Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 985
Filtrar
1.
J Emerg Med ; 66(5): e601-e605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702243

RESUMO

BACKGROUND: A minority of snake envenomations in the United States involve non-native snakes. In this report, we describe what we believe is the first documented human envenoming from an emerald horned pitviper, Ophryacus smaragdinus. CASE REPORT: A previously healthy 36-year-old woman was bitten on her left index finger by a captive emerald horned pitviper she was medicating at work. Swelling to the entire hand was present on emergency department arrival. She had no systemic symptoms and her initial laboratory studies were unremarkable. The affected limb was elevated. We administered five vials of Antivipmyn TRIⓇ (Bioclon), which specifically lists Ophryacus among the envenomations for which it is indicated. She developed pruritus and was treated with IV diphenhydramine and famotidine. Her swelling improved, but her repeat laboratory studies were notable for a platelet count of 102 K/µL and a fibrinogen level of 116 mg/dL. She declined additional antivenom because of the previous allergic reaction. She was admitted for further monitoring and pain control. Subsequent laboratory tests were better, but a small hemorrhagic bleb developed at the bite site. She was discharged the next day and followed up as an outpatient. Her swelling had resolved, her bleb had healed, and her laboratory studies continued to improve. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians may be required to treat bites from non-native snakes. Many of these bites will warrant treatment with non-U.S. Food and Drug Administration-approved antivenoms. Consultation with a regional poison center or medical toxicologist may be necessary to procure the proper antivenom.


Assuntos
Antivenenos , Mordeduras de Serpentes , Feminino , Humanos , Adulto , Mordeduras de Serpentes/complicações , Antivenenos/uso terapêutico , Animais , Crotalinae , Venenos de Crotalídeos
2.
F1000Res ; 13: 192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708289

RESUMO

On the 26 th January 2023, a free to attend, 'improving in vivo snake venom research: a community discussion' meeting was held virtually. This webinar brought together researchers from around the world to discuss current neutralisation of venom lethality mouse assays that are used globally to assess the efficacy of therapies for snakebite envenoming. The assay's strengths and weaknesses were highlighted, and we discussed what improvements could be made to refine and reduce animal testing, whilst supporting preclinical antivenom and drug discovery for snakebite envenoming. This report summarises the issues highlighted, the discussions held, with additional commentary on key perspectives provided by the authors.


Assuntos
Antivenenos , Mordeduras de Serpentes , Venenos de Serpentes , Antivenenos/uso terapêutico , Animais , Venenos de Serpentes/antagonistas & inibidores , Camundongos , Mordeduras de Serpentes/tratamento farmacológico , Humanos
3.
Sci Rep ; 14(1): 10389, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710718

RESUMO

It is believed that antivenoms play a crucial role in neutralizing venoms. However, uncontrolled clinical effects appear in patients stung by scorpions after the injection of antivenom. In this research, non-neutralized components of the venom of the Iranian scorpion Odonthobuthus doriae were analyzed after interacting with the commercial antivenom available in the market. The venom and antivenom interaction was performed, then centrifuged, and the supernatant was analyzed by high-performance liquid chromatography (HPLC). Two peaks of Odonthobuthus doriae venom were observed in the chromatogram of the supernatant. Two components were isolated by HPLC and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) instruments. Peptide sequencing was done by Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry (LC-Q-TOF MS/MS). Results indicate that the components of scorpion venom mainly have a molecular weight below 10 kDa, consisting of toxic peptides that disrupt the function of sodium and potassium channels. The MALDI-TOF MS results show that two toxic peptides with molecular masses of 6941 Da and 6396 Da were not neutralized by the antivenom. According to the MS/MS sequencing data, the components have been related to peptides A0A5P8U2Q6_MESEU and A0A0U4FP89_ODODO, which belong to the sodium and potassium channels toxins family, respectively.


Assuntos
Antivenenos , Venenos de Escorpião , Escorpiões , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Venenos de Escorpião/química , Antivenenos/química , Animais , Escorpiões/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Sequência de Aminoácidos
4.
Biochimie ; 225: 81-88, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762000

RESUMO

The genus Mixcoatlus is composed of three species: Mixcoatlus barbouri, M. browni, and M. melanurus, of which the venom composition of M. melanurus, the most common species of the three, has only recently been described. However, very little is known about the natural history of M. barbouri and M. browni, and the venom composition of these two species has remained thus far unexplored. In this study we characterize the proteomic profiles and the main biochemical and toxic activities of these two venoms. Proteomic data obtained by shotgun analysis of whole venom identified 12 protein families for M. barbouri, and 13 for M. browni. The latter venom was further characterized by using a quantitative 'venomics' protocol, which revealed that it is mainly composed of 51.1 % phospholipases A2 (PLA2), 25.5 % snake venom serine proteases (SVSP), 4.6 % l-amino oxidases (LAO), and 3.6 % snake venom metalloproteases (SVMP), with lower percentages other six protein families. Both venoms contained homologs of the basic and acidic subunits of crotoxin. However, due to limitations in M. barbouri venom availability, we could only characterize the crotoxin-like protein of M. browni venom, which we have named Mixcoatlutoxin. It exhibited a lethal potency in mice like that described for classical rattlesnake crotoxins. These findings expand knowledge on the distribution of crotoxin-like heterodimeric proteins in viper snake species. Further investigation of the bioactivities of the venom of M. barbouri, on the other hand, remains necessary.

5.
Clin Case Rep ; 12(5): e8921, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741674

RESUMO

Splenic hematoma secondary to snake bite is a potential complication due to snake envenomation and poses a significant risk to the health of the patients. Although relatively rare, this complication once diagnosed, should be initiated with timely anti-venom administration and supportive care. Clinicians must be aware of any signs of hematological abnormalities in snakebite patients, as the development of splenic hematoma can have serious implications for patient outcomes. Awareness of this potential complication and multidisciplinary collaboration among medical teams are crucial to ensuring effective management and optimal patient care in these clinical scenarios. Understanding this concern can improve patient prognosis and advance the overall approach to snakebite management in healthcare settings.

6.
Int Immunopharmacol ; 134: 112215, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744173

RESUMO

Camelid single-domain antibodies (VHH) represent a promising class of immunobiologicals for therapeutic applications due to their remarkable stability, specificity, and therapeutic potential. To enhance the effectiveness of antivenoms for snakebites, various methods have been explored to address limitations associated with serum therapy, particularly focusing on mitigating local damage and ensuring sustainable production. Our study aimed to characterize the pharmacological profile and neutralization capacity of anti-Phospholipase A2 (PLA2) monomeric VHH (Genbank accessions: KC329718). Using a post-envenoming mouse model, we used intravital microscopy to assess leukocyte influx, measured CK and LDH levels, and conducted a histopathology analysis to evaluate VHH KC329718's ability to neutralize myotoxic activity. Our findings demonstrated that VHH KC329718 exhibited heterogeneous distribution in muscle tissue. Treatment with VHH KC329718 reduced leukocyte influx caused by BthTX-I (a Lys-49 PLA2) by 28 %, as observed through intravital microscopy. When administered at a 1:10 ratio [venom or toxin:VHH (w/w)], VHH KC329718 significantly decreased myotoxicity, resulting in a 35-40 % reduction in CK levels from BthTX-I and BthTX-II (an Asp-49 PLA2) and a 60 % decrease in CK levels from B. jararacussu venom. LDH levels also showed reductions of 60%, 80%, and 60% induced by BthTX-I, BthTX-II, and B. jararacussu venom, respectively. Histological analysis confirmed the neutralization potential, displaying a significant reduction in tissue damage and inflammatory cell count in mice treated with VHH KC329718 post B. jararacussu venom inoculation. This study underscores the potential of monomeric anti-PLA2 VHH in mitigating myotoxic effects, suggesting a promising avenue for the development of new generation antivenoms to address current therapeutic limitations.

7.
Toxicon ; 244: 107751, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723869

RESUMO

This report details a documented case of fatal King cobra (Ophiophagus hannah) envenomation in the Philippines. A 46-year-old woman from a mountainous town in Leyte was bitten on her left thigh by a snake. Despite receiving prompt medical attention, including administration of fluids and oxygen, she went into arrest and succumbed within 2.5 hours of the bite. Inadequate pre-hospital care, including endotracheal intubation and assisted ventilation, highlights a notable gap in emergency medical services. Photographic evidence, verified by a herpetologist, confirmed the involvement of a King cobra, with venom presenting with a swift and lethal systemic effect that led to the patient's demise, despite minimal local manifestations. This incident accentuates the urgent need for accessible, effective antivenom and improved snakebite management protocols in the Philippines. It also calls for heightened awareness and preparedness among pre-hospital healthcare providers and the public, alongside advocating for more research into snakebite envenomation.

8.
Toxins (Basel) ; 16(5)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38787066

RESUMO

Scorpion envenomation poses a global public health issue, with an estimated 1,500,000 cases worldwide annually resulting in 2600 deaths. North Africa, particularly Morocco, experiences severe envenomations, mainly attributed to Androctonus mauretanicus and Buthus occitanus in Morocco, and Buthus occitanus and Androctonus australis hector in Algeria and Tunisia, with case numbers often underestimated. Current treatment relies mainly on symptomatic approaches, except in Morocco, where management is limited to symptomatic treatment due to controversies regarding specific treatment. In Morocco, between 30,000 and 50,000 scorpion envenomation cases are reported annually, leading to hundreds of deaths, mainly among children. Controversies among clinicians persist regarding the appropriate course of action, often limiting treatments to symptomatic measures. The absence of a specific antivenom for the venoms of the most lethal scorpions further exacerbates the situation. This study aims to address this gap by developing a monovalent antivenom against the endemic and most dangerous scorpion, Androctonus mauretanicus. The antivenom was produced by immunizing albino rabbits with a mixture of Androctonus mauretanicus venom collected from high-risk areas in Morocco. Immunizations were performed by subcutaneous injections at multiple sites near the lymphatic system, following an immunization schedule. Production control of neutralizing antibody titers was conducted through immunodiffusion. Once a sufficient antibody titer was achieved, blood collection was performed, and the recovered plasma underwent affinity chromatography. The efficacy of purified IgG was evaluated by determining the ED50 in mice, complemented by histological and immunohistochemical studies on its ability to neutralize venom-induced tissue alterations and the neutralization of toxins bound to receptors in the studied organs. The monovalent antivenom demonstrated specificity against Androctonus mauretanicus venom and effective cross-protection against the venom of the scorpions Buthus occitanus and Androctonus australis hector, highly implicated in lethal envenomations in the Maghreb. This study shows that the developed monovalent antivenom exhibits notable efficacy against local scorpions and a surprising ability to neutralize the most lethal envenomations in North Africa. These results pave the way for a new, more specific, and promising therapeutic approach to countering severe scorpion envenomations, especially in Morocco, where specific treatment is lacking.


Assuntos
Antivenenos , Picadas de Escorpião , Venenos de Escorpião , Escorpiões , Antivenenos/uso terapêutico , Animais , Marrocos , Picadas de Escorpião/terapia , Picadas de Escorpião/tratamento farmacológico , Venenos de Escorpião/imunologia , Humanos , África do Norte
9.
J Ethnopharmacol ; 332: 118349, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762214

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Snakebite envenomation (SBE) is the world's most lethal neglected tropical disease. Bothrops jararaca is the species that causes the greatest number of SBEs in the South and Southeastern of Brazil. The main symptoms are local (inflammation, edema, hemorrhage, and myonecrosis) and systemic (hemorrhage, hemostatic alterations with consumptive coagulopathy, and death) effects. Species of the genus Siparuna, Siparunaceae, are used in folk and traditional medicine to treat SBE. However, limited information is available concerning Brazilian Siparuna species against SBE. AIM OF THE STUDY: To investigate the correlation between the compounds present in the extracts of five Siparuna species as potential agents against proteolytic activity, plasma coagulation, and phospholipase A2 (PLA2) activity caused by B. jararaca venom, using data obtained by UHPLC-MS/MS, biological activity, and multivariate statistics. MATERIALS AND METHODS: The ethanol extracts from leaves of S. ficoides, S. decipiens, S. glycycarpa, S. reginae, and S. cymosa were fractionated by liquid-liquid extraction using different solvents of increasing polarity (hexane, dichloromethane, ethyl acetate, and n-butanol), affording their respective extracts, totaling 25 samples that were assayed through in vitro plasma coagulation and proteolytic activity assays. Moreover, the extracts were analyzed by UHPLC-MS/MS, using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) in negative and positive ionization modes. The data was processed in MZmine v. 2.53 and evaluated by multivariate statistical tests (PLS) using the software UnscramblerX v. 10.4. These data were also used to build molecular networks (GNPS), and some ions of interest could be annotated using the library of molecules on the GNPS platform. RESULTS: A total of 19 extracts inhibited B. jararaca-induced plasma coagulation, with emphasis on S. cymosa and S. reginae (800 s). The inhibition of the proteolytic activity was also promising, ranging from 16% (S. glycycarpa) to 99% (S. cymosa, S. decipiens, and S. reginae). In addition, most extracts from S. cymosa and S. reginae inhibited 70-90% of PLA2 activity. Based on data from positive mode APCI analyses, it was possible to obtain a statistic model with reliable predictive capacity which exhibited an average R2 of 0.95 and a Q2 of 0.88, indicating a robust fit. This process revealed five ions, identified as the alkaloids: coclaurine (1), stepholidine (2) O-methylisopiline (3), nornantenine (4) and laurolitsine (5). This is the first study to evidence the potential antivenom of alkaloids from Siparuna species. CONCLUSIONS: Altogether, our results give support to the popular use of Siparuna extracts in SBE accidents, suggesting their potential as an alternative or complementary strategy against envenoming by B. jararaca venom. The predicted ions in the chemometric analysis for the assayed activities can also be correlated with the blocking activity and encourage the continuation of this study for possible isolation and testing of individual compounds on the used models.

10.
Toxicon ; 242: 107704, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38565396

RESUMO

Members of the genus Protobothrops are amongst the more than twenty-eight range-restricted Indian pit viper species. Their bites and envenomings are rarely documented from India. Pit viper envenomings can be challenging to treat in the Indian setting, since available antivenoms do not satisfactorily neutralize their venoms. Herein, we present the first Indian reports on bites and envenoming by Protobothrops jerdonii and Protobothrops himalayanus resulting in local effects, coagulopathy and acute kidney injury in the case of the former and possible mild, isolated coagulopathy in the case of the latter; and discuss management-related challenges in the context of absent specific antivenoms.


Assuntos
Antivenenos , Venenos de Crotalídeos , Crotalinae , Centros de Controle de Intoxicações , Mordeduras de Serpentes , Mordeduras de Serpentes/terapia , Índia , Animais , Humanos , Antivenenos/uso terapêutico , Masculino , Injúria Renal Aguda/terapia , Adulto , Feminino , Pessoa de Meia-Idade
11.
Toxicon X ; 22: 100195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606385

RESUMO

Mice are routinely used in snake venom research but are costly and subject to pain and suffering. The crustacean Artemia salina could be an alternative to mice, but data to support its adoption in snake venom research is limited. The aim of the present study was to evaluate the suitability of A. salina as a surrogate of mice in assessing the toxicity of venoms and the preclinical efficacy of antivenoms. The toxicity of venoms from 22 snakes of medical importance in sub-Saharan Africa was evaluated in mice (intraperitoneally; i.p. and intravenously; i.v.) and in A. salina. Subsequently, the capacity of a commercial antivenom to neutralize the toxicity of these venoms in mice and A. salina was investigated. There was a positive correlation between the i.v. median lethal doses (LD50s) and the i.p. LD50s in mice (r = 0.804; p < 0.0001), a moderate correlation between the i.v. LD50s in mice and the median lethal concentrations (LC50s) in A. salina (r = 0.606; p = 0.003), and a moderate correlation between the i.p. LD50s in mice and the LC50s in A. salina (r = 0.426; p = 0.048). Moreover, there was a strong correlation between the i.p. median effective doses (ED50s) and the i.v. ED50s in mice (r = 0.941, p < 0.0001), between the i.p. ED50s in mice and the ED50s in A. salina (r = 0.818, p < 0.0001), and between the i.v. ED50s in mice and the ED50s in A. salina (r = 0.972, p < 0.0001). These findings present A. salina as a promising candidate for reducing reliance on mice in snake venom research. Future investigations should build upon these findings, addressing potential limitations and expanding the scope of A. salina in venom research and antivenom development.

12.
Emerg Med Australas ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660743

RESUMO

OBJECTIVES: Antivenoms are important emergency medications to be held within Australia, particularly in regional and remote locations. We audited current antivenom holdings in hospitals and health services across South Australia (SA) and compared to recommendations in the 'Snakebite and Spiderbite Management Guidelines' from the State's Toxinology service. The process also assessed the feasibility of 'real-time' remote stock monitoring. METHODS: Fifty-three sites listed in the guideline were recommended to hold antivenom, though only 49 are currently operational. Interrogation of antivenom stock for 29 sites was possible using electronic reports generated from the State Pharmacy database. The 20 remaining centres had their stock levels confirmed by calling the centres directly. Data obtained were then compared to recommended levels of antivenom holdings in the guideline with discrepancies and associated costs documented. A separate report verification process was used to determine 'real-time' accuracy of the electronic reports. RESULTS: Thirty-seven sites (75%) held more than the recommended number of antivenom vials, totalling 129 vials in excess with an approximate total cost of $110 000. Twelve sites (24%) held inadequate stock to deliver a treatment dose for 19 envenoming events. The report verification revealed variances in the electronic reports. CONCLUSIONS: This audit has demonstrated a significant disparity between recommended and actual antivenom holdings across most sites in SA and has also revealed that 'real-time' remote monitoring of state antivenom holdings is not currently feasible. Correction of stock levels to that recommended may result in financial benefit for State Health while also addressing inequity in regional and remote healthcare provision.

13.
Toxins (Basel) ; 16(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668608

RESUMO

In Colombia, Micrurus snakebites are classified as severe according to the national clinical care guidelines and must be treated with specific antivenoms. Unfortunately, these types of antivenoms are scarce in certain areas of the country and are currently reported as an unavailable vital medicine. To address this issue, La Universidad de Antioquia, through its spin-off Tech Life Saving, is leading a project to develop third-generation polyvalent freeze-dried antivenom. The goal is to ensure access to this therapy, especially in rural and dispersed areas. This project aims to evaluate the physicochemical and preclinical parameters (standard quality characteristics) of a lab-scale anti-elapid antivenom batch. The antivenom is challenged against the venoms of several Micrurus species, including M. mipartitus, M. dumerilii, M. ancoralis, M. dissoleucus, M. lemniscatus, M. medemi, M. spixii, M. surinamensis, and M. isozonus, following the standard quality characteristics set by the World Health Organization (WHO). The antivenom demonstrates an appearance consistent with standards, 100% solubility within 4 min and 25 s, an extractable volume of 10.39 mL, a pH of 6.04, an albumin concentration of 0.377 mg/mL (equivalent to 1.22% of total protein), and a protein concentration of 30.97 mg/mL. Importantly, it maintains full integrity of its F(ab')2 fragments and exhibits purity over 98.5%. Furthermore, in mice toxicity evaluations, doses up to 15 mg/mouse show no toxic effects. The antivenom also demonstrates a significant recognition pattern against Micrurus venoms rich in phospholipase A2 (PLA2) content, as observed in M. dumerilii, M. dissoleucus, and M. isozonus. The effective dose 50 (ED50) indicates that a single vial (10 mL) can neutralize 2.33 mg of M. mipartitus venom and 3.99 mg of M. dumerilii venom. This new anti-elapid third-generation polyvalent and freeze-dried antivenom meets the physicochemical parameters set by the WHO and the regulators in Colombia. It demonstrates significant efficacy in neutralizing the venom of the most epidemiologically important Micrurus species in Colombia. Additionally, it recognizes seven other species of Micrurus venom with a higher affinity for venoms exhibiting PLA2 toxins. Fulfilling these parameters represents the first step toward proposing a new pharmacological alternative for treating snakebites in Colombia, particularly in dispersed rural areas, given that this antivenom is formulated as a freeze-dried product.


Assuntos
Antivenenos , Venenos Elapídicos , Animais , Antivenenos/farmacologia , Colômbia , Venenos Elapídicos/toxicidade , Venenos Elapídicos/imunologia , Camundongos , Mordeduras de Serpentes/tratamento farmacológico , Cobras Corais , Masculino
14.
Toxins (Basel) ; 16(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668626

RESUMO

Green pit viper bites induce mild toxicity with painful local swelling, blistering, cellulitis, necrosis, ecchymosis and consumptive coagulopathy. Several bite cases of green pit vipers have been reported in several south-east Asian countries including the north-eastern region of India. The present study describes isolation and characterization of a haemostatically active protein from Trimeresurus erythrurus venom responsible for coagulopathy. Using a two-step chromatographic method, a snake venom serine protease erythrofibrase was purified to homogeneity. SDS-PAGE of erythrofibrase showed a single band of ~30 kDa in both reducing and non-reducing conditions. The primary structure of erythrofibrase was determined by ESI LC-MS/MS, and the partial sequence obtained showed 77% sequence similarity with other snake venom thrombin-like enzymes (SVTLEs). The partial sequence obtained had the typical 12 conserved cysteine residues, as well as the active site residues (His57, Asp102 and Ser195). Functionally, erythrofibrase showed direct fibrinogenolytic activity by degrading the Aα chain of bovine fibrinogen at a slow rate, which might be responsible for causing hypofibrinogenemia and incoagulable blood for several days in envenomated patients. Moreover, the inability of Indian polyvalent antivenom (manufactured by Premium Serum Pvt. Ltd., Maharashtra, India) to neutralize the thrombin-like and plasmin-like activity of erythrofibrase can be correlated with the clinical inefficacy of antivenom therapy. This is the first study reporting an α-fibrinogenase enzyme erythrofibrase from T. erythrurus venom, which is crucial for the pathophysiological manifestations observed in envenomated victims.


Assuntos
Venenos de Crotalídeos , Fibrinogênio , Trimeresurus , Animais , Índia , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/química , Fibrinogênio/metabolismo , Fibrinogênio/química , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo , Sequência de Aminoácidos , Mordeduras de Serpentes/tratamento farmacológico
15.
Biomedicines ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672090

RESUMO

In recent years, extensive research has delved into the pathophysiology of local reactions triggered by Bothrops snake venoms. Even though antivenom works well at reducing death and systemic effects, it is still not very effective in treating local reactions because it cannot counteract damage that has already been triggered. This limitation might be attributed to certain molecules that amplify the venom-induced innate response. While evidence suggests endogenous mediators at the venom site play a role in this envenomation, in Brazil, the concurrent use of anti-inflammatory agents or other drugs alongside antivenom remains uncommon. This study evaluated the pharmacological mediation of alterations in leukocyte-endothelium interactions following the experimental envenomation of mice with Bothrops jararaca venom, the main culprit of snake-related accidents in Southeast Brazil. We treated envenomed mice with inhibitors of different pharmacological pathways and observed the cremaster muscle microcirculation with intravital microscopy. We found that eicosanoids related to cyclooxygenase pathways and nitric oxide significantly contributed to B. jararaca venom-induced alterations in leukocyte-endothelium interactions. Conversely, lipoxygenase-mediated eicosanoids, histamine, and serotonin had minimal participation. Notably, dexamethasone and antivenom treatment diminished B. jararaca venom-induced alterations in leukocyte-endothelium interactions. The limited efficacy of the antivenom in managing Bothrops venom-induced local reactions emphasizes the critical need for supplementary treatments to enhance therapeutic outcomes.

16.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673799

RESUMO

Over 32,000 individuals succumb to snake envenoming in sub-Saharan Africa (sSA) annually. This results from several factors, including a lack of antivenom products capable of neutralising the venoms of diverse snake species in this region. Most manufacturers produce polyvalent antivenoms targeting 3 to 16 clinically important snake species in sSA. However, specific products are unavailable for many others, especially those with a restricted geographic distribution. While next-generation antivenoms, comprising a cocktail of broadly neutralising antibodies, may offer an effective solution to this problem, given the need for their clinical validation, recombinant antivenoms are far from being available to snakebite victims. One of the strategies that could immediately address this issue involves harnessing the cross-neutralisation potential of existing products. Therefore, we assessed the neutralisation potency of PANAF-Premium antivenom towards the venoms of 14 medically important snakes from 13 countries across sSA for which specific antivenom products are unavailable. Preclinical assays in a murine model of snake envenoming revealed that the venoms of most snake species under investigation were effectively neutralised by this antivenom. Thus, this finding highlights the potential use of PANAF-Premium antivenom in treating bites from diverse snakes across sSA and the utility of harnessing the cross-neutralisation potential of antivenoms.


Assuntos
Antivenenos , Mordeduras de Serpentes , Venenos de Serpentes , Antivenenos/farmacologia , Antivenenos/imunologia , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/imunologia , Animais , África Subsaariana , Camundongos , Venenos de Serpentes/imunologia , Serpentes , Anticorpos Neutralizantes/imunologia , Humanos , Modelos Animais de Doenças
17.
Toxicon X ; 22: 100196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665175

RESUMO

Snakebite is a neglected public health issue, with many scientific and medical issues to be solved. Cobras are among the most common venomous snakes in Myanmar and are responsible for a considerable number of severe snakebite envenoming. There are three species of cobra (Naja kaouthia, Naja mandalayensis and Ophiophagus hannah) in Myanmar. The study aims to characterize the N. kaouthia and N. mandalayensis venoms and to investigate the efficacy of anti-cobra antivenom (BPI) against the two venoms. Protein components and fibrinogenolytic activity were determined by SDS-PAGE. Enzymatic activities for PLA2, protease and acetylcholinesterase were determined by spectrophotometric method. Anticoagulant activity was determined by recalcification time of citrated human plasma. Myotoxicity, necrotizing activity, median lethal dose (LD50) and median effective dose (ED50) were determined by WHO recommended methods. The SDS-PAGE displayed the proteins and enzymes containing in two venoms were different. N. kaouthia venom exhibited more in PLA2, acetylcholinesterase, anticoagulant, fibrinogenolytic and necrotizing activities than N. mandalayensis venom. N. mandalayensis venom had more protease activity and myotoxicity than N. kaouthia venom. The median lethal dose (LD50) of N. kaouthia and N. mandalayensis venom was 4.33 µg/mouse and 5.04 µg/mouse respectively. Both venoms induced fibrinogen Aα chain degradation in 30 min (N. kaouthia) and in 6 h (N. mandalayensis). The same median effective dose (ED50) (19.56 µg/mouse) showed that anti-NK antivenom can neutralize against lethal effect of N. mandalayensis venom. It can also neutralize the protease activity, anticoagulant activity and fibrinogenolytic activity of both venoms. Immunodiffusion and immunoblotting studies showed that the antivenom recognized its homologous venom (N. kaouthia) and cross-reacted against the heterologous venom (N. mandalayensis). The anti-NK antivenom is suitable to use for N. mandalayensis bite if monospecific antivenom is not available.

18.
Toxins (Basel) ; 16(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668613

RESUMO

BACKGROUND: Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS: This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS: FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION: FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.


Assuntos
Coagulação Sanguínea , Venenos de Crotalídeos , Fucus , Fosfolipases A2 , Polissacarídeos , Undaria , Animais , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Bothrops , Bothrops jararaca , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/enzimologia , Algas Comestíveis/química , Fucus/química , Fosfolipases A2/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Proteólise/efeitos dos fármacos , Alga Marinha/química , Undaria/química , Serpentes Peçonhentas
19.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668590

RESUMO

Snakebite envenomation (SBE) is a public health issue in sub-Saharan countries. Antivenom is the only etiological treatment. Excellent tolerance is essential in managing SBE successfully. This study aimed to evaluate tolerance of InoserpTM PAN-AFRICA (IPA). It was conducted on fourteen sites across Cameroon. IPA was administered intravenously and repeated at the same dose every two hours if needed. Early and late tolerance was assessed by the onset of clinical signs within two hours and at a visit two weeks or more after the first IPA administration, respectively. Over 20 months, 447 patients presenting with a snakebite were included. One dose of IPA was administered to 361 patients and repeated at least once in 106 patients. No significant difference was shown between the proportion of adverse events in patients who received IPA (266/361, 73.7%) and those who did not (69/85, 81.2%) (p = 0.95). Adverse reactions, probably attributable to IPA, were identified in four (1.1%) patients, including one severe (angioedema) and three mild. All these reactions resolved favorably. None of the serious adverse events observed in twelve patients were attributed to IPA. No signs of late intolerance were observed in 302 patients. Tolerance appears to be satisfactory. The availability of effective and well-tolerated antivenoms would reduce the duration of treatment and prevent most disabilities and/or deaths.


Assuntos
Antivenenos , Mordeduras de Serpentes , Humanos , Mordeduras de Serpentes/tratamento farmacológico , Antivenenos/uso terapêutico , Antivenenos/efeitos adversos , Masculino , Camarões , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Criança , Idoso , Pré-Escolar , Idoso de 80 Anos ou mais , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/imunologia , Animais , Tolerância a Medicamentos
20.
Toxicon ; 243: 107719, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38631492

RESUMO

African spitting cobra, Naja nigricincta nigricincta (Zebra snake), envenomation is an important cause of snakebite morbidity and mortality in Namibia. The snake is endemic to central and northern Namibia as well as southern Angola. The venom is mainly cytotoxic, resulting in aggressive dermo-necrosis and often accompanied by severe systemic complications. No specific antivenom exists. Rhabdomyolysis, systemic inflammatory response, haemostatic abnormalities, infective necrotising fasciitis as well as acute kidney failure have been documented. Based on murine models, this study assessed SAVP/SAIMR - and EchiTAb-Plus-ICP polyvalent antivenom neutralisation as well as subdermal necrosis. Additional muscle, cardiac, kidney and lung histology, creatine kinase measurements and post-mortems were performed. An intravenous median lethal dose (LD50) of Naja nigricincta nigricincta venom was determined at 18.4 (CI: 16.3; 20.52) µg and a subdermal lethal dose at 15.3(CI: 12.96; 17.74)µg. The SAIMR/SAVP polyvalent antivenom median effective dose (ED50) was 1.2 ml antivenom/1 mg venom equating to a potency (WHO) of 1 ml antivenom neutralising 0.63 mg venom and approximately 240 ml (24 vials) needed for initial treatment. The ED50 of the EchiTAb-Plus-ICP was 1 ml antivenom/1 mg venom and a potency of 65 mg venom/ml antivenom (3.3 x LD50), estimating 230 ml (23 vials) for treatment. Histology and serology (creatine kinase) evidenced venom induced skeletal myotoxicity, which was not prevented by the antivenoms tested. Cardiac myonecrosis, an inflammatory response, direct venom kidney tubular necrosis and cardio-pulmonary failure were documented.


Assuntos
Antivenenos , Venenos Elapídicos , Necrose , Mordeduras de Serpentes , Animais , Antivenenos/uso terapêutico , Antivenenos/farmacologia , Camundongos , Venenos Elapídicos/toxicidade , Mordeduras de Serpentes/tratamento farmacológico , Modelos Animais de Doenças , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Inflamação/tratamento farmacológico , Dose Letal Mediana , Naja , Masculino , Creatina Quinase/sangue , Rim/efeitos dos fármacos , Rim/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...