Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Int J Biol Macromol ; 275(Pt 2): 133670, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971293

RESUMO

Microorganisms' ice-binding structures (IBS) are macromolecules with potential commercial value in agriculture, food technology, material technology, cryobiology, and medicine. Microbial ice-structuring or microbial ice-binding particles, with their multi-applications, are simple to use, effective in low amounts, non-toxic, and environmentally friendly. Due to their source and composition diversities, microbial ice-binding structures are gaining attention because they are useable in various conditions. Some microorganisms also produce structures with dual ice-nucleating and anti-freezing properties. Structures that promote ice formation (ice nucleating particles- INPs) act as ice nuclei, lowering the energy barrier between supercooled liquid and ice, causing ice crystals to form. In contrast, anti-freeze particles (AFPs) prevent ice formation and recrystallization through several mechanisms, including disturbing the formation of string hydrogen bonds amongst water molecules, melting already formed ice crystals, and preventing crystal formation by binding to specific sites. Knowledge of the type and function of microbial ice-binding structures lends fundamental insight for possible scaling the production of cheap, functional, and advanced microbial structure-inspired mimics and by-products. This review focuses on microbial ice-binding structures and their potential uses in the food, medicinal, environmental, and agricultural sectors.

2.
Adv Mater ; : e2406671, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988151

RESUMO

Supramolecular hydrogels are typically assembled through weak non-covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super-tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS-induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻3, making it the strongest lignin-PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low-temperature stability (<-60 °C), antibacterial, and UV-blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self-restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze-thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco-friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.

3.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38877650

RESUMO

Polar environments pose extreme challenges for life due to low temperatures, limited water, high radiation, and frozen landscapes. Despite these harsh conditions, numerous macro and microorganisms have developed adaptive strategies to reduce the detrimental effects of extreme cold. A primary survival tactic involves avoiding or tolerating intra and extracellular freezing. Many organisms achieve this by maintaining a supercooled state by producing small organic compounds like sugars, glycerol, and amino acids, or through increasing solute concentration. Another approach is the synthesis of ice-binding proteins, specifically antifreeze proteins (AFPs), which hinder ice crystal growth below the melting point. This adaptation is crucial for preventing intracellular ice formation, which could be lethal, and ensuring the presence of liquid water around cells. AFPs have independently evolved in different species, exhibiting distinct thermal hysteresis and ice structuring properties. Beyond their ecological role, AFPs have garnered significant attention in biotechnology for potential applications in the food, agriculture, and pharmaceutical industries. This review aims to offer a thorough insight into the activity and impacts of AFPs on water, examining their significance in cold-adapted organisms, and exploring the diversity of microbial AFPs. Using a meta-analysis from cultivation-based and cultivation-independent data, we evaluate the correlation between AFP-producing microorganisms and cold environments. We also explore small and large-scale biotechnological applications of AFPs, providing a perspective for future research.


Assuntos
Proteínas Anticongelantes , Bactérias , Biotecnologia , Proteínas Anticongelantes/metabolismo , Bactérias/metabolismo , Congelamento , Gelo , Temperatura Baixa , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
4.
Proc Natl Acad Sci U S A ; 121(24): e2320205121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833468

RESUMO

Antifreeze proteins (AFPs) are remarkable biomolecules that suppress ice formation at trace concentrations. To inhibit ice growth, AFPs must not only bind to ice crystals, but also resist engulfment by ice. The highest supercooling, [Formula: see text], for which AFPs are able to resist engulfment is widely believed to scale as the inverse of the separation, [Formula: see text], between bound AFPs, whereas its dependence on the molecular characteristics of the AFP remains poorly understood. By using specialized molecular simulations and interfacial thermodynamics, here, we show that in contrast with conventional wisdom, [Formula: see text] scales as [Formula: see text] and not as [Formula: see text]. We further show that [Formula: see text] is proportional to AFP size and that diverse naturally occurring AFPs are optimal at resisting engulfment by ice. By facilitating the development of AFP structure-function relationships, we hope that our findings will pave the way for the rational design of AFPs.


Assuntos
Proteínas Anticongelantes , Gelo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Termodinâmica , Simulação de Dinâmica Molecular , Animais , Cristalização
5.
Angew Chem Int Ed Engl ; : e202408569, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837843

RESUMO

The integration of hostless battery-like metal anodes for hybrid supercapacitors is a realistic design method for energy storage devices with promising future applications. With significant Cr element deposits on Earth, exceptionally high theoretical capacity (1546 mAh g-1), and accessible redox potential (-0.74 V vs. reversible hydrogen electrode) of Cr metals, the design of Cr anodes has rightly come into our focus. This work presents a breakthrough design of a flexible Cr-ion hybrid supercapacitor (CHSC) based on a porous graphitized carbon fabric (PGCF) substrate prepared by K2FeO4 activation. In the CHSC device, PGCF acts as both a current collector and cathode material due to its high specific surface area and superior conductivity. The use of a highly concentrated LiCl-CrCl3 electrolyte with high Cr plating/stripping efficiency and excellent antifreeze properties enables the entire PGCF-based CHSC to achieve well-balanced performance in terms of energy density (up to 1.47 mWh cm-2), power characteristics (reaching 9.95 mW cm-2) and durability (95.4 % capacity retention after 30,000 cycles), while realizing it to work well under harsh conditions of -40 °C. This work introduces a new concept for low-temperature energy storage technology and confirms the potential application of Cr anodes in hybrid supercapacitors.

6.
Foods ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731690

RESUMO

Antifreeze peptides have become effective antifreeze agents for frozen products, but their low quantity of active ingredients and high cost limit large-scale application. This study used the glycosylation of fish collagen peptides with glucosamine hydrochloride catalyzed by transglutaminase to obtain a transglutaminase-catalyzed glycosylation product (TGP) and investigate its antifreeze effect on tilapia. Compared with the blank group, the freshness (pH value of 6.31, TVB-N value of 21.7 mg/100 g, whiteness of 46.28), textural properties (especially hardness and elasticity), and rheological properties of the TGP groups were significantly improved. In addition, the protein structures of the samples were investigated using UV absorption and fluorescence spectroscopy. The results showed that the tertiary structure of the TGP groups changed to form a dense polymer. Therefore, this approach can reduce the denaturation and decomposition of muscle fibers and proteins in fish meat more effectively and has a better protective effect on muscle structure and protein aggregation, improving the stability of fish meat. This study reveals an innovative method for generating antifreeze peptides by enzymatic glycosylation, and glycosylated fish collagen peptide products can be used as new and effective green antifreeze agents in frozen foods.

7.
Comput Biol Med ; 176: 108534, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754217

RESUMO

Antifreeze proteins have wide applications in the medical and food industries. In this study, we propose a stacking-based classifier that can effectively identify antifreeze proteins. Initially, feature extraction was performed in three aspects: reduction properties, scalable pseudo amino acid composition, and physicochemical properties. A hybrid feature set comprised of the combined information from these three categories was obtained. Subsequently, we trained the training set based on LightGBM, XGBoost, and RandomForest algorithms, and the training outcomes were passed to the Logistic algorithm for matching, thereby establishing a stacking algorithm. The proposed algorithm was tested on the test set and an independent validation set. Experimental data indicates that the algorithm achieved a recognition accuracy of 98.3 %, and an accuracy of 98.5 % on the validation set. Lastly, we analyzed the reasons why numerical features achieved high recognition capabilities from multiple aspects. Data dimensionality reduction and the analysis from two-dimensional and three-dimensional views revealed separability between positive and negative samples, and the protein three-dimensional structure further demonstrated significant differences in related features between the two samples. Analysis of the classifier revealed that Hr*Hr, HrHr, and Sc-PseAAC_1, 188D(152,116,57,183) were among the seven most important numerical features affecting algorithm recognition. For Hr*Hr and HrHr, supportive sequence level evidence for the reduction dictionary was found in terms of conservation area analysis, multiple sequence alignment, and amino acid conservative substitution. Moreover, the importance of the reduction dictionary was recognized through a comparative analysis of importance before and after the reduction, realizing the effectiveness of the dictionary in improving feature importance. A decision tree model has been utilized to discern the distinctions between dipeptides associated with the physical and chemical properties of His(H), Iso(I), Leu(L), and Lys(K) and other dipeptides. We finally analyzed the other seven features of importance, and data analysis confirmed that hydrophobicity, secondary structure, charge properties, van der Waals forces, and solvent accessibility are also factors affecting the antifreeze capability of proteins.


Assuntos
Algoritmos , Proteínas Anticongelantes , Proteínas Anticongelantes/química , Aminoácidos/química , Bases de Dados de Proteínas , Biologia Computacional/métodos
8.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732953

RESUMO

Ice detection poses significant challenges in sectors such as renewable energy and aviation due to its adverse effects on aircraft performance and wind energy production. Ice buildup alters the surface characteristics of aircraft wings or wind turbine blades, inducing airflow separation and diminishing the aerodynamic properties of these structures. While various approaches have been proposed to address icing effects, including chemical solutions, pneumatic systems, and heating systems, these solutions are often costly and limited in scope. To enhance the cost-effectiveness of ice protection systems, reliable information about current icing conditions, particularly in the early stages, is crucial. Ultrasonic guided waves offer a promising solution for ice detection, enabling integration into critical structures and providing coverage over larger areas. However, existing techniques primarily focus on detecting thick ice layers, leaving a gap in early-stage detection. This paper proposes an approach based on high-order symmetric modes to detect thin ice formation with thicknesses up to a few hundred microns. The method involves measuring the group velocity of the S1 mode at different temperatures and correlating velocity changes with ice layer formation. Experimental verification of the proposed approach was conducted using a novel group velocity dispersion curve reconstruction method, allowing for the tracking of propagating modes in the structure. Copper samples without and with special superhydrophobic multiscale coatings designed to prevent ice formation were employed for the experiments. The results demonstrated successful detection of ice formation and enabled differentiation between the coated and uncoated cases. Therefore, the proposed approach can be effectively used for early-stage monitoring of ice growth and evaluating the performance of anti-icing coatings, offering promising advancements in ice detection and prevention for critical applications.

9.
Polymers (Basel) ; 16(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611248

RESUMO

The development of nontoxic and efficient antifreeze agents for organ cryopreservation is crucial. However, the research remains highly challenging. In this study, we designed and synthesized a series of peptoid oligomers using the solid-phase submonomer synthesis method by mimicking the amphiphilic structures of antifreeze proteins (AFPs). The obtained peptoid oligomers showed excellent antifreeze properties, reducing the ice crystal growth rate and inhibiting ice recrystallization. The effects of the hydrophobicity and sequence of the peptoid side chains were also studied to reveal the structure-property relationship. The prepared peptoid oligomers were detected as non-cytotoxic and considered to be useful in the biological field. We hope that the peptoid oligomers presented in this study can provide effective strategies for the design of biological cryoprotectants for organ preservation in the future.

10.
Int J Biol Macromol ; 268(Pt 2): 131941, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685545

RESUMO

The inherent functional fractions (gelation and ice-affinitive fractions) of gelatin enable it as a promising cryoprotectant alternative. However, the composition-antifreeze property relationships of gelatin remain to be investigated. In this study, the HW-PSG and LW-PSG fractions of gelatin from fish scales were obtained, according to the critical gelation conditions and ice-binding measurements, respectively. Thermal hysteresis (THA) value, associated with ice nucleation, of LW-PSG was higher than that of HW-PSG. Besides, the relatively low-sized ice crystals (210-550 µm2) indicated that HW-PSG showed strong ice recrystallization inhibition (IRI) ability, compared to other groups. These results suggested that LW-PSG inhibited ice nucleation, while HW-PSG displayed the strong IRI ability. Furthermore, the antifreeze mechanisms were clarified through IRI measurements and molecular dynamics simulation. The minimum size of ice crystals was found for HW-PSG gels with dense microstructure, suggesting the HW-PSG retarded the growth of ice crystals by restricting the migration and phase transformation of water molecules. The hydrogen bond interactions between the ice crystal surface and ASN1294 and PRO1433 residues of LW-PSG, and hydrophobic interactions contributed to inhibiting the nucleation of ice crystals. This study provided some references to further enhance antifreeze performance of gelatin by modulating fragment composition.


Assuntos
Gelatina , Simulação de Dinâmica Molecular , Gelatina/química , Animais , Gelo , Cristalização , Ligação de Hidrogênio , Crioprotetores/química , Crioprotetores/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Peixes
11.
Braz J Microbiol ; 55(2): 1451-1463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656427

RESUMO

Antarctic temperature variations and long periods of freezing shaped the evolution of microorganisms with unique survival mechanisms. These resilient organisms exhibit several adaptations for life in extreme cold. In such ecosystems, microorganisms endure the absence of liquid water and exhibit resistance to freezing by producing water-binding molecules such as antifreeze proteins (AFP). AFPs modify the ice structure, lower the freezing point, and inhibit recrystallization. The objective of this study was to select and identify microorganisms isolated from different Antarctic ecosystems based on their resistance to temperatures below 0 °C. Furthermore, the study sought to characterize these microorganisms regarding their potential antifreeze adaptive mechanisms. Samples of soil, moss, permafrost, and marine sediment were collected on King George Island, located in the South Shetland archipelago, Antarctica. Bacteria and yeasts were isolated and subjected to freezing-resistance and ice recrystallization inhibition (IR) tests. A total of 215 microorganisms were isolated, out of which 118 were molecularly identified through molecular analysis using the 16S rRNA and ITS regions. Furthermore, our study identified 24 freezing-resistant isolates, including two yeasts and 22 bacteria. A total of 131 protein extracts were subjected to the IR test, revealing 14 isolates positive for AFP production. Finally, four isolates showed both freeze-resistance and IR activity (Arthrobacter sp. BGS04, Pseudomonas sp. BGS05, Cryobacterium sp. P64, and Acinetobacter sp. M1_25C). This study emphasizes the diversity of Antarctic microorganisms with the ability to tolerate freezing conditions. These microorganisms warrant further investigation to conduct a comprehensive analysis of their antifreeze capabilities, with the goal of exploring their potential for future biotechnological applications.


Assuntos
Proteínas Anticongelantes , Bactérias , Congelamento , Regiões Antárticas , Proteínas Anticongelantes/metabolismo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Ilhas , Filogenia , Leveduras/genética , Leveduras/classificação , Leveduras/isolamento & purificação , Leveduras/metabolismo , RNA Ribossômico 16S/genética , Ecossistema
12.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559027

RESUMO

Determining the origins of novel genes and the genetic mechanisms underlying the emergence of new functions is challenging yet crucial for understanding evolutionary innovations. The novel fish antifreeze proteins, exemplifying convergent evolution, represent excellent opportunities to investigate the evolutionary origins and pathways of new genes. Particularly notable is the near-identical type I antifreeze proteins (AFPI) in four phylogenetically divergent fish taxa. This study tested the hypothesis of protein sequence convergence beyond functional convergence in three unrelated AFPI-bearing fish lineages, revealing different paths by which a similar protein arose from diverse genomic resources. Comprehensive comparative analyses of de novo sequenced genome of the winter flounder and grubby sculpin, available high-quality genome of the cunner, and those of 14 other relevant species found that the near-identical AFPI originated from a distinct genetic precursor in each lineage, and independently evolved coding regions for the novel ice-binding protein while retaining sequence identity in the regulatory regions with their respective ancestor. The deduced evolutionary processes and molecular mechanisms is consistent with the Innovation-Amplification-Divergence (IAD) model applicable to AFPI formation in all three lineages, a new Duplication-Degeneration-Divergence (DDD) model we propose for the sculpin lineage, and a DDD model with gene fission for the cunner lineage. This investigation illustrates the multiple ways by which a novel functional gene with sequence convergence at the protein level could evolve across divergent species, advancing our understanding of the mechanistic intricacies in new gene formation.

13.
BMC Genomics ; 25(1): 233, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438840

RESUMO

BACKGROUND: Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish. Despite its importance, genomic sequence data, which could be used for more accurate dating of the divergence between Patagonian and Antarctic toothfish, or establish whether it shares adaptations to temperature with fish living in more polar or equatorial climes, has so far been limited. RESULTS: A high-quality D. eleginoides genome was generated using a combination of Illumina, PacBio and Omni-C sequencing technologies. To aid the genome annotation, the transcriptome derived from a variety of toothfish tissues was also generated using both short and long read sequencing methods. The final genome assembly was 797.8 Mb with a N50 scaffold length of 3.5 Mb. Approximately 31.7% of the genome consisted of repetitive elements. A total of 35,543 putative protein-coding regions were identified, of which 50% have been functionally annotated. Transcriptomics analysis showed that approximately 64% of the predicted genes (22,617 genes) were found to be expressed in the tissues sampled. Comparative genomics analysis revealed that the anti-freeze glycoprotein (AFGP) locus of D. eleginoides does not contain any AFGP proteins compared to the same locus in the Antarctic toothfish (Dissostichus mawsoni). This is in agreement with previously published results looking at hybridization signals and confirms that Patagonian toothfish do not possess AFGP coding sequences in their genome. CONCLUSIONS: We have assembled and annotated the Patagonian toothfish genome, which will provide a valuable genetic resource for ecological and evolutionary studies on this and other closely related species.


Assuntos
Perciformes , Animais , Perciformes/genética , Genômica , Regiões Antárticas , Evolução Biológica , Proteínas Anticongelantes
14.
Foods ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540907

RESUMO

Aquatic products are gaining popularity due to their delicacy and high nutrient value. However, they are perishable, with a short shelf-life. Frozen storage is associated with adverse effects, leading to protein oxidation and degradation, thereby altering the protein's structural integrity and subsequently influencing the palatability of protein-based food products. To address these challenges, novel antifreeze peptides have gained significant attention. Antifreeze peptides are a class of small molecular weight proteins or protein hydrolysates that offer protection to organisms in frozen or sub-frozen environments. They offer distinct advantages over conventional commercial antifreeze agents and natural antifreeze proteins. This review provides an overview of the current state of research on antifreeze agents, elucidates their characteristics and mechanisms, and examines their applications in aquatic products. Furthermore, the article offers insights into the prospective development and application prospects of antifreeze peptides.

15.
Biomolecules ; 14(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397411

RESUMO

Antifreeze proteins (AFPs) are natural biomolecules found in cold-adapted organisms that lower the freezing point of water, allowing survival in icy conditions. These proteins have the potential to improve cryopreservation techniques by enhancing the quality of genetic material postthaw. Deschampsia antarctica, a freezing-tolerant plant, possesses AFPs and is a promising candidate for cryopreservation applications. In this study, we investigated the cryoprotective properties of AFPs from D. antarctica extracts on Atlantic salmon spermatozoa. Apoplastic extracts were used to determine ice recrystallization inhibition (IRI), thermal hysteresis (TH) activities and ice crystal morphology. Spermatozoa were cryopreserved using a standard cryoprotectant medium (C+) and three alternative media supplemented with apoplastic extracts. Flow cytometry was employed to measure plasma membrane integrity (PMI) and mitochondrial membrane potential (MMP) postthaw. Results showed that a low concentration of AFPs (0.05 mg/mL) provided significant IRI activity. Apoplastic extracts from D. antarctica demonstrated a cryoprotective effect on salmon spermatozoa, with PMI comparable to the standard medium. Moreover, samples treated with apoplastic extracts exhibited a higher percentage of cells with high MMP. These findings represent the first and preliminary report that suggests that AFPs derived from apoplastic extracts of D. antarctica have the potential to serve as cryoprotectants and could allow the development of novel freezing media.


Assuntos
Crioprotetores , Gelo , Congelamento , Cristalização , Crioprotetores/farmacologia , Crioprotetores/química , Proteínas Anticongelantes/química
16.
Sci Rep ; 14(1): 3234, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331970

RESUMO

Many polar organisms produce antifreeze proteins (AFPs) and ice-binding proteins (IBPs) to protect themselves from ice formation. As IBPs protect cells and organisms, the potential of IBPs as natural or biological cryoprotective agents (CPAs) for the cryopreservation of animal cells, such as oocytes and sperm, has been explored to increase the recovery rate after freezing-thawing. However, only a few IBPs have shown success in cryopreservation, possibly because of the presence of protein denaturants, such as dimethyl sulfoxide, alcohols, or ethylene glycol, in freezing buffer conditions, rendering the IBPs inactive. Therefore, we investigated the thermal and chemical stability of FfIBP isolated from Antarctic bacteria to assess its suitability as a protein-based impermeable cryoprotectant. A molecular dynamics (MD) simulation identified and generated stability-enhanced mutants (FfIBP_CC1). The results indicated that FfIBP_CC1 displayed enhanced resistance to denaturation at elevated temperatures and chemical concentrations, compared to wildtype FfIBP, and was functional in known CPAs while retaining ice-binding properties. Given that FfIBP shares an overall structure similar to DUF3494 IBPs, which are recognized as the most widespread IBP family, these findings provide important structural information on thermal and chemical stability, which could potentially be applied to other DUF3494 IBPs for future protein engineering.


Assuntos
Proteínas de Transporte , Gelo , Masculino , Animais , Proteínas de Transporte/metabolismo , Sêmen/metabolismo , Bactérias/metabolismo , Congelamento , Proteínas Anticongelantes/química , Crioprotetores/farmacologia , Crioprotetores/metabolismo
17.
J Colloid Interface Sci ; 661: 879-887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330660

RESUMO

Improving mechanical strength and frost-resistance is an important research direction in the field of hydrogel materials. Herein, using bacterial nanocellulose (BC) as a reinforcing agent and polyvinyl alcohol (PVA) as a polymer matrix, a frost-resistant organohydrogel was constructed via the freezing-thawing method in a new binary solvent system of N, N-dimethylformamide and water (DMF-H2O), which was designed according to the Hansen Solubility Parameter. Owing to the solvent-induced crystallization effect that led to the enhanced 3D hydrogen bonding network during the freezing-thawing process, the optimal organohydrogel achieved excellent mechanical properties with the tensile strength of 2,974 kPa and the stretchability of 277 % at room temperature, respectively. In the visiblelight range, the organohydrogel demonstrated high transmittance. Moreover, the presence of a DMF-H2O binary solvent endows it with frost-resistance, retaining the tensile strength of 508 kPa and a stretchability of 190 % even at -70 °C, respectively. This kind of transparent, frost-resistant organohydrogel has potential uses in harsh settings due to its great mechanical strength.

18.
Small ; 20(24): e2308092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168530

RESUMO

Conductive hydrogels have emerged as ideal candidate materials for strain sensors due to their signal transduction capability and tissue-like flexibility, resembling human tissues. However, due to the presence of water molecules, hydrogels can experience dehydration and low-temperature freezing, which greatly limits the application scope as sensors. In this study, an ionic co-hybrid hydrogel called PBLL is proposed, which utilizes the amphoteric ion betaine hydrochloride (BH) in conjunction with hydrated lithium chloride (LiCl) thereby achieving the function of humidity adaptive. PBLL hydrogel retains water at low humidity (<50%) and absorbs water from air at high humidity (>50%) over the 17 days of testing. Remarkably, the PBLL hydrogel also exhibits strong anti-freezing properties (-80 °C), high conductivity (8.18 S m-1 at room temperature, 1.9 S m-1 at -80 °C), high gauge factor (GF approaching 5.1). Additionally, PBLL hydrogels exhibit strong inhibitory effects against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as well as biocompatibility. By synergistically integrating PBLL hydrogel with wireless transmission and Internet of Things (IoT) technologies, this study has accomplished real-time human-computer interaction systems for sports training and rehabilitation evaluation. PBLL hydrogel exhibits significant potential in the fields of medical rehabilitation, artificial intelligence (AI), and the Internet of Things (IoT).


Assuntos
Escherichia coli , Umidade , Hidrogéis , Staphylococcus aureus , Hidrogéis/química , Humanos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Congelamento , Internet das Coisas
19.
ACS Appl Bio Mater ; 7(2): 617-625, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36971822

RESUMO

Computer-aided molecular design and protein engineering emerge as promising and active subjects in bioengineering and biotechnological applications. On one hand, due to the advancing computing power in the past decade, modeling toolkits and force fields have been put to use for accurate multiscale modeling of biomolecules including lipid, protein, carbohydrate, and nucleic acids. On the other hand, machine learning emerges as a revolutionary data analysis tool that promises to leverage physicochemical properties and structural information obtained from modeling in order to build quantitative protein structure-function relationships. We review recent computational works that utilize state-of-the-art computational methods to engineer peptides and proteins for various emerging biomedical, antimicrobial, and antifreeze applications. We also discuss challenges and possible future directions toward developing a roadmap for efficient biomolecular design and engineering.


Assuntos
Materiais Biocompatíveis , Peptídeos , Humanos , Materiais Biocompatíveis/uso terapêutico , Peptídeos/química , Proteínas/química , Biotecnologia , Engenharia de Proteínas
20.
Int J Biol Macromol ; 255: 128202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979748

RESUMO

Frozen dough technology has been widely used in the food industry at home and abroad due to its advantages of extending shelf life, preventing aging, and facilitating refrigeration and transportation. However, during the transportation and storage process of frozen dough, the growth and recrystallization of ice crystals caused by temperature fluctuations can lead to a deterioration in the quality of the dough, resulting in poor sensory characteristics of the final product and decreased consumption, which limits the large-scale application of frozen dough. In response to this issue, antifreeze proteins (AFPs) could be used as a beneficial additive to frozen dough that can combine with ice crystals, modify the ice crystal morphology, reduce the freezing point of water, and inhibit the recrystallization of ice crystals. Because of its special structure and function, it can well alleviate the quality deterioration problem caused by ice crystal recrystallization during frozen storage of dough, especially the plant-derived AFPs, which have a prominent effect on inhibiting ice crystal recrystallization. In this review, we introduce the characteristics and mechanisms of action of plant-derived AFPs. Furthermore, the application of plant-derived AFPs in frozen dough are also discussed.


Assuntos
Gelo , Proteínas de Plantas , Congelamento , Proteínas de Plantas/química , Crioprotetores , Proteínas Anticongelantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...