Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.133
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39093394

RESUMO

Climate change and human activity have led to an increase in salinity levels and the toxicity of chromium (Cr). One promising approach to modifying these stressors in plants is to use effective nanoparticles (NPs). While titanium dioxide nanoparticles (TiO2 NPs) and hydroxyapatite (HAP NPs) have been demonstrated to increase plant tolerance to abiotic stress by enhancing antioxidant capacity, lipid peroxidation, and secondary metabolites, it is unknown how these two compounds can work together in situations when salt and Cr toxicity are present. The objective of the current study was to determine the effects of foliar-applied TiO2 NPs (15 mg L-1) and HAP NPs (250 mg L-1) separately and in combination on growth, chlorophyll (Chl), water content, lipid peroxidation, antioxidant capacity, phenolic content, and essential oils (EOs) of Solidago canadensis L. under salinity (100 mM NaCl) and Cr toxicity (100 mg kg-1 soil). Salinity was more deleterious than Cr by decreasing plant weight, Chl a + b, relative water content (RWC), EO yield, and increasing malondialdehyde (MDA), electrolyte leakage (EL), superoxide dismutase (SOD) activity, and catalase (CAT) activity. The co-application of TiO2 and HAP NPs proved to be more successful. This was evidenced by the increased shoot weight (36%), root weight (29%), Chl a + b (23%), RWC (15%), total phenolic content (TPC, 34%), total flavonoid content (TFC, 28%), and EO yield (56%), but decreased MDA (21%), EL (11%), SOD (22%) and CAT activity (38%) in salt-exposed plants. The study demonstrated the effective strategy of co-applying these NPs to modify abiotic stress by enhancing phenolic compounds and EO yield as key results.

2.
Food Chem ; 460(Pt 2): 140645, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39094339

RESUMO

The retention of bioactive compounds in the blend of wheat and rye flours and 4% roasted buckwheat hulls, dough before and after fermentation, and obtained bread were determined. In parallel, the content of Maillard reaction products (MRPs) and antioxidant capacity (AC) during technological steps of bread production were studied. The dough formation and fermentation process increased the content of phenolic acids and flavonoids and reduced the content of tocopherols, and no changes in glutathione as compared to the blend were noted. Moreover, the increased level of available lysine and AC were observed after dough fermentation. The baking process resulted in further increased phenolic acids, and flavonoids and decreased the tocopherols and glutathione contents. The bread was characterized by the highest values of parameters related to MRPs, such as the content of fluorescent intermediary compounds and final browning index compared to other analyzed steps.

3.
Plant Foods Hum Nutr ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153161

RESUMO

Chickpea is rich in protein and has been demonstrated to possess hypoglycaemic effects. However, the specific bioactive ingredients and mechanisms underlying their hypoglycaemic effects remain unclear. In this study, enzymatic hydrolysis and gel permeation chromatography were used to extract chickpea bioactive peptide (CBP) from chickpea protein. One of the products, CBP-75-3, was found to inhibit α-glucosidase (GAA) activity and significantly increase the viability of insulin resistant (IR) cells. Moreover, CBP-75-3 significantly increased the rate of glucose consumption and glycogen synthesis in IR-HepG2 cells. Moreover, CBP-75-3 decreased the levels of malondialdehyde and increased the levels of superoxide dismutase, glutathione, and glutathione peroxidase. Subsequently, 29 novel bioactive peptides in CBP-75-3 were identified by LC‒MS/MS, and the potential hypoglycaemic targets of these novel bioactive peptides were investigated using molecular docking. Based on the results, the residues of the novel bioactive peptides interact with GAA through hydrogen bonding (especially LLR, FH, RQLPR, KGF and NFQ by binding to the substrate binding pocket or the active centre of GAA), thereby inhibiting GAA activity and laying a foundation for its hypoglycaemic activity. In short, the novel bioactive peptides isolated and identified from chickpea can effectively exert hypoglycaemic effects and increase the antioxidant capacity of IR-HepG2 cells. This study reveals that CBP-75-3, a natural hypoglycaemic ingredient, has potential for applications in functional foods and provides a theoretical basis for the development and application of CBP in the future.

4.
Fish Shellfish Immunol ; 153: 109834, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151840

RESUMO

This experiment was conducted to explore the effects of dietary vitamin C supplementation on non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab (Scylla paramamosain). Mud crabs with an initial weight of 14.67 ± 0.13 g were randomly divided into 6 treatments and fed diets with 0.86 (control), 44.79, 98.45, 133.94, 186.36 and 364.28 mg/kg vitamin C, respectively. The experiment consisted of 6 treatments, each treatment was designed with 4 replicates and each replicate was stocked with 8 crabs. After 42 days of feeding experiment, 2 crabs were randomly selected from each replicate, and a total of 8 crabs in each treatment were carried out 72 h low-temperature challenge experiment. The results showed that crabs fed diets with 186.36 and 364.28 mg/kg vitamin C significantly improved the activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in hemolymph and hepatopancreas (P < 0.05). Crabs fed diet with 133.94 mg/kg vitamin C significantly decreased the concentration of nitric oxide (NO) and the activity of nitric oxide synthase (NOS) in hemolymph (P < 0.05). Diet with 133.94 mg/kg vitamin C was improved the activity of polyphenol oxidase (PPO) and the concentration of albumin (ALB) in hemolymph. Crabs fed diet with 133.94 mg/kg vitamin C showed lower concentration of malondialdehyde (MDA) in hemolymph and hepatopancreas than those fed the other diets. Meanwhile, crabs fed diet with 98.45 mg/kg vitamin C showed higher activity of total superoxide dismutase (T-SOD) in hemolymph, and crabs fed diet with 133.94 mg/kg vitamin C showed higher activity of T-SOD in hepatopancreas. Crabs fed diet with 186.36 mg/kg vitamin C significantly decreased the concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GSH-PX) in hepatopancreas (P < 0.05). In normal temperature, crabs fed diets with 133.94 mg/kg vitamin C significantly up-regulated the expression levels of gpx (glutathione peroxidase) and trx (thioredoxin) in hepatopancreas compared with the control treatment (P < 0.05). The highest expression levels of relish, il16 (interleukin 16), caspase 2 (caspase 2), p38 mapk (p38 mitogen-activated protein kinases) and bax (bcl-2 associated x protein) in hepatopancreas were found at crabs fed control diet (P < 0.05). Moreover, crabs fed diet with 133.94 mg/kg vitamin C showed higher expression levels of alf-3 (anti-lipopolysaccharide factor 3) and bcl-2 (B-cell lymphoma 2) in hepatopancreas than those fed the other diets (P < 0.05). Under low-temperature stress, crabs fed diet with 133.94 mg/kg vitamin C significantly improved the expression levels of hsp90 (heat shock protein 90), cat (catalase), gpx, prx (thioredoxin peroxidase) and trx in hepatopancreas (P < 0.05). In addition, dietary with 133.94 vitamin C significantly up-regulated the expression levels of alf-3 and bcl-2 (P < 0.05). Based on two slope broken-line regression analysis of activity of PPO against the dietary vitamin C level, the optimal dietary vitamin C requirement was estimated to be 144.81 mg/kg for juvenile mud crab. In conclusion, dietary 133.94-144.81 mg/kg vitamin C significantly improved the non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab.

5.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125598

RESUMO

Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.


Assuntos
Alginatos , Antioxidantes , Microbioma Gastrointestinal , Oligossacarídeos , Desmame , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Oligossacarídeos/farmacologia , Oligossacarídeos/administração & dosagem , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Alginatos/farmacologia , Suplementos Nutricionais , Ração Animal , Intestinos/microbiologia , Intestinos/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia
6.
Food Res Int ; 193: 114854, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160045

RESUMO

In this study, phenolic profile/content was analyzed by high-resolution untargeted metabolomics after short germination (72 h) and seedling growth (144 h), using three sorghum genotypes varying in tannin content (IS 29569, Macia and IS 30400). In vitro antioxidant capacity and phenolic bioaccessibility were determined by microplate-based and INFOGEST methods, respectively. A total of 58 % annotated compounds were found in all genotypes; and phenolic acids and flavonoids represent more than 80 % of sorghum total abundance. PCA analysis showed higher phenolic variability in germination times (72 %) than genotypes (51 %). Germination reduced total ion abundance (-7 %) and free:bound phenolic compounds ratio (2.4-1.1), but antioxidant capacity remained constant. These results indicate the cell matrix-phenolic decomplexation, with the free compounds were quickly consumed after radicle emergence. Germination increased phenolic bioaccessibility (mainly in oral phase) but reduces flavonoids contents in gastric/intestinal digestion steps. This work can stimulate seed germination as a viable option for sorghum-based foods development, with improved nutritional and bioactive properties.


Assuntos
Antioxidantes , Germinação , Fenóis , Plântula , Sorghum , Espectrometria de Massas em Tandem , Sorghum/metabolismo , Sorghum/crescimento & desenvolvimento , Sorghum/química , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fenóis/metabolismo , Fenóis/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Antioxidantes/metabolismo , Antioxidantes/análise , Flavonoides/análise , Flavonoides/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/química , Disponibilidade Biológica , Metabolômica/métodos , Genótipo , Taninos/análise , Taninos/metabolismo , Digestão
7.
Plant Cell Environ ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087790

RESUMO

Cold stress negatively impacts the growth, development, and quality of Camellia sinensis (Cs, tea) plants. CBL-interacting protein kinases (CIPK) comprise a pivotal protein family involved in plant development and response to multiple environmental stimuli. However, their roles and regulatory mechanisms in tea plants (Camellia sinensis (L.) O. Kuntze) remain unknown. Here we show that CsCBL-interacting protein kinase 11 (CsCIPK11), whose transcript abundance was significantly induced at low temperatures, interacts and phosphorylates tau class glutathione S-transferase 23 (CsGSTU23). CsGSTU23 was also a cold-inducible gene and has significantly higher transcript abundance in cold-resistant accessions than in cold-susceptible accessions. CsCIPK11 phosphorylated CsGSTU23 at Ser37, enhancing its stability and enzymatic activity. Overexpression of CsCIPK11 in Arabidopsis thaliana resulted in enhanced cold tolerance under freezing conditions, while transient knockdown of CsCIPK11 expression in tea plants had the opposite effect, resulting in decreased cold tolerance and suppression of the C-repeat-binding transcription factor (CBF) transcriptional pathway under freezing stress. Furthermore, the transient overexpression of CsGSTU23 in tea plants increased cold tolerance. These findings demonstrate that CsCIPK11 plays a central role in the signaling pathway to cold signals and modulates antioxidant capacity by phosphorylating CsGSTU23, leading to improved cold tolerance in tea plants.

8.
Front Vet Sci ; 11: 1423920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104550

RESUMO

Weaning is an important period in the growth and development of lambs. Thus, effectively reducing the occurrence of weaning stress is critical for maintaining lamb production. Coated sodium butyrate has been shown to reduce inflammation, promote intestinal health, and maintain homeostasis. However, the application and potential mechanism of coated sodium butyrate in alleviating weaning stress in lambs are still unclear. To evaluate the effects of coated sodium butyrate on the growth performance, antioxidant capacity, and gut microbiota of weaned lambs, 10 weaned lambs of 21-day-old were randomly divided into two groups: the CON group (basal diet) and the NaB group (basal diet +3 g/kg of coated sodium butyrate). The trial lasted 21 days. The experimental results showed that compared to the CON group, coated sodium butyrate supplementation in the diet significantly increased the average daily weight gain and daily feed intake of lambs (p < 0.05). In addition, compared to the CON group, the addition of coated sodium butyrate also significantly decreased the serum MDA level of lambs (p < 0.05). Notably, the addition of coated sodium butyrate did not have a significant effect on the cecal microbiota, while increasing the diversity of colonic microbiota and promoting the abundance of Lachnospiraceae, Verrucomicrobiota, Akkermansia, Roseburia, and Sinobacteraceae, which are associated with the nutrient absorption of lambs (p < 0.05). These results indicate that dietary supplementation with coated sodium butyrate could promote the growth and antioxidant capacity of weaned lambs and alleviate weaning stress.

9.
Food Chem ; 460(Pt 3): 140670, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39106747

RESUMO

Anthocyanins are natural flavonoids with a high antioxidant power and many associated health benefits, but most rice produce little amounts of these compounds. In this study, 141 MYB transcription factors in 15 chromosomes, including the nucleus-localised ZlMYB1 (Zla03G003370) and ZlMYB2 (Zla15G015220), were discovered in Zizania latifolia. Overexpression of ZlMYB1 or ZlMYB2 in rice seeds induced black pericarps, and flavonoid content, antioxidant capacity, and α-glucosidase and tyrosinase inhibition effects significantly increased compared to those in the control seeds. ZlMYB1 and ZlMYB2 overexpression induced the upregulation of 764 and 279 genes, respectively, and the upregulation of 162 and 157 flavonoids, respectively, linked to a black pericarp phenotype. The expression of flavonoid 3'-hydroxylase and UDP-glycose flavonoid glycosyltransferase, as well as the activities of these enzymes, increased significantly in response to ZlMYB1 or ZlMYB2 overexpression. This study systematically confirmed that the overexpression of ZlMYB1 and ZlMYB2 promotes flavonoid biosynthesis (especially of anthocyanins) in rice.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39110285

RESUMO

Heat stress (HS) causes severe economic losses in sheep industry worldwide. The objective of the present study was to investigate the effects of a herbal formula (HF) supplement on growth, digestibility, antioxidant capacity, and rumen microbes in fattening lambs under HS. The HF composed of four herbs was prepared based on the theory of compatibility of Chinese medicine "Jun-Chen-Zuo-Shi". Two-hundred forty 3-month weaned lambs (initial weight 36.61 ± 0.73 kg) were randomly allocated into four groups, supplemented 0% (Control), 0.5%, 1.0%, and 1.5% HF in diets. All lambs were exposed to HS conditions with 79.7 of average temperature-humidity index throughout an experimental period of 35 days. Growth performance, apparent digestibility, and antioxidant activities, involving antioxidant enzymes and heat shock proteins (HSPs), were measured at the end of trial, as well as microbial communities in bacteria and archaea. Results showed that 0.5% HF increased (P = 0.02) average daily gain by 13.80% and decreased feed-to-gain ratio (P = 0.03) by 14.68%, compared to control. With increasing HF doses, the digestibility of ether extract and acid detergent fiber demonstrated a cubical (P < 0.01) and quadratic (P = 0.03) relation, respectively; moreover, glutathione peroxidase and catalase activities demonstrated a quadratic increase (P < 0.01). Serum levels of HSP60, HSP70, and HSP90 for 0.5% HF were lower than that in control (P < 0.05). On the other hand, total volatile fatty acid, acetic acid, butyric acid, valeric acid, and isovaleric acid levels exhibited quadratic increases (P ≤ 0.01) with HF doses. From rumen microbes, the abundance and diversity of bacterial community were improved by HF supplements. Particularly for 0.5% HF group, the operational taxonomic units were the greatest among all groups. Compared to control, Prevotella abundance for HF supplements from 0.5 to 1.5% increased by 35.57 to 60.15%, and Succiniclasticum abundance demonstrated a quadratic pattern (P = 0.02) with doses. Additionally, Methanosphaera abundance in archaeal community raised by 0.2 to 3.3-folds when lambs were fed the HF additions of 0.5 to 1.5%. In summary, dietary HF supplements would contribute to alleviating HS in lambs, and our results suggest the optimal dose of 0.5% HF supplement in diet.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39137344

RESUMO

Introduction: It has been demonstrated the dysregulation of the cardiac endocannabinoid system in cardiovascular diseases. Thus, the modulation of this system through the administration of phytocannabinoids present in medicinal cannabis oil (CO) emerges as a promising therapeutic approach. Furthermore, phytocannabinoids exhibit potent antioxidant properties, making them highly desirable in the treatment of cardiac pathologies, such as hypertension-induced cardiac hypertrophy (CH). Objective: To evaluate the effect of CO treatment on hypertrophy and mitochondrial status in spontaneously hypertensive rat (SHR) hearts. Methods: Three-month-old male SHR were randomly assigned to CO or olive oil (vehicle) oral treatment for 1 month. We evaluated cardiac mass and histology, mitochondrial dynamics, membrane potential, area and density, myocardial reactive oxygen species (ROS) production, superoxide dismutase (SOD), and citrate synthase (CS) activity and expression. Data are presented as mean ± SEM (n) and compared by t-test, or two-way ANOVA and Bonferroni post hoc test were used as appropriate. p < 0.05 was considered statistically significant. Results: CH was reduced by CO treatment, as indicated by the left ventricular weight/tibia length ratio, left ventricular mass index, myocyte cross-sectional area, and left ventricle collagen volume fraction. The ejection fraction was preserved in the CO-treated group despite the persistence of elevated systolic blood pressure and the reduction in CH. Mitochondrial membrane potential was improved and mitochondrial biogenesis, dynamics, area, and density were all increased by treatment. Moreover, the activity and expression of the CS were enhanced by treatment, whereas ROS production was decreased and the antioxidant activity of SOD increased by CO administration. Conclusion: Based on the mentioned results, we propose that 1-month oral treatment with CO is effective to reduce hypertrophy, improve the mitochondrial pool and increase the antioxidant capacity in SHR hearts.

12.
Foods ; 13(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123604

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal originally grown in the Andean region of South America. This study focused on investigating the changes in phenolic profile and antioxidant capacity in white and red quinoa varieties after short-term fermentation with Lactiplantibacillus plantarum 299v®. During fermentation, pH and lactic acid formation were monitored every three hours until pH was below 4.6. The quinoa phenolic profile was quantified via LC-UV-MS. Total polyphenol content (TPC) and total antioxidant capacity (DPPH and FRAP) were determined via spectrophotometric methods. The findings showed that fermentation resulted in a significant increase (p < 0.001) in TPC from 4.68 to 7.78 mgGAE·100 g-1 for the white quinoa and from 5.04 to 8.06 mgGAE·100 g-1 for the red quinoa variety. Gallic acid was the most abundant phenolic acid detected in unfermented quinoa samples (averaging 229.5 µg·g-1). Fermented white quinoa showed an 18-fold increase in epicatechin, while catechin was found only in fermented red quinoa (59.19 µg·g-1). Fermentation showed a significantly positive impact on the iron-reducing antioxidant capacity (FRAP) of quinoa (p < 0.05). Red quinoa had a higher FRAP antioxidant capacity than the white variety; a similar trend was observed with the DPPH assay. There was a significant correlation (r > 0.9, p < 0.05) between TPC and antioxidant capacity. In conclusion, short-time lactic fermentation effectively increased phenolic content and antioxidant capacity in both quinoa varieties. Overall, red quinoa showed higher polyphenol content and antioxidant capacity compared to the white variety.

13.
Foods ; 13(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123605

RESUMO

Recent consumer demand for non-dairy alternatives has forced many manufacturers to turn their attention to cereal-based non-alcoholic fermented products. In contrast to fermented dairy products, there is no defined and standardized starter culture for manufacturing cereal-based products. Since spontaneous fermentation is rarely suitable for large-scale commercial production, it is not surprising that manufacturers have started to adopt centuries-known dairy starters based on lactic acid bacteria (LABs) for the fermentation of cereals. However, little is known about the fermentation processes of cereals with these starters. In this study, we combined various analytical tools in order to understand how the most common starter cultures of LABs affect the most common types of cereals during fermentation. Specifically, 3% suspensions of rice, oat, and wheat flour were fermented by the pure cultures of 16 LAB strains belonging to five LAB species-Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactobacillus helveticus, Streptococcus thermophilus, and Lactococcus lactis. The fermentation process was described in terms of culture growth and changes in the pH, reducing sugars, starch, free proteins, and free phenolic compounds. The organoleptic and rheological features of the obtained fermented products were characterized, and their functional properties, such as their antioxidant capacity and angiotensin-converting enzyme inhibitory activity, were determined.

14.
Plants (Basel) ; 13(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124250

RESUMO

Sechium edule (Jacq.) Swartz is a perennial herbaceous climbing plant with tendrils and tuberous roots belonging to the Cucurbitaceae family. Its fruits ("chayote"), stems, roots, and leaves are edible and are commonly ingested by humans. It has shown medicinal properties attributed to its bioactive compounds (vitamins, phenolic acids, flavonoids, carotenoids, triterpenoids, polyphenolic compounds, phytosterols, and cucurbitacins), which together have been associated with the control and prevention of chronic and infectious diseases, highlighting its antibacterial, anti-cardiovascular/antihypertensive, antiepileptic, anti-inflammatory, hepatoprotective, antiproliferative, and antioxidant activities. The objective of the study was to determine the antigenotoxic potential of two types of fresh chayote juice (filtered (FChJ) and unfiltered (UFChJ)) against DNA damage produced by benzo[a]pyrene (B[a]P) using an in vivo mouse peripheral blood micronucleus assay (MN). The juices were consumed freely for 2 weeks. A negative control, a control group of each juice, a positive batch [B[a]P], and two combined batches (B[a]P plus FChJ or UFChJ) were included. Blood smears were stained and observed under a microscope to quantify the number of micronucleated normochromic erythrocytes (MNNEs). The results indicate: (a) B[a]P increased the frequency of MNNEs and reduced the rate of PEs; and (b) no juice produced toxic effects or induced MN. On the contrary, both juices were genoprotective. However, the most significant effect was presented by UFChJ at the end of the experiment (70%). It is suggested that UFChJ has a greater amount of fiber and/or phytochemicals that favor the therapeutic effect. Possibly, the genoprotection is also related to its antioxidant capacity.

15.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125802

RESUMO

The hair follicle is the basis of hair regeneration, and the dermal papilla is one of the most important structures in hair regeneration. New intervention and reversal strategies for hair loss may arise due to the prevention of oxidative stress. GC/MS analysis was used to determine the compounds contained in NSO. Then, NSO was applied to DPC for cell proliferation and oxidative stress experiments. RNA-seq was performed in cells treated with NSO and minoxidil. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify the gene expression. The effects of NSO on hair length, weight, the number and depth of hair follicles, and the dermal thickness were also studied. GC/MS analysis showed that the main components of NSO were eicosapentaenoic acid, palmitic acid, and linoleic acid. NSO promotes DPC proliferation and reduces H2O2-mediated oxidative damage. NSO can also activate hair growth-related pathways and upregulate antioxidant-related genes analyzed by gene profiling. The topical application of NSO significantly promotes hair growth and increases hair length and weight in mice. NSO extract promotes hair growth and effectively inhibits oxidative stress, which is beneficial for the prevention and treatment of hair loss.


Assuntos
Proliferação de Células , Folículo Piloso , Cabelo , Estresse Oxidativo , Proliferação de Células/efeitos dos fármacos , Animais , Humanos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/citologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Antioxidantes/farmacologia , Derme/metabolismo , Derme/citologia , Derme/efeitos dos fármacos
16.
Talanta ; 280: 126650, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39128310

RESUMO

Accurate assessment of Total Antioxidant Capacity (TAC) in food is crucial for evaluating nutritional quality and potential health benefits. This study aims to enhance the sensitivity and reliability of TAC detection through a dual-signal method, combining colorimetric and photothermal signals. Gold nanorods (AuNRs) were utilized to establish a dual-signal method duo to the colorimetric and photothermal properties. Fenton reaction can etch the AuNRs from the tips, as a result, a blue shift in the longitudinal LSPR absorption peak was obtained, leading to significant changes in color and photothermal effects, facilitating discrimination through both visual observation and thermometer measurements. In the presence of antioxidants, the Fenton reaction was suppressed or inhibited, protecting the AuNRs from etching. The colorimetric and photothermal signals were therefore positively correlated with TAC levels, enabling dual-signal detection of TAC. The linear range of AA was 4-100 µM in both colorimetry and photothermal modes, with detection limits of 1.60 µM and 1.38 µM, respectively. This dual-signal approach achieves low detection limits, enhancing precision and sensitivity. The method thus has the potential to act as a promising candidate for TAC detection in food samples, contributing to improved food quality and safety assessment.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39105886

RESUMO

Selenium is among the important trace elements that influence the quality of meat. Although it has been established that the gut microbiota is closely associated with selenium metabolism, it has yet to be determined whether these microbes influence the accumulation of selenium in muscles. To identify gut microbiota that potentially influence the deposition of selenium in muscles, we compared the colonic microbial composition of pigs characterized by high and low contents of selenium in the longissimus dorsi muscle and accordingly detected a higher abundance of the bacterium Prevotella copri (P. copri) in pigs with a higher muscle selenium content. To verify the effect of P. copri, 16 pigs weighing approximately 61 kg were fed either a basal diet or a basal diet supplemented with P. copri (1.0 × 1010 CFU/kg feed) for 45 days. The results revealed significant increases in the contents of selenium and selenoprotein in the serum and longissimus dorsi muscle of fattening pigs fed the P. copri-supplemented diet. Moreover, supplementing the feed of pigs with P. copri was observed to promote significant improvement in the antioxidant capacity and quality of meat, including drip loss, pH, and meat color. In conclusion, our findings in this study indicate that P. copri has potential utility as a dietary supplement for improving the selenium status and meat quality in fattening pigs.

18.
Front Vet Sci ; 11: 1404580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161461

RESUMO

Introduction: Probiotics, especially Lactic Acid Bacteria (LAB), can promote the health of host animals in a variety of ways, such as regulating intestinal flora and stimulating the host's immune system. Methods: In this study, 206 LAB strains were isolated from 48 canine fecal samples. Eleven LAB strains were selected based on growth performance, acid and bile salt resistance. The 11 candidates underwent comprehensive evaluation for probiotic properties, including antipathogenic activity, adhesion, safety, antioxidant capacity, and metabolites. Results: The results of the antipathogenic activity tests showed that 11 LAB strains exhibited strong inhibitory effect and co-aggregation ability against four target pathogens (E. coli, Staphylococcus aureus, Salmonella braenderup, and Pseudomonas aeruginosa). The results of the adhesion test showed that the 11 LAB strains had high cell surface hydrophobicity, self-aggregation ability, biofilm-forming ability and adhesion ability to the Caco-2 cells. Among them, Lactobacillus acidophilus (L177) showed strong activity in various adhesion experiments. Safety tests showed that 11 LAB strains are sensitive to most antibiotics, with L102, L171, and L177 having the highest sensitivity rate at 85.71%, and no hemolysis occurred in all strains. Antioxidant test results showed that all strains showed good H2O2 tolerance, high scavenging capacity for 1, 1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). In addition, 11 LAB strains can produce high levels of metabolites including exopolysaccharide (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH). Discussion: This study provides a thorough characterization of canine-derived LAB strains, highlighting their multifunctional potential as probiotics. The diverse capabilities of the strains make them promising candidates for canine dietary supplements, offering a holistic approach to canine health. Further research should validate their efficacy in vivo to ensure their practical application.

19.
Food Chem X ; 23: 101644, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39148531

RESUMO

Effects of slightly acidic electrolyzed water (SAEW) on the storability, quality attributes, and reactive oxygen species (ROS) metabolism of litchis were investigated. Results showed that SAEW-treated litchis presented better quality attributes and storability than control litchis. On storage day 5, the commercially acceptable fruit rate of control litchis was 42%, while SAEW-treated litchis displayed 59% higher rate of commercially acceptable fruit, 21% lower pericarp browning index, and 13% lower weight loss percentage than control litchis. Additionally, compared to control litchis, SAEW-treated litchis demonstrated higher activities of SOD, CAT and APX, higher levels of GSH, AsA, DPPH radical scavenging ability, and reducing power, but lower O2 -· generation rate, lower levels of H2O2 and MDA. These findings indicated that SAEW treatment could elevate antioxidant capacity and ROS scavenging ability, reduce ROS production and accumulation, and lower membrane lipid peroxidation, thereby retaining the quality attributes and storability of litchis.

20.
Heliyon ; 10(14): e34799, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39148988

RESUMO

Purpose: Infertility is a worldwide concern, and recent research indicates that vitamin B6 deficiency may play a role in male infertility, primarily by inducing hyperhomocysteinemia and oxidative stress. These processes can have a detrimental effect on semen quality, ultimately affecting male fertility. Here, we aim to evaluate the biochemical status of pyridoxine (vitamin B6) in relation to total glutathione and total antioxidant capacity. Materials and methods: A case control study samples were collected of asthenozoospermic (n = 63) and normospermic (n = 43) cases, with average men age 30.35 ± 7.03 years old. Semen plasma specimens representing both fertile and sub-fertile men visiting two different secondary care health institute in Irbid province, Jordan. All samples were assessed according to WHO guidelines (2021) and by using spectrophotometry to evaluate the semen plasma levels of vitamin B6, glutathione (GSH) and total antioxidant capacity (TAC). Results: Our main finding is there is significant positive correlations between the seminal plasma concentration of GSH (p < 0.0001) and TAC (p < 0.0073) are significantly correlated with vitamin B6 deficiency in asthenozoospermia group in comparison to normozoospermia cases. A significant decrease (p < 0.0001) the levels of vitamin B6 in men with asthenozoospermia compared to normozoospermic men (control) with an approximate 80 % percent reduction in the mean levels between groups. Conclusions: These findings suggest that pyridoxine deficiency may very well alter the GSH system, in so doing affecting the antioxidant defense mechanism against reactive oxygen species to sperm, impacting sperm development and maturation. leading to asthenozoospermia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA