Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Pharmaceutics ; 16(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38258131

RESUMO

This work relates to the design and synthesis of a series of novel multi-target directed ligands (MTDLs), i.e., compounds 4a-l, via a convenient one-pot three-component Hantzsch reaction. This approach targeted calcium channel antagonism, antioxidant capacity, cathepsin S inhibition, and interference with Nrf2 transcriptional activation. Of these MTDLs, 4i emerged as a promising compound, demonstrating robust antioxidant activity, the ability to activate Nrf2-ARE pathways, as well as calcium channel blockade and cathepsin S inhibition. Dihydropyridine 4i represents the first example of an MTDL that combines these biological activities.

2.
Immunology ; 171(1): 60-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753964

RESUMO

Tumorigenesis entails circumventing cell-intrinsic regulatory mechanisms while avoiding extrinsic immune surveillance and other host defence systems. Nevertheless, how tumour cells' ability to eliminate misfolded proteins affects immune surveillance remains poorly understood. In this study, we find that overexpression of murine tripartite motif-containing protein 30a (TRIM30a) sensitises tumour cells to natural killer (NK) cells-mediated cytolysis. TRIM30a has no effect on tumour cell proliferation or apoptosis in vitro. However, TRIM30a-overexpressing tumour cells grow substantially slower than control tumour cells in immune-competent mice but not in NK cell-depleted mice. [Correction added on 04 October 2023, after first online publication: 'NK-depleted' has been changed to 'NK cell-depleted' in the preceding sentence.] Mechanistically, TRIM30a overexpression impedes the clearance of misfolded proteins and increases the production of reactive oxygen species induced by proteotoxic stress, implying that TRIM30a impairs protein quality control (PQC) systems in tumour cells. Furthermore, TRIM30a reduces expression of genes encoding proteasome subunits and antioxidant proteins. Our study demonstrates that TRIM30a is a potential tumour suppressor and immune modulator that promotes tumour cytolysis by NK cells, and suggests that an enhanced PQC and antioxidant capacity is an integral part of the immune escape mechanism during tumorigenesis.


Assuntos
Antioxidantes , Neoplasias , Animais , Camundongos , Antioxidantes/metabolismo , Carcinogênese/metabolismo , Células Matadoras Naturais , Espécies Reativas de Oxigênio/metabolismo
3.
Blood Cells Mol Dis ; 104: 102792, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633023

RESUMO

Sickle cell disease (SCD) is the most common ß-hemoglobinopathy caused by various mutations in the adult ß-globin gene resulting in sickle hemoglobin production, chronic hemolytic anemia, pain, and progressive organ damage. The best therapeutic strategies to manage the clinical symptoms of SCD is the induction of fetal hemoglobin (HbF) using chemical agents. At present, among the Food and Drug Administration-approved drugs to treat SCD, hydroxyurea is the only one proven to induce HbF protein synthesis, however, it is not effective in all people. Therefore, we evaluated the ability of the novel Bach1 inhibitor, HPP-D to induce HbF in KU812 cells and primary sickle erythroid progenitors. HPP-D increased HbF and decreased Bach1 protein levels in both cell types. Furthermore, chromatin immunoprecipitation assay showed reduced Bach1 and increased NRF2 binding to the γ-globin promoter antioxidant response elements. We also observed increased levels of the active histone marks H3K4Me1 and H3K4Me3 supporting an open chromatin configuration. In primary sickle erythroid progenitors, HPP-D increased γ-globin transcription and HbF positive cells and reduced sickled erythroid progenitors under hypoxia conditions. Collectively, our data demonstrate that HPP-D induces γ-globin gene transcription through Bach1 inhibition and enhanced NRF2 binding in the γ-globin promoter antioxidant response elements.


Assuntos
Anemia Falciforme , gama-Globinas , Humanos , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , Hemoglobina Falciforme/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/uso terapêutico , Ativação Transcricional/efeitos dos fármacos , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo
4.
Toxics ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38133374

RESUMO

The skin sensitization potential of agrochemicals can be assessed using laboratory methods such as the keratinocyte activation assay so that their use in regulatory toxicology might replace experimental animal testing. Here, we evaluated the skin sensitization potential of 11 agrochemicals by using an antioxidant response element-nuclear factor erythroid 2 luciferase assay in KeratinoSens and LuSens cells and applying a skin sensitization adverse outcome pathway (AOP). The KeratinoSens and LuSens assays consistently evaluated the skin sensitization potential of 10/11 agrochemicals with reference to animal testing databases. Benomyl, pretilachlor, fluazinam, terbufos, butachlor, and carbosulfan were correctly detected as sensitizers, and glufosinate ammonium, oxiadiazon, tebuconazole, and etofenprox were correctly detected as non-sensitizers. For diazinon, the skin sensitizing potential was positive in the KeratinoSens assay but not in the LuSens assay. These results suggest that the evaluation of in vitro skin sensitization using the AOP mechanism can be applied to assess active agrochemicals.

5.
Biol Pharm Bull ; 46(11): 1576-1582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914360

RESUMO

Chinese artichoke tuber (Stachys sieboldii Miq.) is used as an herbal medicine as well as edible food. This study examined the effect of the Chinese artichoke extracts on the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway that induces the expression of antioxidant enzymes to explore its novel characteristics. Hot water extracts exhibited relatively high ARE activity. ARE activity was observed in two fractions when the hot water extracts were separated in the presence of trifluoroacetic acid using HPLC. Conversely, the highly active fraction disappeared when the hot water extracts were separated in the absence of trifluoroacetic acid. These results indicate that acidic degradation produces active ingredients. The structural analysis of the two active fractions identified harpagide, which is an iridoid glucoside, and harpagogenin. In vitro experiments revealed that harpagide was converted into harpagogenin under acidic conditions and that harpagogenin, but not harpagide, had potent ARE activity. Therefore, this study identified harpagogenin, which is an acid hydrolysate of harpagide, as an ARE activator and suggests that Nrf2-ARE pathway activation by Chinese artichoke contributes to the antioxidative effect.


Assuntos
Stachys , Elementos de Resposta Antioxidante , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Stachys/química , Ácido Trifluoracético , Água
6.
Front Pharmacol ; 14: 1247550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841923

RESUMO

Intracerebral hemorrhage (ICH) is a subtype of stroke with a high mortality rate. Oxidative stress cascades play an important role in brain injury after ICH. Cannabidiol, a major non-psychotropic phytocannabinoids, has drawn increasing interest in recent years as a potential therapeutic intervention for various neuropsychiatric disorders. Here we provide a comprehensive review of the potential therapeutic effects of cannabidiol in countering oxidative stress resulting from ICH. The review elaborates on the various sources of oxidative stress post-ICH, including mitochondrial dysfunction, excitotoxicity, iron toxicity, inflammation, and also highlights cannabidiol's ability to inhibit ROS/RNS generation from these sources. The article also delves into cannabidiol's role in promoting ROS/RNS scavenging through the Nrf2/ARE pathway, detailing both extranuclear and intranuclear regulatory mechanisms. Overall, the review underscores cannabidiol's promising antioxidant effects in the context of ICH and suggests its potential as a therapeutic option.

7.
Biology (Basel) ; 12(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37759569

RESUMO

A hallmark of aging and neurodegenerative diseases is a disruption of proteome homeostasis ("proteostasis") that is caused to a considerable extent by a decrease in the efficiency of protein degradation systems. The ubiquitin proteasome system (UPS) is the major cellular pathway involved in the clearance of small, short-lived proteins, including amyloidogenic proteins that form aggregates in neurodegenerative diseases. Age-dependent decreases in proteasome subunit expression coupled with the inhibition of proteasome function by aggregated UPS substrates result in a feedforward loop that accelerates disease progression. Nuclear factor erythroid 2- like 1 (NFE2L1) is a transcription factor primarily responsible for the proteasome inhibitor-induced "bounce-back effect" regulating the expression of proteasome subunits. NFE2L1 is localized to the endoplasmic reticulum (ER), where it is rapidly degraded under basal conditions by the ER-associated degradation (ERAD) pathway. Under conditions leading to proteasome impairment, NFE2L1 is cleaved and transported to the nucleus, where it binds to antioxidant response elements (AREs) in the promoter region of proteasome subunit genes, thereby stimulating their transcription. In this review, we summarize the role of UPS impairment in aging and neurodegenerative disease etiology and consider the potential benefit of enhancing NFE2L1 function as a strategy to upregulate proteasome function and alleviate pathology in neurodegenerative diseases.

8.
Arq. bras. oftalmol ; 86(2): 178-187, Mar.-Apr. 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1429834

RESUMO

ABSTRACT After the discovery of anti-vascular endothelial growth factor agents as treatment of wet age-related macular degeneration, the number of studies with the objective to understand the molecular mechanisms involved in the age-re lated macular degeneration genesis has increased. The importance of the nuclear factor e2-related factor 2 lies in its activation-derived proteins being involved in the maintenance of the redox balance and consequent prevention of degenerative macular disease. This article aims to present the characteristics of nuclear factor e2-related factor 2 and describe the main nuclear factor e2-related factor 2-activated antioxidant enzymes that contribute to the preservation of vision.


RESUMO Após a descoberta do anti fator de crescimento en dotelial vascular no tratamento da degeneração macular relacionada à idade úmida, muitas pesquisas têm sido realizadas com o intuito de elucidar os mecanismos moleculares envolvidos na gênese da degeneração macular relacionada à idade. O fator nuclear eritroide 2 relacionado ao fator 2 destaca-se pelo fato de diversas proteínas, oriundas de sua ativação, estarem envolvidas na manutenção do equilíbrio do estado redox e consequente prevenção da doença macular degenerativa. Este artigo mostra as características do fator nuclear eritroide 2 relacionado ao fator 2 e descreve as principais enzimas antioxidantes originadas da ativação que contribuem para a preservação da visão.

9.
JHEP Rep ; 5(4): 100651, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36866391

RESUMO

Background & Aims: Oxidative stress is recognized as a major driver of non-alcoholic steatohepatitis (NASH) progression. The transcription factor NRF2 and its negative regulator KEAP1 are master regulators of redox, metabolic and protein homeostasis, as well as detoxification, and thus appear to be attractive targets for the treatment of NASH. Methods: Molecular modeling and X-ray crystallography were used to design S217879 - a small molecule that could disrupt the KEAP1-NRF2 interaction. S217879 was highly characterized using various molecular and cellular assays. It was then evaluated in two different NASH-relevant preclinical models, namely the methionine and choline-deficient diet (MCDD) and diet-induced obesity NASH (DIO NASH) models. Results: Molecular and cell-based assays confirmed that S217879 is a highly potent and selective NRF2 activator with marked anti-inflammatory properties, as shown in primary human peripheral blood mononuclear cells. In MCDD mice, S217879 treatment for 2 weeks led to a dose-dependent reduction in NAFLD activity score while significantly increasing liver Nqo1 mRNA levels, a specific NRF2 target engagement biomarker. In DIO NASH mice, S217879 treatment resulted in a significant improvement of established liver injury, with a clear reduction in both NAS and liver fibrosis. αSMA and Col1A1 staining, as well as quantification of liver hydroxyproline levels, confirmed the reduction in liver fibrosis in response to S217879. RNA-sequencing analyses revealed major alterations in the liver transcriptome in response to S217879, with activation of NRF2-dependent gene transcription and marked inhibition of key signaling pathways that drive disease progression. Conclusions: These results highlight the potential of selective disruption of the NRF2-KEAP1 interaction for the treatment of NASH and liver fibrosis. Impact and implications: We report the discovery of S217879 - a potent and selective NRF2 activator with good pharmacokinetic properties. By disrupting the KEAP1-NRF2 interaction, S217879 triggers the upregulation of the antioxidant response and the coordinated regulation of a wide spectrum of genes involved in NASH disease progression, leading ultimately to the reduction of both NASH and liver fibrosis progression in mice.

10.
Antioxidants (Basel) ; 12(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36978988

RESUMO

Sickle cell disease (SCD) is a monogenic inheritable disease characterized by severe anemia, increased hemolysis, and recurrent, painful vaso-occlusive crises due to the polymerization of hemoglobin S (HbS)-generated oxidative stress. Up until now, only four drugs are approved for SCD in the US. However, each of these drugs affects only a limited array of SCD pathologies. Importantly, curative therapies, such as gene therapy, or hematopoietic stem cell transplantation are not available for every patient because of their high costs, availability of donor matching, and their serious adverse effects. Therefore, there is an unmet medical need for novel therapeutic strategies that target broader SCD sequelae. SCD phenotypic severity can be alleviated by increasing fetal hemoglobin (HbF) expression. This results in the inhibition of HbS polymerization and thus sickling, and a reduction in oxidative stress. The efficacy of HbF is due to its ability to dilute HbS levels below the threshold required for polymerization and to influence HbS polymer stability in RBCs. Nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)-complex signaling is one of the most important cytoprotective signaling controlling oxidative stress. Nrf2 is present in most organs and, after dissociation from Keap1, it accumulates in the cytoplasm, then translocates to the nucleus where it binds to the antioxidant response element (ARE) sequences and increases the expression of various cytoprotective antioxidant genes. Keeping this in mind, various researchers have proposed a role of multiple agents, more importantly tert-Butylhydroquinone (tBHQ), curcumin, etc., (having electrophilic properties) in inhibiting keap1 activity, so that Nrf2 can translocate to the nucleus to activate the gamma globin gene, thus maintaining alpha-hemoglobin-stabilizing protein (AHSP) and HbF levels. This leads to reduced oxidative stress, consequently minimizing SCD-associated complications. In this review, we will discuss the role of the Keap-1-Nrf2 complex in hemoglobinopathies, especially in SCD, and how this complex might represent a better target for more effective treatment options.

11.
J Virol ; 97(4): e0016023, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36939350

RESUMO

Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Replicação Viral , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/virologia , Antivirais/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Elementos de Resposta Antioxidante/efeitos dos fármacos , Linhagem Celular , Humanos
12.
Curr Res Food Sci ; 6: 100459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846469

RESUMO

Numerous studies have reported that tangeretin is a polymethoxylated flavone with a variety of biological activates, but little research has been done on the antioxidant mechanism of tangeretin. Hence, we investigated the effect of tangeretin on the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and its potential molecular mechanisms by in vitro and in silico research. The results of molecular docking suggested that tangeretin bound at the top of the central pore of Kelch-like ECH-associated protein 1 (Keap1) Kelch domain, and the hydrophobic and hydrogen bond interactions contributed to their stable binding. Herein, the regulation of Nrf2-ARE pathway by tangeretin was explored in the human embryonic kidney cell line HEK293T, which is relatively easy to be transfected. Upon binding to tangeretin, Nrf2 translocated to the nucleus of HEK293T cells, which in turn activated the Nrf2-ARE pathway. Luciferase reporter gene analysis showed that tangeretin significantly induced ARE-mediated transcriptional activation. Real-time PCR and Western blot assays showed that tangeretin induced the gene and protein expressions of Nrf2-mediated targets, including heme oxygenase 1 (HO-1), nicotinamide adenine dinucleotide phosphate (NADPH) quinone dehydrogenase 1 (NQO1), and glutamate-cysteine ligase (GCLM). In addition, tangeretin could effectively scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. In summary, tangeretin may be a potential antioxidant via activating the Nrf2-ARE pathway.

13.
Expert Opin Investig Drugs ; 32(1): 5-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36708320

RESUMO

INTRODUCTION: Friedreich ataxia (FRDA) is a rare autosomal recessive degenerative disorder characterized by ataxia, dysarthria, diabetes, cardiomyopathy, scoliosis, and occasionally vision loss in late-stage disease. The discovery of the abnormal gene in FRDA and its product frataxin has provided insight into the pathophysiology and mechanisms of treatment. AREAS COVERED: Although the neurologic phenotype of FRDA is well defined, there are currently no established pharmacological treatments. Omaveloxolone, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is currently under review by the Food and Drug Administration (FDA) and has the potential to be the first approved treatment for FRDA. In the present report, we have reviewed the basic and clinical literature on Nrf2 deficiency in FRDA, and evidence for the benefit of omaveloxolone. EXPERT OPINION: The present perspective suggests that omaveloxolone is a rational and efficacious therapy that is possibly disease modifying in treatment of FRDA.


Assuntos
Ataxia de Friedreich , Triterpenos , Estados Unidos , Humanos , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/genética , Fator 2 Relacionado a NF-E2/uso terapêutico
14.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-976536

RESUMO

ObjectiveTo investigate the effect and mechanism of Shenling Baizhusan on the treatment of oligoasthenospermia with hyperuricemia (HUA). MethodThirty-two male Kunming (KM) mice were randomly divided into blank group (n=6), model group (n=6), high-dose Shenling Baizhusan group (n=7), low-dose Shenling Baizhusan group (n=7), and febuxostat group (n=6). Except for the blank group, all other groups received intraperitoneal injection of potassium oxazinate suspension (600 mg·kg-1) for 7 days. After modeling, the high-dose Shenling Baizhusan group and the low-dose Shenling Baizhusan group were orally administered with 20.14 g·kg-1 and 10.07 g·kg-1 of Shenling Baizhusan, respectively. The Febuxostat group was orally administered with 0.25 g·kg-1 of Febuxostat, while the blank group and model group were orally administered with the same volume of physiological saline. Oral administration was performed once a day for 14 consecutive days, after which samples were collected. Biochemical methods were used to measure serum uric acid (UA), superoxide dismutase (SOD) and malondialdehyde (MDA) in testicular tissue. Hematoxylin-eosin (HE) staining was used to observe the histopathological changes in testicular tissue and evaluate the spermatogenesis function. Automated sperm analyzer was used to measure sperm density and motility. Single-cell gel electrophoresis (SCGE) was used to assess sperm DNA integrity. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to detect testicular cell apoptosis rate. Western blot analysis was performed to measure the protein expression levels of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-3 in testicular tissue. Real-time polymerase chain reaction (PCR) was conducted to evaluate the mRNA expression levels of Keap1, Nrf2, and HO-1 in testicular tissue. ResultCompared with the blank group, the model group showed elevated serum UA level (P<0.01), decreased testicular spermatogenesis function, sperm density, and motility (P<0.01), and increased sperm trailing rate and testicular cell apoptosis rate (P<0.01). Compared with the model group, the high-dose Shenling Baizhusan group showed significant improvements in the above-mentioned indicators (P<0.05, P<0.01). Additionally, the expression levels of Keap1, Bax, and Caspase-3 in testicular tissue were reduced, while the expression levels of Nrf2, HO-1, and Bcl-2 increased (P<0.05, P<0.01). The mRNA level of Keap1 decreased (P<0.05, P<0.01), while the mRNA levels of Nrf2 and HO-1 increased (P<0.05, P<0.01). ConclusionShenling Baizhusan can significantly improve HUA oligoasthenospermia, and its mechanism may be related to the Nrf2/antioxidant response element (ARE) signaling pathway.

15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-965656

RESUMO

ObjectiveTo explore the effect and underlying mechanism of alcohol extract of Phyllanthi Fructus on silicosis mice induced by silicon dioxide (SiO2). MethodThirty-six male Kunming mice of SPF grade were randomly divided into a blank group,a model group,high-, medium, and low-dose Phyllanthi Fructus groups (800, 400, 200 mg·kg-1),and a tetrandrine group (0.039 mg·kg-1),with six mice in each group. The silicosis model was induced by static SiO2 exposure in mice except for those in the blank group. After 28 days of administration by gavage,the lung tissues were collected and the organ coefficient was calculated. Hematoxylin-eosin(HE)staining and Masson staining were used to detect the morphology of lung tissues. The content of hydroxyproline (HYP),superoxide dismutase (SOD),malondialdehyde (MDA), and catalase (CAT) in serum was detected by enzyme-linked immunosorbent assay (ELISA). Western blot and Real-time polymerase chain reaction(Real-time PCR) were used to detect the protein and mRNA expression of nuclear factor E2-related factor 2 (Nrf2),heme oxygenase-1 (HO-1),NAD(P)H:quinone oxidoreductase 1 (NQO1),and Kelch-like ECH-associated protein 1 (Keap1), respectively. ResultCompared with the blank group,the model group showed seriously damaged morphological structure of lung tissues with inflammatory cell infiltration and fibrous tissue proliferation, reduced serum content of SOD and CAT(P<0.01),increased content of HYP and MDA(P<0.01), down-regulated protein and mRNA expression of Nrf2,HO-1, and NQO1(P<0.01),and up-regulated protein and mRNA expression of Keap1 (P<0.05,P<0.01). Compared with the model group,the high- and medium-dose Phyllanthi Fructus groups showed significantly restored morphological structure of lung tissues with reduced collagen deposition, increased serum content of SOD and CAT(P<0.05,P<0.01),decreased content of HYP and MDA(P<0.01), up-regulated protein and mRNA expression of Nrf2,HO-1, and NQO1 (P<0.05,P<0.01),and down-regulated protein and mRNA expression of Keap1(P<0.05,P<0.01). ConclusionThe alcohol extract of Phyllanthi Fructus can inhibit pulmonary fibrosis in silicosis mice,and the underlying mechanism may be related to the regulation of the Nrf2/antioxidant response element (ARE) signaling pathway.

16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-962650

RESUMO

The pathological manifestations of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, are abnormal protein aggregation and accumulation, microglia activation, and mitochondrial dysfunction, which eventually lead to the gradual loss of neuronal structure or function and deteriorate over time. These pathological processes are related to the production of reactive oxygen species (ROS), which can cause oxidative stress and damage proteins, lipids, and DNA, leading to cell and tissue injuries. The Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is the main mechanism to maintain the redox balance of the body and defend against oxidative stress injury. Nrf2 activates the expression of a series of antioxidant genes related to ARE through the dissociation of Keap1 and nuclear transfer in the cytoplasm to protect the body from oxidative damage. Therefore, the discovery and study of the Keap1/Nrf2/ARE signaling pathway activator is of great significance for the prevention and treatment of neurodegenerative diseases. Because of the remarkable biological activity and slight side effects, natural products are a treasure trove for new drug research and development. Studies have shown that a variety of natural products can activate the Keap1/Nrf2/ARE signaling pathway and play a neuroprotective role. According to the structural characteristics, natural products can be divided into flavonoids, terpenoids, volatile oils, polyphenols, and phenylpropanoids. This study summarized the underlying mechanism of the Keap1/Nrf2/ARE signaling pathway in regulating diseases and reviewed the research progress on natural products based on this signaling pathway in neuroprotection to provide references for the development of clinical drugs for the prevention and treatment of neurodegenerative diseases.

17.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5610-5616, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36471979

RESUMO

This study aims to investigate the effect of Chaihu Shugan Powder(CHSG) on liver injury in rats with intrahepatic cholestasis by regulating farnesoid X receptor(FXR)/nuclear factor erythroid-2-related factor(Nrf2)/antioxidant response element(ARE) pathway. Eighty-four SD rats were classified into normal group, model group, CHSG-L group(0.5 g·kg~(-1)), CHSG-H group(2.5 g·kg~(-1)), ursodeoxycholic acid group(UDCA group, 100 mg·kg~(-1)), CHSG-H+sh-NC group(2.5 g·kg~(-1) CHSG+subcutaneous injection of sh-NC lentivirus), CHSG-H+sh-FXR group(2.5 g·kg~(-1) CHSG+subcutaneous injection of sh-FXR lentivirus), with 12 rats in each group. Rats were treated with corresponding drugs except for the normal group and the model group, once a day, for 7 days. On 5 th day, rats, except the normal group, were given α-naphthalene isothiocyanate(ANIT) at a dose of 100 mg·kg~(-1), once a day for 3 days to induce intrahepatic cholestasis, and the normal group was given the same amount of normal saline. Rats were anesthetized 1 h after the last administration and the 2 h bile flow was measured. Aeroset chemistry analyzer was employed to detect the levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total bilirubin(TBIL), and total bile acid(TBA) in rat serum. Based on hematoxylin and eosin(HE) staining, the pathological changes of rat liver tissue were observed. Glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in rat liver tissue homogenate were monitored with corresponding kits. Western blot was used to detect the expression of FXR, Nrf2, and heme oxygenase-1(HO-1) proteins in rat liver tissue. Compared with the normal group, the model group showed many spots or concentrated necrotic areas in the liver tissue, infiltration of a large number of inflammatory cells, swelling liver cells with nuclear shrinkage. The 2 h bile flow, levels of GSH-Px and SOD, and relative expression of FXR, Nrf2, and HO-1 proteins were significantly lower, and the levels of ALT, AST, TBIL, TBA and MDA were significantly higher in the model group than in the normal group. Compared with the model group, CHSG-L group, CHSG-H group, and UDCA group demonstrated significant alleviation of pathological damage of the liver tissue, significantly high 2 h bile flow, levels of GSH-Px and SOD, and expression of FXR, Nrf2 and HO-1 proteins, and significantly low levels of ALT, AST, TBIL, TBA and MDA. Compared with the CHSG-H group, the CHSG-H+sh-FXR group had worse liver pathological damage, significantly low levels of 2 h bile flow, levels of GSH-Px and SOD, and expression of FXR, Nrf2, and HO-1 proteins, and significantly high levels of ALT, AST, TBIL, TBA, and MDA. CHSG may protect against liver injury in rats with intrahepatic cholestasis by activating the FXR/Nrf2/ARE pathway.


Assuntos
1-Naftilisotiocianato , Colestase Intra-Hepática , Ratos , Animais , 1-Naftilisotiocianato/toxicidade , Pós , Fator 2 Relacionado a NF-E2/genética , Ratos Sprague-Dawley , Colestase Intra-Hepática/tratamento farmacológico , Fígado , Superóxido Dismutase , Estresse Oxidativo
18.
Toxicol Appl Pharmacol ; 454: 116243, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115658

RESUMO

The human body is continuously exposed to xenobiotics and internal or external oxidants. The health risk assessment of exogenous chemicals remains a complex and challenging issue. Alternative toxicological test methods have become an essential strategy for health risk assessment. As a core regulator of constitutive and inducible expression of antioxidant response element (ARE)-dependent genes, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in maintaining cellular redox homeostasis. Consistent with the properties of Nrf2-mediated antioxidant response, Nrf2-ARE activity is a direct indicator of oxidative stress and thus has been used to identify and characterize oxidative stressors and redox modulators. To screen and distinguish chemicals or environmental insults that affect the cellular antioxidant activity and/or induce oxidative stress, various in vitro cell models expressing distinct ARE reporters with high-throughput and high-content properties have been developed. These ARE-reporter systems are currently widely applied in drug discovery and safety assessment. In the present review, we provide an overview of the basic structures and applications of various ARE-reporter systems employed for discovering Nrf2-ARE modulators and characterizing oxidative stressors.


Assuntos
Elementos de Resposta Antioxidante , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Descoberta de Drogas , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes , Estresse Oxidativo , Xenobióticos/toxicidade
19.
Bioorg Chem ; 128: 106096, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35985158

RESUMO

Acute ischemic stroke is an important cause of death and long-term disability worldwide. In this work, we have synthesized a series of derivatives with 3,5­diaryl substituent triazole scaffolds. The derivatives showed favorable protective effective in SNP-induced oxidative stress model, of which compound 5 was the most active. In vivo experiments showed that compound 5 could ameliorate neurological deficits, attenuate infarction sizes, reduce malonaldehyde (MDA) level and increase superoxide dismutase (SOD) level in middle cerebral artery occlusion (MCAO) rats. Preliminary safety evaluation showed that compound 5 exhibited low acute toxicity in BALB/c mice (LD50 greater than 1000 mg/kg). Further investigation indicated that compound 5 was able to scavenge ROS, restore mitochondrial membrane potential and protect PC12 cells from SNP-induced apoptosis. Moreover, compound 5 could initiate transcription of antioxidant response element (ARE) and induced expressions of antioxidative enzymes. Collectively, compound 5 might have the potency of treating acute ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Fármacos Neuroprotetores , Animais , Elementos de Resposta Antioxidante , Apoptose , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Ratos , Triazóis/farmacologia , Triazóis/uso terapêutico
20.
Acta Pharm Sin B ; 12(4): 1871-1884, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847493

RESUMO

Metabolic and epigenetic reprogramming play important roles in cancer therapeutic resistance. However, their interplays are poorly understood. We report here that elevated TIGAR (TP53-induced glycolysis and apoptosis regulator), an antioxidant and glucose metabolic regulator and a target of oncogenic histone methyltransferase NSD2 (nuclear receptor binding SET domain protein 2), is mainly localized in the nucleus of therapeutic resistant tumor cells where it stimulates NSD2 expression and elevates global H3K36me2 mark. Mechanistically, TIGAR directly interacts with the antioxidant master regulator NRF2 and facilitates chromatin recruitment of NRF2, H3K4me3 methylase MLL1 and elongating Pol-II to stimulate the expression of both new (NSD2) and established (NQO1/2, PRDX1 and GSTM4) targets of NRF2, independent of its enzymatic activity. Nuclear TIGAR confers cancer cell resistance to chemotherapy and hormonal therapy in vitro and in tumors through effective maintenance of redox homeostasis. In addition, nuclear accumulation of TIGAR is positively associated with NSD2 expression in clinical tumors and strongly correlated with poor survival. These findings define a nuclear TIGAR-mediated epigenetic autoregulatory loop in redox rebalance for tumor therapeutic resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...