RESUMO
A bioactive compound isolated from the stem extract of Aristolochia sprucei through High Performance Liquid Chromatography (HPLC) was identified via Nuclear Magnetic Resonance (NMR) as the aristolochic acid (AA). This compound showed an inhibitory effect over the myotoxic activity of Bothrops jararacussu and Bothrops asper venoms, being also effective against the indirect hemolytic activity of B. asper venom. Besides, AA also inhibited the myotoxic activity of BthTX-I and MTX-II with an efficiency greater than 60% against both myotoxins. Docking predictions revealed an interesting mechanism, through which the AA displays an interaction profile consistent with its inhibiting abilities, binding to both active and putative sites of svPLA2. Overall, the present findings indicate that AA may bind to critical regions of myotoxic Asp 49 and Lys49-PLA2s from snake venoms, highlighting the relevance of domains comprising the active and putative sites to inhibit these toxins.
RESUMO
"Chiniy-tref" (CT) is a traditional preparation used in folk medicine in Martinique Island (French West Indies) that is nowadays mainly taken orally to prevent or act against any "manifestation of evil". CT is easily prepared at home by macerating larvae of the endemic swallowtail Battus polydamas (ssp.) cebriones (Dalman, 1823), sometimes accompanied by a leaf of its host-plant Aristolochia trilobata L., in commercial rum. We have previously reported the detection of nephrotoxic and carcinogenic aristolochic acids (AAs) I and II in CT, leading the Regional Health Agency (ARS) of Martinique to issue an alert regarding the potential risks associated with its consumption in 2015. In order to complete the toxicity risk assessment for oral consumption of CT, a full qualitative analysis of AAs and their analogues (AAAs) was performed, as well as a quantitative determination of the major AAs, namely AAs I and II. The phytochemical profiling of AAAs present in CT, that also corresponds to that of B. polydamas cebriones larvae feeding on A. trilobata, has been established for the first time by ultra-high performance liquid chromatography/electrospray ionization quadrupole time of-flight tandem mass spectrometry. AAs I and II were quantified in a small panel of tinctures by using a validated UHPLC/UV method, allowing us to estimate the probable daily intakes of these toxins by CT consumers. The results proved the existence of a real risk of renal toxicity and carcinogenicity associated with the chronic oral consumption of CT in Martinique, and more generally of similar "snake bottles" throughout the Caribbean.
Assuntos
Aristolochia/química , Ácidos Aristolóquicos/análise , Borboletas/química , Medicina Tradicional , Animais , Ácidos Aristolóquicos/química , Larva/química , Martinica , Toxinas Biológicas/análise , Toxinas Biológicas/químicaRESUMO
ABSTRACT The present study describes the impact of chrysosplenetin, in the absence and presence of artemisinin, on in vitro breast cancer resistance protein-mediated transport activity in Caco-2 cell monolayers using aristolochic acid I as a specific probe substrate. We observed that novobiocin, a known breast cancer resistance protein active inhibitor, increased Papp (AP-BL) of aristolochic acid I 3.13 fold (p < 0.05) but had no effect on Papp (BL-AP). Efflux ratio (PBA/PAB) declined 4.44 fold (p < 0.05). Novobiocin, consequently, showed a direct facilitation on the uptake of AAI instead of its excretion. Oppositely, both artemisinin and chrysosplenetin alone at dose of 10 µM significantly decreased Papp (BL-AP) instead of Papp (AP-BL). Chrysosplenetin alone attenuated the efflux ratio, which was suggestive of being as a potential breast cancer resistance protein suppressant. Oddly, Papp (BL-AP) as well as efflux ratio were respectively enhanced 2.52 and 2.58 fold (p < 0.05), when co-used with artemisinin and chrysosplenetin in ratio of 1:2. The potential reason remains unclear; it might be relative to binding sites competition between artemisinin and chrysosplenetin or the homodimer/oligomer formation of breast cancer resistance protein bridged by disulfide bonds, leading to an altered in vitro breast cancer resistance protein-mediated efflux transport function.