Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.608
Filtrar
1.
Front Immunol ; 15: 1458967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351233

RESUMO

Varicella-zoster virus (VZV) encephalitis and meningitis are potential central nervous system (CNS) complications following primary VZV infection or reactivation. With Type-I interferon (IFN) signalling being an important first line cellular defence mechanism against VZV infection by the peripheral tissues, we here investigated the triggering of innate immune responses in a human neural-like environment. For this, we established and characterised 5-month matured hiPSC-derived neurospheroids (NSPHs) containing neurons and astrocytes. Subsequently, NSPHs were infected with reporter strains of VZV (VZVeGFP-ORF23) or Sendai virus (SeVeGFP), with the latter serving as an immune-activating positive control. Live cell and immunocytochemical analyses demonstrated VZVeGFP-ORF23 infection throughout the NSPHs, while SeVeGFP infection was limited to the outer NSPH border. Next, NanoString digital transcriptomics revealed that SeVeGFP-infected NSPHs activated a clear Type-I IFN response, while this was not the case in VZVeGFP-ORF23-infected NSPHs. Moreover, the latter displayed a strong suppression of genes related to IFN signalling and antigen presentation, as further demonstrated by suppression of IL-6 and CXCL10 production, failure to upregulate Type-I IFN activated anti-viral proteins (Mx1, IFIT2 and ISG15), as well as reduced expression of CD74, a key-protein in the MHC class II antigen presentation pathway. Finally, even though VZVeGFP-ORF23-infection seems to be immunologically ignored in NSPHs, its presence does result in the formation of stress granules upon long-term infection, as well as disruption of cellular integrity within the infected NSPHs. Concluding, in this study we demonstrate that 5-month matured hiPSC-derived NSPHs display functional innate immune reactivity towards SeV infection, and have the capacity to recapitulate the strong immune evasive behaviour towards VZV.


Assuntos
Herpesvirus Humano 3 , Células-Tronco Pluripotentes Induzidas , Humanos , Herpesvirus Humano 3/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/virologia , Imunidade Inata , Neurônios/imunologia , Neurônios/virologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Células Cultivadas , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Evasão da Resposta Imune , Citocinas/metabolismo , Citocinas/imunologia , Astrócitos/imunologia , Astrócitos/virologia , Astrócitos/metabolismo , Transdução de Sinais/imunologia
2.
J Exp Clin Cancer Res ; 43(1): 276, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354629

RESUMO

BACKGROUND: In order for cancers to progress, they must evade elimination by CD8 T cells or other immune mechanisms. CD8 T cells recognize and kill tumor cells that display immunogenic tumor peptides bound to MHC I molecules. One of the ways that cancers can escape such killing is by reducing expression of MHC I molecules, and loss of MHC I is frequently observed in tumors. There are multiple different mechanisms that can underly the loss of MHC I complexes on tumor and it is currently unclear whether there are particular mechanisms that occur frequently and, if so, in what types of cancers. Also of importance to know is whether the loss of MHC I is reversible and how such loss and/or its restoration would impact responses to immunotherapy. Here, we investigate these issues for loss of IRF1 and IRF2, which are transcription factors that drive expression of MHC I pathway genes and some killing mechanisms. METHODS: Bioinformatics analyses of IRF2 and IRF2-dependent gene transcripts were performed for all human cancers in the TCGA RNAseq database. IRF2 protein-DNA-binding was analyzed in ChIPseq databases. CRISRPcas9 was used to knock out IRF1 and IRF2 genes in human and mouse melanoma cells and the resulting phenotypes were analyzed in vitro and in vivo. RESULTS: Transcriptomic analysis revealed that IRF2 expression was reduced in a substantial subset of cases in almost all types of human cancers. When this occurred there was a corresponding reduction in the expression of IRF2-regulated genes that were needed for CD8 T cell recognition. To test cause and effect for these IRF2 correlations and the consequences of IRF2 loss, we gene-edited IRF2 in a patient-derived melanoma and a mouse melanoma. The IRF2 gene-edited melanomas had reduced expression of transcripts for genes in the MHC I pathway and decreased levels of MHC I complexes on the cell surface. Levels of Caspase 7, an IRF2 target gene involved in CD8 T cell killing of tumors, were also reduced. This loss of IRF2 caused both human and mouse melanomas to become resistant to immunotherapy with a checkpoint inhibitor. Importantly, these effects were reversible. Stimulation of the IRF2-deficient melanomas with interferon induced the expression of a functionally homologous transcription factor, IRF1, which then restored the MHC I pathway and responsiveness to CPI. CONCLUSIONS: Our study shows that a subset of cases within most types of cancers downregulates IRF2 and that this can allow cancers to escape immune control. This can cause resistance to checkpoint blockade immunotherapy and is reversible with currently available biologics.


Assuntos
Imunoterapia , Fator Regulador 2 de Interferon , Melanoma , Animais , Humanos , Camundongos , Fator Regulador 2 de Interferon/genética , Fator Regulador 2 de Interferon/metabolismo , Melanoma/genética , Melanoma/imunologia , Melanoma/tratamento farmacológico , Melanoma/terapia , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/genética , Melanoma Experimental/terapia , Linhagem Celular Tumoral
3.
Front Immunol ; 15: 1439371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372419

RESUMO

Historically inflammation against self was considered autoimmune which stems back to the seminal observations by Ehrlich who described serum factors, now known to be autoantibodies produced by B lineage cells that mediate "horror autotoxicus". The 20th century elucidation of B- and T-cell adaptive immune responses cemented the understanding of the key role of adaptive immune responses in mediating pathology against self. However, Mechnikov shared the Nobel Prize for the discovery of phagocytosis, the most rudimentary aspect of innate immunity. Fast forward some 100 years and an immunogenetic understanding of innate immunity led to the categorising of innate immunopathology under the umbrella term 'auto inflammation' and terminology such as "horror autoinflammaticus" to highlight the schism from the classical adaptive immune understanding of autoimmunity. These concepts lead to calls for a two-tiered classification of inflammation against self, but just as innate and adaptive immunity are functionally integrated, so is immunopathology in many settings and the concept of an autoimmune to autoinflammation continuum emerged with overlaps between both. Herein we describe several historically designated disorders of adaptive immunity where innate immunity is key, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) where the immunopathology phenotype is strongly linked to major histocompatibility complex (MHC) class II associations and responds to drugs that target T-cells. We also consider MHC-I-opathies including psoriasis and Behcet's disease(BD) that are increasingly viewed as archetype CD8 T-cell related disorders. We also briefly review the key role of barrier dysfunction in eczema and ulcerative colitis (UC) where innate tissue permeability barrier dysfunction and microbial dysbiosis contributes to prominent adaptive immune pathological mechanisms. We also highlight the emerging roles of intermediate populations of lymphocytes including gamma delta (γδ) and mucosal-associated invariant T (MAIT) cells that represent a blend of adaptive immune plasticity and innate immune rapid responders that may also determine site specific patterns of inflammation.


Assuntos
Doenças Autoimunes , Autoimunidade , Imunidade Inata , Inflamação , Humanos , Doenças Autoimunes/imunologia , Inflamação/imunologia , Animais , Imunidade Adaptativa
4.
JCI Insight ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388288

RESUMO

Immune evasion by tumors is promoted by low T cell infiltration, ineffective T cell activity directed against the tumor and reduced tumor antigen presentation. The TET2 DNA dioxygenase gene is frequently mutated in hematopoietic malignancies and loss of TET enzymatic activity is found in a variety of solid tumors. We showed previously that vitamin C (VC), a co-factor of TET2, enhances tumor-associated T cell recruitment and checkpoint inhibitor therapy responses in a TET2-dependent manner. Using single-cell RNA sequencing (scRNA-seq) analysis performed on B16-OVA melanoma tumors, we have shown here that an additional function for TET2 in tumors is to promote expression of certain antigen presentation machinery genes, which is potently enhanced by VC. Consistently, VC promoted antigen presentation in cell-based and tumor assays in a TET2-dependent manner. Quantifying intercellular signaling from the scRNA-seq dataset showed that T cell-derived IFNγ-induced signaling within the tumor and tumor microenvironment requires tumor-associated TET2 expression which is enhanced by VC treatment. Analysis of patient tumor samples indicated that TET activity directly correlates with antigen-presentation gene expression and with patient outcomes. Our results demonstrate the importance of tumor-associated TET2 activity as a critical mediator of tumor immunity which is augmented by high-dose VC therapy.

5.
Trends Cancer ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353814

RESUMO

The impact of tumor-infiltrating B cells on breast cancer (BRCA) outcomes remains poorly understood. Recent findings from Yang et al. identify an atypical, clonally expanded population of activated Fc receptor-like 4 (FCRL4)+ B cells that is associated with improved overall survival in patients affected by various tumor types, including BRCA.

6.
Cancer Cell ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39393356

RESUMO

According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.

7.
Reprod Domest Anim ; 59(9): e14711, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39246124

RESUMO

The establishment of pregnancy involves a fine-tuned balance between protection and tolerance within the maternal immune system, as the female needs to accept a foreign antigen (the semi-allogenic fetus) while still being able to combat pathogens from the uterus. In the horse, the first uterine exposure to paternal antigens is during mating when sperm is introduced to the tissue and draining lymphatics of the uterus. Additionally, it has been suggested that seminal plasma and its proteins within it play an essential role in preparing the female tract for a suitable immunologic environment but this has not been confirmed in the horse. Therefore, the objective of this study was to evaluate the endometrial transcriptome following insemination either with seminal plasma or with reduced seminal plasma. We hypothesised that reduced seminal plasma would alter the endometrial transcriptome and affect transcripts relating to immunotolerance, antigen presentation and embryo growth and development. To do so, six (n = 6) mares were inseminated in a randomised switch-back design over the course of four oestrous cycles. Mares were rectally palpated and scanned via ultrasonography for the detection of a pre-ovulatory follicle (>35 mm) alongside increasing uterine oedema and relaxed cervix, and then treated with one of four treatment groups including (1) 30 mL lactated Ringers solution (LRS; NegCon), (2) 500 × 106 spermatozoa in conjunction with 30 mL seminal plasma (SP+), (3) 30 mL lactated Ringers solution (LRS; wash out) and (4) 500 × 106 spermatozoa with seminal plasma reduced via gradient centrifugation and resuspended in 30 mL LRS (SP-). Human chorionic gonadotropin (hCG) was administered to standardise the time to ovulation and endometrial biopsies were collected 7 days after insemination. RNA was isolated utilising Trizol, and RNA-Seq was performed by Novogene, with 97.79% total mapping and 40 million read depth. p value was set to <0.05. When comparing SP+ to SP-, 158 differentially expressed genes (DEGs) were identified. Biological processes impacted included antigen processing and regulation, cholesterol synthesis, and immune/inflammatory response. Gene ontology (GO) enrichment analysis using DAVID v6.8 revealed that many of these DEGs were involved in biological process such as antigen presentation (HLA-DM beta chain, HLA-DRB, HLA-DQA and RASGRP1), immune cell signalling (CXCL9, CXCL1, DEFB1 and MIP-2B), embryo growth and development (INHA, KLF2, RDH10, LAMA3 and SLC34A2) and embryo metabolism (ABCA1, ABCA2, APOA1, LDL, INSR, IGFBP2 and IGFBP3). Overall, reduction of seminal plasma from the insemination dose impacted the endometrial transcriptome at the time of early embryonic exposure to the uterine environment. Further work is justified to evaluate these alterations impact on embryo maturation, placental development, pregnancy outcome and development of offspring.


Assuntos
Endométrio , Inseminação Artificial , Sêmen , Transcriptoma , Animais , Cavalos , Feminino , Endométrio/metabolismo , Inseminação Artificial/veterinária , Masculino , Gravidez
8.
Front Immunol ; 15: 1445338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247192

RESUMO

Background: Defective ribosomal products (DRiPs) are non-functional proteins rapidly degraded during or after translation being an essential source for MHC class I ligands. DRiPs are characterized to derive from a substantial subset of nascent gene products that degrade more rapidly than their corresponding native retiree pool. So far, mass spectrometry analysis revealed that a large number of HLA class I peptides derive from DRiPs. However, a specific viral DRiP on protein level was not described. In this study, we aimed to characterize and identify DRiPs derived from a viral protein. Methods: Using the nucleoprotein (NP) of the lymphocytic choriomeningitis virus (LCMV) which is conjugated N-terminally to ubiquitin, or the ubiquitin-like modifiers FAT10 or ISG15 the occurrence of DRiPs was studied. The formation and degradation of DRiPs was monitored by western blot with the help of a FLAG tag. Flow cytometry and cytotoxic T cells were used to study antigen presentation. Results: We identified several short lived DRiPs derived from LCMV-NP. Of note, these DRiPs could only be observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, but not in the wild type form. Using proteasome inhibitors, we could show that degradation of LCMV-NP derived DRiPs were proteasome dependent. Interestingly, the synthesis of DRiPs could be enhanced when cells were stressed with the help of FCS starvation. An enhanced NP118-126 presentation was observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, or under FCS starvation. Conclusion: Taken together, we visualize for the first time DRiPs derived from a viral protein. Furthermore, DRiPs formation, and therefore MHC-I presentation, is enhanced under cellular stress conditions. Our investigations on DRiPs in MHC class I antigen presentation open up new approaches for the development of vaccination strategies.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Vírus da Coriomeningite Linfocítica , Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Humanos , Estresse Fisiológico/imunologia , Linfócitos T Citotóxicos/imunologia , Camundongos , Ubiquitinas/metabolismo , Ubiquitinas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/imunologia , Proteólise , Nucleoproteínas/imunologia , Nucleoproteínas/metabolismo
9.
Physiol Rep ; 12(17): e70025, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223101

RESUMO

Major histocompatibility complex class I (MHC I) molecules present peptides to CD8+ T-cells for immunosurveillance of infection and cancer. Recent studies indicate lineage-specific heterogeneity in MHC I expression. While respiratory diseases rank among the leading causes of mortality, studies in mice have shown that lung epithelial cells (LECs) express the lowest levels of MHC I in the lung. This study aims to answer three questions: (i) Do human LECs express low levels of MHC I? (ii) Is LEC MHC I expression modulated in chronic respiratory diseases? (iii) Which factors regulate MHC I levels in human LECs? We analyzed human LECs from parenchymal explants using single-cell RNA sequencing and immunostaining. We confirmed low constitutive MHC I expression in human LECs, with significant upregulation in chronic respiratory diseases. We observed a sexual dimorphism, with males having higher MHC I levels under steady-state conditions, likely due to differential redox balance. Our study unveils the complex interplay between MHC I expression, sex, and respiratory disease. Since MHC I upregulation contributes to the development of immunopathologies in other models, we propose that it may have a similar impact on chronic lung disease.


Assuntos
Células Epiteliais , Antígenos de Histocompatibilidade Classe I , Pulmão , Humanos , Feminino , Masculino , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Pulmão/metabolismo , Pulmão/citologia , Pulmão/imunologia , Células Epiteliais/metabolismo , Caracteres Sexuais , Pneumopatias/metabolismo
10.
Front Immunol ; 15: 1462209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238636

RESUMO

CD1 isoforms are MHC class I-like molecules that present lipid-antigens to T cells and have been associated with a variety of immune responses. The lipid repertoire bound and presented by the four CD1 isoforms may be influenced by factors such as the cellular lipidome, subcellular microenvironment, and the properties of the binding pocket. In this study, by shotgun mass spectrometry, we performed a comprehensive lipidomic analysis of soluble CD1 molecules. We identified 1040 lipids, of which 293 were present in all isoforms. Comparative analysis revealed that the isoforms bind almost any cellular lipid.CD1a and CD1c closely mirrored the cellular lipidome, while CD1b and CD1d showed a preference for sphingolipids. Each CD1 isoform was found to have unique lipid species, suggesting some distinct roles in lipid presentation and immune responses. These findings contribute to our understanding of the role of CD1 system in immunity and could have implications for the development of lipid-based therapeutics.


Assuntos
Antígenos CD1 , Lipidômica , Antígenos CD1/metabolismo , Antígenos CD1/imunologia , Humanos , Apresentação de Antígeno/imunologia , Lipídeos/imunologia , Metabolismo dos Lipídeos , Isoformas de Proteínas/imunologia , Antígenos CD1d/metabolismo , Antígenos CD1d/imunologia
11.
Adv Healthc Mater ; : e2402688, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258393

RESUMO

Antigen delivery via respiratory mucosal surfaces is an interesting needle-free option for vaccination. Nonetheless, it demands for the design of especially tailored formulations. Here, lipid/poly(lactic-co-glycolic) acid (PLGA) hybrid nanoparticles (hNPs) for the combined delivery of an antigen, ovalbumin (Ova), and an adjuvant, synthetic unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG) motifs, is developed. A panel of Ova/CpG-loaded lipid@PLGA hNPs with tunable size and surface is attained by exploiting two lipid moieties, 1,2 distearoil-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) and monophosphoryl lipid A (MPLA), with or without polyethyleneimine (PEI). It is gained insights on the lipid@PLGA hNPs through a combination of techniques to analytically determine the specific moiety on the surface, the spatial distribution of the components and the internal structure of the nanoplatforms. The collected results suggest that PEI plays a role of paramount importance not only in promoting in vitro antigen escape from lysosomes and enhancing antigen cross-presentation, but also in determining the arrangement of the moieties in the final architecture of the hNPs. Though multicomponent PEI-engineered lipid@PLGA hNPs turn out as a viable strategy for delivery of antigens and adjuvant to the respiratory mucosa, tunable nanoparticle features are achievable only through the optimal selection of the components and their relative amounts.

12.
Mucosal Immunol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244090

RESUMO

The impact of dietary fiber on intestinal T cell development is poorly understood. Here we show that a low fiber diet reduces MHC-II antigen presentation by small intestinal epithelial cells (IECs) and consequently impairs development of CD4+CD8αα+ intraepithelial lymphocytes (DP IELs) through changes to the microbiota. Dietary fiber supports colonization by Segmented Filamentous Bacteria (SFB), which induces the secretion of IFNγ by type 1 innate lymphoid cells (ILC1s) that lead to MHC-II upregulation on IECs. IEC MHC-II expression caused either by SFB colonization or exogenous IFNγ administration induced differentiation of DP IELs. Finally, we show that a low fiber diet promotes overgrowth of Bifidobacterium pseudolongum, and that oral administration of B. pseudolongum reduces SFB abundance in the small intestine. Collectively we highlight the importance of dietary fiber in maintaining the balance among microbiota members that allow IEC MHC-II antigen presentation and define a mechanism of microbiota-ILC-IEC interactions participating in the development of intestinal intraepithelial T cells.

13.
Cell ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276775

RESUMO

Major histocompatibility complex class II (MHC-II) is the most significant genetic risk factor for systemic lupus erythematosus (SLE), but the nature of the self-antigens that trigger autoimmunity remains unclear. Unusual self-antigens, termed neoself-antigens, are presented on MHC-II in the absence of the invariant chain essential for peptide presentation. Here, we demonstrate that neoself-antigens are the primary target for autoreactive T cells clonally expanded in SLE. When neoself-antigen presentation was induced by deleting the invariant chain in adult mice, neoself-reactive T cells were clonally expanded, leading to the development of lupus-like disease. Furthermore, we found that neoself-reactive CD4+ T cells were significantly expanded in SLE patients. A high frequency of Epstein-Barr virus reactivation is a risk factor for SLE. Neoself-reactive lupus T cells were activated by Epstein-Barr-virus-reactivated cells through downregulation of the invariant chain. Together, our findings imply that neoself-antigen presentation by MHC-II plays a crucial role in the pathogenesis of SLE.

14.
Vaccines (Basel) ; 12(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39340079

RESUMO

Inducing T lymphocyte (T-cell) activation and proliferation with specificity against a pathogen is crucial in vaccine formulation. Assessing vaccine candidates' ability to induce T-cell proliferation helps optimize formulation for its safety, immunogenicity, and efficacy. Our in-house vaccine candidates use microparticles (MPs) and nanoparticles (NPs) to enhance antigen stability and target delivery to antigen-presenting cells (APCs), providing improved immunogenicity. Typically, vaccine formulations are screened for safety and immunostimulatory effects using in vitro methods, but extensive animal testing is often required to assess immunogenic responses. We identified the need for a rapid, intermediate screening process to select promising candidates before advancing to expensive and time-consuming in vivo evaluations. In this study, an in vitro overlay assay system was demonstrated as an effective high-throughput preclinical testing method to evaluate the immunogenic properties of early-stage vaccine formulations. The overlay assay's effectiveness in testing particulate vaccine candidates for immunogenic responses has been evaluated by optimizing the carboxyfluorescein succinimidyl ester (CFSE) T-cell proliferation assay. DCs were overlaid with T-cells, allowing vaccine-stimulated DCs to present antigens to CFSE-stained T-cells. T-cell proliferation was quantified using flow cytometry on days 0, 1, 2, 4, and 6 upon successful antigen presentation. The assay was tested with nanoparticulate vaccine formulations targeting Neisseria gonorrhoeae (CDC F62, FA19, FA1090), measles, H1N1 flu prototype, canine coronavirus, and Zika, with adjuvants including Alhydrogel® (Alum) and AddaVax™. The assay revealed robust T-cell proliferation in the vaccine treatment groups, with variations between bacterial and viral vaccine candidates. A dose-dependent study indicated immune stimulation varied with antigen dose. These findings highlight the assay's potential to differentiate and quantify effective antigen presentation, providing valuable insights for developing and optimizing vaccine formulations.

15.
Cells ; 13(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39329721

RESUMO

Impaired tumor cell antigen presentation contributes significantly to immune evasion. This study identifies Berbamine hydrochloride (Ber), a compound derived from traditional Chinese medicine, as an effective inhibitor of autophagy that enhances antigen presentation in tumor cells. Ber increases MHC-I-mediated antigen presentation in melanoma cells, improving recognition and elimination by CD8+ T cells. Mutation of Atg4b, which blocks autophagy, also raises MHC-I levels on the cell surface, and further treatment with Ber under these conditions does not increase MHC-I, indicating Ber's role in blocking autophagy to enhance MHC-I expression. Additionally, Ber treatment leads to the accumulation of autophagosomes, with elevated levels of LC3-II and p62, suggesting a disrupted autophagic flux. Fluorescence staining and co-localization analyses reveal that Ber likely inhibits lysosomal acidification without hindering autophagosome-lysosome fusion. Importantly, Ber treatment suppresses melanoma growth in mice and enhances CD8+ T cell infiltration, supporting its therapeutic potential. Our findings demonstrate that Ber disturbs late-stage autophagic flux through abnormal lysosomal acidification, enhancing MHC-I-mediated antigen presentation and curtailing tumor immune escape.


Assuntos
Autofagia , Benzilisoquinolinas , Melanoma , Evasão Tumoral , Autofagia/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Evasão Tumoral/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Camundongos Endogâmicos C57BL , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Cisteína Endopeptidases
16.
Handb Clin Neurol ; 205: 135-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39341650

RESUMO

Repair and replacement strategies using cell replacement or viral gene transfer for neurologic diseases are becoming increasingly efficacious with clinically meaningful benefits in several conditions. An increased understanding of disease processes opens up opportunities for genetic therapies and precision medicine methods aiming at disease modification or repair of lesioned neurologic structures. However, such therapeutic effects may be limited or rendered ineffective by immune responses against gene products or cells used for the intended treatments. When introducing therapeutic agents into the nervous system, a set of biologic responses are inevitably triggered, which may lead to host responses that limit the intended therapeutic goals. Factors of importance include the type of vector used and origin of cells, the mode of introduction, the degree of host immunization, and any prior exposure to the agents used. It is possible to apply specific treatments that interfere with many of these steps and factors in order to limit host immunization and to reduce or eliminate host effector reactions against the therapeutic agents. This includes immune-evading design measures of the advanced therapeutic medicinal products and various immunosuppressive processes. Limited duration of specific immune modulations may be possible under carefully monitored programs.


Assuntos
Terapia Genética , Doenças do Sistema Nervoso , Humanos , Terapia Genética/métodos , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/imunologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos
17.
Metabolism ; 161: 156036, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39342987

RESUMO

Nonalcoholic steatohepatitis (NASH) is a primary cause of liver cirrhosis and hepatocellular carcinoma, presenting a significant and unmet medical challenge. The necessity to investigate the molecular mechanisms underlying NASH is highlighted by the observed decrease in programmed cell death 4 (PDCD4) expression in NASH patients, suggesting that PDCD4 may play a protective role in maintaining liver health. In this study, we identify PDCD4 as a natural inhibitor of NASH development in mice. The absence of PDCD4 leads to the spontaneous progression of NASH. Notably, PDCD4-deficient hepatocytes display elevated major histocompatibility complex class II (MHCII) expression due to CIITA activation, indicating that PCDC4 prevents the abnormal transformation of hepatocytes into antigen-presenting cells (APCs). Cell co-culture experiments reveal that hepatocytes lacking PDCD4, which resemble APCs, can directly activate CD4+ T cells by presenting multiple peptides, resulting in the release of inflammatory factors. Additionally, both cellular and animal studies show that CIITA promotes lipid accumulation in hepatocytes and exacerbates NASH progression. In summary, our findings reveal a novel role of PDCD4 in regulating CIITA and MHCII expression during NASH development, offering new therapeutic approaches for NASH treatment.

18.
BMC Bioinformatics ; 25(1): 310, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333860

RESUMO

BACKGROUND: Antigen presentation is a central step in initiating and shaping the adaptive immune response. To activate CD8+ T cells, pathogen-derived peptides are presented on the cell surface of antigen-presenting cells bound to major histocompatibility complex (MHC) class I molecules. CD8+ T cells that recognize these complexes with their T cell receptor are activated and ideally eliminate infected cells. Prediction of putative peptides binding to MHC class I (MHC-I) is crucial for understanding pathogen recognition in specific immune responses and for supporting drug and vaccine design. There are reliable databases for epitope prediction algorithms available however they primarily focus on the prediction of epitopes in single immunogenic proteins. RESULTS: We have developed the tool DiscovEpi to establish an interface between whole proteomes and epitope prediction. The tool allows the automated identification of all potential MHC-I-binding peptides within a proteome and calculates the epitope density and average binding score for every protein, a protein-centric approach. DiscovEpi provides a convenient interface between automated multiple sequence extraction by organism and cell compartment from the database UniProt for subsequent epitope prediction via NetMHCpan. Furthermore, it allows ranking of proteins by their predicted immunogenicity on the one hand and comparison of different proteomes on the other. By applying the tool, we predict a higher immunogenic potential of membrane-associated proteins of SARS-CoV-2 compared to those of influenza A based on the presented metrics epitope density and binding score. This could be confirmed visually by comparing the epitope maps of the influenza A strain and SARS-CoV-2. CONCLUSION: Automated prediction of whole proteomes and the subsequent visualization of the location of putative epitopes on sequence-level facilitate the search for putative immunogenic proteins or protein regions and support the study of adaptive immune responses and vaccine design.


Assuntos
Antígenos de Histocompatibilidade Classe I , Proteoma , Proteoma/metabolismo , Proteoma/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Humanos , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/imunologia , Software , Epitopos/química , Epitopos/imunologia , Bases de Dados de Proteínas , Algoritmos
19.
ACS Appl Mater Interfaces ; 16(40): 53577-53590, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39344665

RESUMO

Dendritic cells (DCs) within the tumor microenvironment (TME) have an insufficient capacity to activate T cells through antigen presentation. Furthermore, the programmed cell-death ligand 1 (PD-L1), abundantly expressed on tumor-associated DCs, binds the programmed cell-death 1 (PD-1)-positive T cells and suppresses their immune function. The binding of PD-L1 to CD80 (B7.1) on the same DC via cis-interactions further prevents T cell costimulation through CD28. Here, we present a strategy to simultaneously promote antigen cross-presentation and block the inhibitory interactions of PD-L1 on DCs to amplify T cell-mediated antitumor responses within the TME. Mesoporous silica nanoparticles (MSNPs) were loaded with clotrimazole (CLT) to boost MHC II-mediated antigen presentation by DCs, surface-modified with mannose to target CD206 on DCs, and then decorated with PD-L1 binding peptide (PDL1bp) to block PD-L1-mediated interactions. PDL1bp was cleaved from the mannosylated and CLT-loaded MSNPs (MSNP-MaN/CLT) under conditions simulating the TME and tethered to PD-L1 to reverse CD80 sequestration on DC2.4 cells. The blocking of PD-L1 by PDL1bp-decorated NPs (MSNP-MaN-PDL1bp) increased the cellular interactions between DC2.4 and EL4 T cells and the amount of IL-2 secretion. The MSNP-MaN/CLT were taken up rapidly by DC2.4 cells, promoted MHC II presentation of hen egg lysozyme (HEL), and increased IL-2 production from HEL antigen-primed 3A9 T cells, which was further enhanced by PDL1bp. In vivo investigation revealed that administration of the CLT-loaded and PDL1bp-functionalized MSNPs remarkably inhibited subcutaneous B16-F10 melanoma tumor growth when compared with anti-PD-L1 therapy. MSNP-MaN-PDL1bp/CLT treatment upregulated the levels of effector molecules such as granzyme B and proinflammatory cytokines (IFNγ and INFα) in the tumor tissue, indicating antitumoral T cell responses. This strategy of utilizing nanoparticles to trigger DC activation while promoting T cell stimulation can be used to amplify the antitumor T cell responses and represents a promising alternative to anti-PD-L1 immunotherapy.


Assuntos
Apresentação de Antígeno , Antígeno B7-H1 , Células Dendríticas , Ativação Linfocitária , Nanopartículas , Linfócitos T , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Antígeno B7-H1/metabolismo , Animais , Nanopartículas/química , Apresentação de Antígeno/efeitos dos fármacos , Camundongos , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Linhagem Celular Tumoral , Dióxido de Silício/química , Humanos
20.
Res Sq ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39281881

RESUMO

Background: In order for cancers to progress, they must evade elimination by CD8 T cells or other immune mechanisms. CD8 T cells recognize and kill tumor cells that display immunogenic tumor peptides bound to MHC I molecules. One of the ways that cancers can escape such killing is by reducing expression of MHC I molecules, and loss of MHC I is frequently observed in tumors. There are multiple different mechanisms that can underly the loss of MHC I complexes on tumor and it is currently unclear whether there are particular mechanisms that occur frequently and, if so, in what types of cancers. Also of importance to know is whether the loss of MHC I is reversible and how such loss and/or its restoration would impact responses to immunotherapy. Here, we investigate these issues for loss of IRF1 and IRF2, which are transcription factors that drive expression of MHC I pathway genes and some killing mechanisms. Methods: Bioinformatics analyses of IRF2 and IRF2-dependent gene transcripts were performed for all human cancers in the TCGA RNAseq database. IRF2 protein-DNA-binding was analyzed in ChIPseq databases. CRISRPcas9 was used to knock out IRF1 and IRF2 genes in human and mouse melanoma cells and the resulting phenotypes were analyzed in vitro and in vivo. Results: Transcriptomic analysis revealed that IRF2 expression was reduced in a substantial subset of cases in almost all types of human cancers. When this occurred there was a corresponding reduction in the expression of IRF2-regulated genes that were needed for CD8 T cell recognition. To test cause and effect for these IRF2 correlations and the consequences of IRF2 loss, we gene-edited IRF2 in a patient-derived melanoma and a mouse melanoma. The IRF2 gene-edited melanomas had reduced expression of transcripts for genes in the MHC I pathway and decreased levels of MHC I complexes on the cell surface. Levels of Caspase 7, an IRF2 target gene involved in CD8 T cell killing of tumors, were also reduced. This loss of IRF2 caused both human and mouse melanomas to become resistant to immunotherapy with a checkpoint inhibitor. Importantly, these effects were reversible. Stimulation of the IRF2-deficient melanomas with interferon induced the expression of a functionally homologous transcription factor, IRF1, which then restored the MHC I pathway and responsiveness to CPI. Conclusions: Our study shows that a subset of cases within most types of cancers downregulates IRF2 and that this can allow cancers to escape immune control. This can cause resistance to checkpoint blockade immunotherapy and is reversible with currently available biologics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA