showed an oleander phytobezoar, and its removal permitted a rapid clinical improvement. Treatment with digoxin-specific antibodies for intoxication is well described and dosage should be adapted to the plasmatic level. Such an examination is useless in oleander intoxication because it does not represent the real quantity of toxin. The dosage of antibodies is empiric and should be guided by the clinical severity. In such intoxication, the presence of a phytobezoar from oleander leaves cannot be excluded so we believe that a gastroscopy for its mechanical removal should always be considered to avoid persistent release of toxin. LEARNING POINTS: Ingestion of any part of the oleander plant can result in a severe cardioactive glycoside intoxication with potentially fatal arrhythmia and should be considered a medical emergency.Treatment consists of supportive care, correction of arrhythmias and electrolyte imbalance, and digoxin-specific antibody (Fab) fragments administration.Gastroscopy for mechanical removal of a phytobezoar responsible of persistent toxin release should be always considered.

12.
Fish Shellfish Immunol ; 138: 108808, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169114

RESUMO

The development of recombinant antibody fragments as promising alternatives to full-length immunoglobulins offers vast opportunities for biomedicine. Antibody fragments have important advantages compared with conventional monoclonal antibodies that make them attractive for the biotech industry: superior stability and solubility, reduced immunogenicity, higher specificity and affinity, capacity to target the hidden epitope and cross the blood-brain barrier, the ability to refold after heat denaturation and inexpensive and easy large-scale production. Different antibody formats such as antigen-binding fragments (Fab), single-chain fragment variable (scFv) consisting of the antigen-binding domains of Ig heavy (VH) and light (VL) chain regions connected by a flexible peptide linker, single-domain antibody fragments (sdAbs) like camelid heavy-chain variable domains (VHHs) and shark variable new antigen receptor (VNARs), and bispecific antibodies (bsAbs) are currently being evaluated as diagnostics or therapeutics in preclinical studies and clinical trials. In the present review, we summarize and discuss studies on VNARs, the smallest recombinant antibody fragment, obtained after the screening of different types of phage display antibody libraries. Results published until March 2023 are discussed.


Assuntos
Bacteriófagos , Tubarões , Animais , Fragmentos de Imunoglobulinas , Tubarões/genética , Proteínas Recombinantes/genética , Anticorpos Monoclonais , Biblioteca de Peptídeos
13.
Pharmaceutics ; 15(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242621

RESUMO

The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application. As further studies are completed and the need for novel radiopharmaceuticals nurtures, rigorous considerations in the design, laboratory analysis, pre-clinical evaluation, and clinical translation must be considered to ensure improved safety and effectiveness. Here, we assess the status and recent development of biological-based radiopharmaceuticals, with a focus on peptides and antibody fragments. Challenges in radiopharmaceutical design range from target selection, vector design, choice of radionuclides and associated radiochemistry. Dosimetry estimation, and the assessment of mechanisms to increase tumor uptake while reducing off-target exposure are discussed.

14.
Appl Microbiol Biotechnol ; 107(13): 4133-4152, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37199752

RESUMO

Scorpion envenomation is a serious health problem in tropical and subtropical zones. The access to scorpion antivenom is sometimes limited in availability and specificity. The classical production process is cumbersome, from the hyper-immunization of the horses to the IgG digestion and purification of the F(ab)'2 antibody fragments. The production of recombinant antibody fragments in Escherichia coli is a popular trend due to the ability of this microbial host to produce correctly folded proteins. Small recombinant antibody fragments, such as single-chain variable fragments (scFv) and nanobodies (VHH), have been constructed to recognize and neutralize the neurotoxins responsible for the envenomation symptoms in humans. They are the focus of interest of the most recent studies and are proposed as potentially new generation of pharmaceuticals for their use in immunotherapy against scorpion stings of the Buthidae family. This literature review comprises the current status on the scorpion antivenom market and the analyses of cross-reactivity of commercial scorpion anti-serum against non-specific scorpion venoms. Recent studies on the production of new recombinant scFv and nanobodies will be presented, with a focus on the Androctonus and Centruroides scorpion species. Protein engineering-based technology could be the key to obtaining the next generation of therapeutics capable of neutralizing and cross-reacting against several types of scorpion venoms. KEY POINTS: • Commercial antivenoms consist of predominantly purified equine F(ab)'2fragments. • Nanobody-based antivenom can neutralize Androctonus venoms and have a low immunogenicity. • Affinity maturation and directed evolution are used to obtain potent scFv families against Centruroides scorpions.


Assuntos
Venenos de Escorpião , Anticorpos de Cadeia Única , Anticorpos de Domínio Único , Animais , Cavalos , Humanos , Antivenenos/metabolismo , Escorpiões/metabolismo , Escherichia coli/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo
15.
Bioengineering (Basel) ; 10(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829616

RESUMO

Antibody fragments are used in the clinic as important therapeutic proteins for treatment of indications where better tissue penetration and less immunogenic molecules are needed. Several expression platforms have been employed for the production of these recombinant proteins, from which E. coli and CHO cell-based systems have emerged as the most promising hosts for higher expression. Because antibody fragments such as Fabs and scFvs are smaller than traditional antibody structures and do not require specific patterns of glycosylation decoration for therapeutic efficacy, it is possible to express them in systems with reduced post-translational modification capacity and high expression yield, for example, in plant and insect cell-based systems. In this review, we describe different bioengineering technologies along with their opportunities and difficulties to manufacture antibody fragments with consideration of stability, efficacy and safety for humans. There is still potential for a new production technology with a view of being simple, fast and cost-effective while maintaining the stability and efficacy of biotherapeutic fragments.

16.
Mol Pharm ; 20(3): 1549-1563, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602058

RESUMO

Glioblastoma (GBM) is the most aggressive form of primary brain cancer, accounting for about 85% of all primary central nervous system (CNS) tumors. With standard treatment strategies like surgery, radiation, and chemotherapy, the median survival time of patients with GBM is only 12-15 months from diagnosis. The poor prognosis of GBM is due to a very high tumor recurrence rate following initial treatment, indicating a dire need for improved diagnostic and therapeutic alternatives for this disease. Antibody-based immunotheranostics holds great promise in treating GBM, combining the theranostic applications of radioisotopes and target-specificity of antibodies. In this study, we developed and validated antibody-based positron emission tomography (PET) tracers targeting the heparan sulfate proteoglycan, glypican-1 (GPC-1), for noninvasive detection of disease using diagnostic molecular imaging. GPC-1 is overexpressed in multiple solid tumor types, including GBM, and is a promising biomarker for novel immunotheranostics. Here, we investigate zirconium-89 (89Zr)-conjugated Miltuximab (a clinical stage anti-GPC-1 monoclonal antibody developed by GlyTherix, Ltd.) and engineered fragments for their potential as immuno-PET tracers to detect GPC-1positive GBM tumors in preclinical models. We explore the effects of molecular size, avidity, and Fc-domain on the pharmacokinetics and biodistribution in vivo, by comparing in parallel the full-length antibody (Miltuximab), Fab'2, Fab, and single-chain variable fragment (scFv) formats. High radiolabeling efficiency (>95%) was demonstrated by all the formats and the stability post-radiolabeling was higher for larger constructs of Miltuximab and the Fab. Receptor-mediated internalization of all 89Zr-labeled formats was observed in a human GBM cell line in vitro, while full-length Miltuximab demonstrated the highest tumor retention (5.7 ± 0.94% ID/g, day-9 postinjection (p.i.)) and overall better tumor-to-background ratios than the smaller Fc-less formats. Results from in vivo PET image quantification and ex vivo scintillation counting were highly correlated. Altogether, 89Zr-DFO-Miltuximab appears to be an effective immuno-PET imaging agent for detecting GPC-1positive tumors such as GBM and the current results support utility of the Fc containing whole mAb format over smaller antibody fragments for this target.


Assuntos
Glioblastoma , Glipicanas , Humanos , Distribuição Tecidual , Anticorpos Monoclonais/farmacocinética , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons/métodos , Zircônio , Fragmentos de Imunoglobulinas , Linhagem Celular Tumoral
17.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674755

RESUMO

Ganglioside GD2 is a well-established target expressed on multiple solid tumors, many of which are characterized by low treatment efficiency. Antibody-drug conjugates (ADCs) have demonstrated marked success in a number of solid tumors, and GD2-directed drug conjugates may also hold strong therapeutic potential. In a recent study, we showed that ADCs based on the approved antibody dinutuximab and the drugs monomethyl auristatin E (MMAE) or F (MMAF) manifested potent and selective cytotoxicity in a panel of tumor cell lines and strongly inhibited solid tumor growth in GD2-positive mouse cancer models. Here, we employed two different GD2-binding moieties-minibodies and scFv fragments that carry variable antibody domains identical to those of dinutuximab, and site-directly conjugated them to MMAE or MMAF by thiol-maleimide chemistry with drug-to-antibody ratios (DAR) of 2 and 1, respectively. Specific binding of the antibody fragment-drug conjugates (FDCs) to GD2 was confirmed in direct ELISA, flow cytometry, and confocal microscopy. Selective cytotoxic and cytostatic effects of the conjugates were observed in GD2-positive but not GD2-negative neuroblastoma and melanoma cell lines. Minibody-based FDCs demonstrated more pronounced cytotoxic effects and stronger antigen binding compared to scFv-based FDCs. The developed molecules may offer considerable practical benefit, since antibody fragment-drug conjugates are capable of enhancing therapeutic efficacy of ADCs by improving their pharmacokinetic characteristics and reducing side effects.


Assuntos
Antineoplásicos , Imunoconjugados , Neuroblastoma , Animais , Camundongos , Fragmentos de Imunoglobulinas , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Imunoconjugados/uso terapêutico , Neuroblastoma/patologia , Modelos Animais de Doenças , Gangliosídeos/metabolismo
18.
Proteins ; 91(2): 196-208, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36111441

RESUMO

The continued emergence of new SARS-CoV-2 variants has accentuated the growing need for fast and reliable methods for the design of potentially neutralizing antibodies (Abs) to counter immune evasion by the virus. Here, we report on the de novo computational design of high-affinity Ab variable regions (Fv) through the recombination of VDJ genes targeting the most solvent-exposed hACE2-binding residues of the SARS-CoV-2 spike receptor binding domain (RBD) protein using the software tool OptMAVEn-2.0. Subsequently, we carried out computational affinity maturation of the designed variable regions through amino acid substitutions for improved binding with the target epitope. Immunogenicity of designs was restricted by preferring designs that match sequences from a 9-mer library of "human Abs" based on a human string content score. We generated 106 different antibody designs and reported in detail on the top five that trade-off the greatest computational binding affinity for the RBD with human string content scores. We further describe computational evaluation of the top five designs produced by OptMAVEn-2.0 using a Rosetta-based approach. We used Rosetta SnugDock for local docking of the designs to evaluate their potential to bind the spike RBD and performed "forward folding" with DeepAb to assess their potential to fold into the designed structures. Ultimately, our results identified one designed Ab variable region, P1.D1, as a particularly promising candidate for experimental testing. This effort puts forth a computational workflow for the de novo design and evaluation of Abs that can quickly be adapted to target spike epitopes of emerging SARS-CoV-2 variants or other antigenic targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes , Epitopos/química , Região Variável de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Antivirais/metabolismo
19.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168418

RESUMO

Bacteroides species are abundant and prevalent stably colonizing members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering these bacteria as on-site production and delivery vehicles for biologic drugs or diagnostics, however, requires efficient heterologous protein secretion tools, which are currently lacking. To address this limitation, we systematically investigated methods to enable heterologous protein secretion in Bacteroides using both endogenous and exogenous secretion systems. Here, we report a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterized signal peptide sequence features as well as post-secretion extracellular fate and cargo size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we developed a strong, self-contained, inducible expression circuit. Finally, we validated the functionality of our secretion carriers in vivo in a mouse model. This toolkit should enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.

20.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293532

RESUMO

The human leucine-rich repeat-containing protein 15 (LRRC15) is a membrane protein identified as a marker of CAF (cancer-associated fibroblast) cells whose overexpression is positively correlated with cancer grade and outcome. Nuclear molecular imaging (i.e., SPECT and PET) to track LRRC15 expression could be very useful in guiding further therapeutic strategies. In this study, we developed an ScFv mouse phage-display library to obtain small fragment antibodies against human LRRC15 for molecular imaging purposes. Mice were immunized with recombinant human LRRC15 (hLRRC15), and lymph node cells were harvested for ScFv (single-chain variable fragment) phage-display analysis. The built library was used for panning on cell lines with constitutive or induced expression after transfection. The choice of best candidates was performed by screening various other cell lines, using flow cytometry. The selected candidates were reformatted into Cys-ScFv or Cys-diabody by addition of cysteine, and cloned in mammalian expression vectors to obtain batches of small fragments that were further used in site-specific radiolabeling tests. The obtained library was 1.2 × 107 cfu/µg with an insertion rate >95%. The two panning rounds performed on cells permittedenrichment of 2 × 10−3. Screening with flow cytometry allowed us to identify 28 specific hLRRC15 candidates. Among these, two also recognized murine LRCC15 and were reformatted into Cys-ScFv and Cys-diabody. They were expressed transiently in a mammalian system to obtain 1.0 to 4.5 mg of Cys fragments ready for bioconjugation and radiolabeling. Thus, in this paper, we demonstrate the relevance of the phage-display ScFv library approach for the fast-track development of small antibodies for imaging and/or immunotherapy purposes.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Humanos , Camundongos , Animais , Biblioteca de Peptídeos , Cisteína , Leucina , Ensaio de Imunoadsorção Enzimática , Proteínas de Membrana , Bacteriófagos/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA