Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Adv Exp Med Biol ; 1460: 27-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287848

RESUMO

The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.


Assuntos
Ritmo Circadiano , Comportamento Alimentar , Obesidade , Obesidade/fisiopatologia , Obesidade/metabolismo , Obesidade/etiologia , Ritmo Circadiano/fisiologia , Humanos , Animais , Comportamento Alimentar/fisiologia , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Núcleo Supraquiasmático/fisiopatologia , Dieta Cetogênica/efeitos adversos , Relógios Circadianos/fisiologia , Relógios Circadianos/genética
2.
Adv Exp Med Biol ; 1460: 199-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287853

RESUMO

The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-ß activation. Activated PKC-ß induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.


Assuntos
Obesidade , Humanos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Animais , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Terapia de Alvo Molecular , Resistência à Insulina , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Heliyon ; 10(7): e28231, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590848

RESUMO

Human familial isolated pituitary adenoma (FIPA) has been linked to germline heterozygous mutations in the gene encoding the aryl hydrocarbon receptor-interacting protein (AIP, also known as ARA9, XAP2, FKBP16, or FKBP37). To investigate the hypothesis that AIP is a pituitary adenoma tumor suppressor via its role in aryl hydrocarbon receptor (AHR) signaling, we have compared the pituitary phenotype of our global null Aip (AipΔC) mouse model with that of a conditional null Aip model (Aipfx/fx) carrying the same deletion, as well as pituitary phenotypes of Ahr global null and Arnt conditional null animals. We demonstrate that germline AipΔC heterozygosity results in a high incidence of pituitary tumors in both sexes, primarily somatotropinomas, at 16 months of age. Biallelic deletion of Aip in Pit-1 cells (Aipfx/fx:rGHRHRcre) increased pituitary tumor incidence and also accelerated tumor progression, supporting a loss-of-function/loss-of-heterozygosity model of tumorigenesis. Tumor development exhibited sexual dimorphism in wildtype and Aipfx/fx:rGHRHRcre animals. Despite the role of AHR as a tumor suppressor in other cancers, the observation that animals lacking AHR in all tissues, or ARNT in Pit-1 cells, do not develop somatotropinomas argues against the hypothesis that pituitary tumorigenesis in AIP-associated FIPA is related to decreased activities of either the Ahr or Arnt gene products.

4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1021264

RESUMO

BACKGROUND:A high-load exercise can trigger the degradation of titin,leading to skeletal muscle damage.MyoD participates in skeletal muscle generation and plays an important role in the repair of skeletal muscle damage. OBJECTIVE:To observe the expression changes of MyoD,BMAL1 and titin in skeletal muscles at different times during a high-load exercise,as to clarify the role of MyoD and BMAL1 in exercise-induced skeletal muscle damage. METHODS:Twenty-four 8-week-old Sprague-Dawley rats were randomly divided into a control group(n=4)and an exercise group(n=20).Rats in the exercise group were subjected to downhill running(90 minutes).Soleus muscle samples were collected at 0,12,24,48,and 72 hours after exercise.The mRNA expressions of BMAL1 and MyoD were measured by real-time fluorescence quantitative PCR.The ultrastructure of skeletal muscle fibers was observed by transmission electron microscope.Immunofluorescence was used to observe the co-localization of MyoD and BMAL1 as well as BMAL1 and titin. RESULTS AND CONCLUSION:After the single high-load centrifugal exercise,the sarcomere of the soleus muscle was widened and the Z-line was blurred and water wave-like,both of which were most serious at 12 hours after exercise and basically recovered at 72 hours.The results of real-time fluorescent quantitative PCR showed that BMAL1 mRNA expression in the exercise group increased first and then tended to normal,while the mRNA expression of MyoD decreased first and then increased.Immunofluorescence co-localization observation indicated that the co-localization of BMAL1 and MyoD was obviously observed at 12 and 24 hours after exercise,and the co-localization of BMAL1 and titin was observed at 0,12,and 24 hours.All the findings indicate that MyoD and BMAL1 are jointly involved in the repair of exercise-induced skeletal muscle damage probably via titin.

5.
Biol Pharm Bull ; 46(4): 608-613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005305

RESUMO

Angiogenesis is involved in the malignant transformation of cancers. Vascular endothelial growth factor (VEGF) is important in inducing angiogenesis. Cultured cells play an important role in analyzing the regulation of VEGF expression, and it is revealed that VEGF expression is induced under hypoxia. However, it has been shown that there are differences in the pathway for gene expression between two-dimensional (2D) cells and in vivo cells. Three-dimensional (3D) spheroids constructed in 3D culture with a gene expression pattern more similar to that of in vivo cells than 2D cells have been used to solve this problem. This study analyzed the VEGF gene expression pathway in 3D spheroids of human lung cancer cells, A549 and H1703. Hypoxia-inducible factor-1α (HIF-1α) and aryl hydrocarbon receptor nuclear translocator (ARNT) regulated VEGF gene expression in 3D spheroids. However, VEGF gene expression was not regulated by HIF-1α in 2D cells. To conclude, we found that the regulatory pathway of VEGF gene expression is different between 2D cells and 3D spheroids in human lung cancer cells. These results suggest the possibility of a new VEGF gene expression regulation pathway in vivo. In addition, they show useful knowledge for the analysis of angiogenesis induction mechanisms and also demonstrate the usefulness of 3D spheroids.


Assuntos
Neoplasias Pulmonares , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Fatores de Crescimento do Endotélio Vascular/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Regulação da Expressão Gênica , Neoplasias Pulmonares/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
6.
Heliyon ; 9(2): e13222, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747531

RESUMO

HIF-1α plays a crucial part in hypoxia response by transcriptionally upregulating genes to adapt the hypoxic condition. HIF-1α is under severe cellular control as its exceptional activation is always associated with tumorigenesis and tumor progression. Here, we report L3MBTL3 serves as a novel negative regulator of HIF-1α. It is upregulated during hypoxia and acts as a transcriptional target of HIF-1α. In the nuclei, L3MBTL3 makes an interaction with HIF-1α and promotes its ubiquitination and degradation. These findings indicate L3MBTL3 forms a negative feedback loop with HIF-1α in vitro to dampen the hypoxic response.

7.
Toxicol Appl Pharmacol ; 451: 116172, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863504

RESUMO

Methamphetamine (METH) abuse is a significant public health concern globally. Cardiac toxicity is one of the important characteristics of METH, in addition to its effects on the nervous system. However, to date, research on the cardiotoxic injury induced by METH consumption has been insufficient. To systematically analyze the potential molecular mechanism of cardiac toxicity in METH-associated heart failure (HF), a rat model was constructed with a dose of 10 mg/kg of METH consumption. Cardiac function was evaluated by echocardiography, and HE staining was used to clarify the myocardial histopathological changes. Integrated analyses, including mRNA, miRNA and lncRNA, was performed to analyze the RNA expression profile and the potential molecular mechanisms involved in METH-associated HF. The results showed that METH caused decreased myocardial contractility, with a decreased percent ejection fraction (%EF). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of the RNAs with expression changes revealed abnormal circadian rhythm regulation in the METH groups, with circadian rhythm-related genes and their downstream effectors expressed differentially, especially the aryl hydrocarbon receptor nuclear translocator-like (Arntl). Competing endogenous RNA (ceRNA) networks associated with circadian rhythm, including Arntl, was also observed. Therefore, this study revealed that long-term METH consumption was associated with the HF in a rat model by decreasing the %EF, and that the abnormal circadian rhythm could provide new directions for investigating the METH-associated HF, and that the differentially expressed genes in this model could provide candidate genes for the identification and assessment of cardiac toxicity in METH-associated HF, which is fundamental for further understanding of the disease.


Assuntos
Transtornos Cronobiológicos , Insuficiência Cardíaca , Metanfetamina , MicroRNAs , RNA Longo não Codificante , Fatores de Transcrição ARNTL/genética , Animais , Cardiotoxicidade , Redes Reguladoras de Genes , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/genética , Metanfetamina/toxicidade , MicroRNAs/genética , RNA Longo não Codificante/genética , Ratos , Transcriptoma
8.
BMC Pharmacol Toxicol ; 23(1): 26, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473600

RESUMO

BACKGROUND: The main causes of lung cancer are smoking, environmental pollution and genetic susceptibility. It is an indisputable fact that PAHs are related to lung cancer, and benzo(a) pyrene is a representative of PAHs. The purpose of the current investigation was to investigate the interaction between AhR and HIF-1 signaling pathways in A549 cells, which provide some experimental basis for scientists to find drugs that block AhR and HIF-1 signaling pathway to prevent and treat cancer. METHODS: This project adopts the CYP1A1 signaling pathways and the expression of CYP1B1 is expressed as a measure of AhR strength index. The expression of VEGF and CAIX volume as a measure of the strength of the signal path HIF-1 indicators. Through the construction of plasmid vector, fluorescence resonance energy transfer, real-time quantitative PCR, western blotting and immunoprecipitation, the interaction between AhR signaling pathway and HIF-1 signaling pathway was observed. RESULTS: BaP can enhance the binding ability of HIF-1α protein to HIF-1ß/ARNT in a dose-dependent manner without CoCl2. However, the binding ability of AhR protein to HIF-1ß/ARNT is inhibited by HIF-1α signaling pathway in a dose-dependent manner with CoCl2. CONCLUSION: It is shown that activation of the AhR signaling pathway does not inhibit the HIF-1α signaling pathway, but activation of the HIF-1α signaling pathway inhibits the AhR signaling pathway.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Neoplasias Pulmonares , Receptores de Hidrocarboneto Arílico , Células A549 , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais
9.
Eur Surg Res ; 63(4): 182-195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34879384

RESUMO

BACKGROUND: The current study set out to probe the function of different doses of ketamine in postoperative neurocognitive disorder (PND) in aged mice undergoing partial hepatectomy (PH) with the involvement of the brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1)/n-methyl-D-aspartate (NMDA)/nuclear factor-kappa B (NF-κB) axis. METHODS: First, aged mice were intraperitoneally injected with different doses of ketamine prior to surgery, followed by hepatic lobectomy. Afterward, mice cognitive function was assessed. In addition, Bmal1 mRNA expression patterns were quantified, while NMDA 2B receptor, NF-κB p65, synapsin 1, and postsynaptic density 95 (PSD95) levels were determined; the release of inflammatory factors was detected, and ionized calcium-binding adapter molecule-1 expression was measured to quantify microglia activation. In addition, Bmal1-knockout (Bmal1-KO) mice were intraperitoneally injected with a subanesthetic dose of ketamine to verify the mechanism of Bmal1 in regulating the NMDA 2B subunit (NR2B)/NF-κB axis to affect PH in aged patients. RESULTS: After PH, hippocampal-dependent memory was impaired, and synapsin 1 and PSD95 levels were downregulated. On the other hand, PH diminished Bmal1 expression but elevated NR2B and NF-κB p65 levels and anesthetic doses of ketamine further regulated the Bmal1/NMDA/NF-κB axis. In Bmal1-KO mice, the NMDA/NF-κB axis was activated, the release of inflammatory cytokines was promoted, and hippocampus-dependent memory was impaired, which were reversed by a subanesthetic dose of ketamine. CONCLUSION: Altogether, findings obtained in our study indicated that a subanesthetic dose of ketamine activated Bmal1, downregulated the NMDA/NF-κB axis, and reduced inflammation and microglia activation to alleviate PND in aged mice undergoing PH.


Assuntos
Ketamina , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Ketamina/farmacologia , N-Metilaspartato , Hepatectomia , Sinapsinas/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia
10.
Kidney Blood Press Res ; 46(6): 741-748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34515147

RESUMO

BACKGROUND: Previous studies have reported that disturbance of endogenous circadian rhythms enhances the chance of hypertension and suggested that circadian clock genes could have a crucial function in the onset of the disease. This case-control study was aimed to investigate the association of the mRNA expression of aryl hydrocarbon receptor nuclear translocator like (Arntl), clock circadian regulator (Clock), and period circadian regulators 1 and 2 (Per1 and Per2) with hypertension and blood pressure levels. METHODS: A total of 172 subjects were recruited in this study, including 86 hypertension and 86 nonhypertension controls. The mRNA expression levels in peripheral blood mononuclear cells were determined by real-time quantitative polymerase chain reaction. The differences in Arntl, Clock, Per1, and Per2 mRNA expression were compared between the 2 groups, and the relationship between mRNA expression and cardiometabolic risk profiles was also assessed. RESULTS: We found that the mRNA expression of Arntl was downregulated in the hypertension cases compared with controls in women (1.10 [0.66, 1.71] vs. 1.30 [0.99, 2.06], p = 0.031). There was a significant negative correlation between the Arntl mRNA expression and SBP (r = -0.301, p = 0.004) and DBP (r = -0.222, p = 0.034) in women. In men, a negative correlation between the Per1 mRNA expression and SBP (r = -0.247, p = 0.026) was found. CONCLUSIONS: The Arntl mRNA expression may play an important role in progression of hypertension in women.


Assuntos
Fatores de Transcrição ARNTL/genética , Hipertensão/genética , RNA Mensageiro/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Humanos , Pessoa de Meia-Idade
11.
Acta Pharm Sin B ; 11(3): 763-780, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33777681

RESUMO

Intestinal toxicity induced by chemotherapeutics has become an important reason for the interruption of therapy and withdrawal of approved agents. In this study, we demonstrated that chemotherapeutics-induced intestinal damage were commonly characterized by the sharp upregulation of tryptophan (Trp)-kynurenine (KYN)-kynurenic acid (KA) axis metabolism. Mechanistically, chemotherapy-induced intestinal damage triggered the formation of an interleukin-6 (IL-6)-indoleamine 2,3-dioxygenase 1 (IDO1)-aryl hydrocarbon receptor (AHR) positive feedback loop, which accelerated kynurenine pathway metabolism in gut. Besides, AHR and G protein-coupled receptor 35 (GPR35) negative feedback regulates intestinal damage and inflammation to maintain intestinal integrity and homeostasis through gradually sensing kynurenic acid level in gut and macrophage, respectively. Moreover, based on virtual screening and biological verification, vardenafil and linagliptin as GPR35 and AHR agonists respectively were discovered from 2388 approved drugs. Importantly, the results that vardenafil and linagliptin significantly alleviated chemotherapy-induced intestinal toxicity in vivo suggests that chemotherapeutics combined with the two could be a promising therapeutic strategy for cancer patients in clinic. This work highlights GPR35 and AHR as the guardian of kynurenine pathway metabolism and core component of defense responses against intestinal damage.

12.
Acta Pharm Sin B ; 11(2): 309-321, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643814

RESUMO

Cullin-RING ligases (CRLs) recognize and interact with substrates for ubiquitination and degradation, and can be targeted for disease treatment when the abnormal expression of substrates involves pathologic processes. Phosphorylation, either of substrates or receptors of CRLs, can alter their interaction. Phosphorylation-dependent ubiquitination and proteasome degradation influence various cellular processes and can contribute to the occurrence of various diseases, most often tumorigenesis. These processes have the potential to be used for tumor intervention through the regulation of the activities of related kinases, along with the regulation of the stability of specific oncoproteins and tumor suppressors. This review describes the mechanisms and biological functions of crosstalk between phosphorylation and ubiquitination, and most importantly its influence on tumorigenesis, to provide new directions and strategies for tumor therapy.

13.
Acta Pharmaceutica Sinica B ; (6): 309-321, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-881138

RESUMO

Cullin-RING ligases (CRLs) recognize and interact with substrates for ubiquitination and degradation, and can be targeted for disease treatment when the abnormal expression of substrates involves pathologic processes. Phosphorylation, either of substrates or receptors of CRLs, can alter their interaction. Phosphorylation-dependent ubiquitination and proteasome degradation influence various cellular processes and can contribute to the occurrence of various diseases, most often tumorigenesis. These processes have the potential to be used for tumor intervention through the regulation of the activities of related kinases, along with the regulation of the stability of specific oncoproteins and tumor suppressors. This review describes the mechanisms and biological functions of crosstalk between phosphorylation and ubiquitination, and most importantly its influence on tumorigenesis, to provide new directions and strategies for tumor therapy.

14.
Acta Pharmaceutica Sinica B ; (6): 763-780, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-881168

RESUMO

Intestinal toxicity induced by chemotherapeutics has become an important reason for the interruption of therapy and withdrawal of approved agents. In this study, we demonstrated that chemotherapeutics-induced intestinal damage were commonly characterized by the sharp upregulation of tryptophan (Trp)-kynurenine (KYN)-kynurenic acid (KA) axis metabolism. Mechanistically, chemotherapy-induced intestinal damage triggered the formation of an interleukin-6 (IL-6)-indoleamine 2,3-dioxygenase 1 (IDO1)-aryl hydrocarbon receptor (AHR) positive feedback loop, which accelerated kynurenine pathway metabolism in gut. Besides, AHR and G protein-coupled receptor 35 (GPR35) negative feedback regulates intestinal damage and inflammation to maintain intestinal integrity and homeostasis through gradually sensing kynurenic acid level in gut and macrophage, respectively. Moreover, based on virtual screening and biological verification, vardenafil and linagliptin as GPR35 and AHR agonists respectively were discovered from 2388 approved drugs. Importantly, the results that vardenafil and linagliptin significantly alleviated chemotherapy-induced intestinal toxicity

15.
Comput Struct Biotechnol J ; 18: 1914-1924, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774786

RESUMO

Circadian rhythms are 24-hour oscillations affecting an organism at multiple levels from gene expression all the way to tissues and organs. They have been observed in organisms across the kingdom of life, spanning from cyanobacteria to humans. In mammals, the master circadian pacemaker is located in the hypothalamic suprachiasmatic nuclei (SCN) in the brain where it synchronizes the peripheral oscillators that exist in other tissues. This system regulates the circadian activity of a large part of the transcriptome and recent findings indicate that almost every cell in the body has this clock at the molecular level. In this review, we briefly summarize the different factors that can influence the circadian transcriptome, including light, temperature, and food intake. We then summarize recently identified general principles governing genome-scale circadian regulation, as well as future lines of research. Genome-scale circadian activity represents a fascinating study model for computational biology. For this purpose, systems biology methods are promising exploratory tools to decode the global regulatory principles of circadian regulation.

16.
Oncol Lett ; 20(4): 56, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32793310

RESUMO

Aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor that has been reported to play a vital role in regulating glycolysis, angiogenesis and apoptosis. Recently, ARNT has been reported to a play role in pancreatic-islet function in type 2 diabetes. However, the role of ARNT in kidney cancer has not yet been investigated. In the present study, ARNT expression was detected in tissues from patients with renal cell carcinoma (RCC) and in RCC cell lines. Oncomine, The Cancer Genome Atlas and cBioPortal were used to investigate the roles of ARNT in RCC. Cell migration and invasion assays were used to explore the molecular mechanisms involved. It was found that ARNT protein expression was elevated both in tissues from patients with clear cell RCC (ccRCC) and in different RCC cell lines. ARNT disruption using siRNA knockdown inhibited the migratory abilities and cell proliferation, potentially by altering the glycolysis pathway in vitro, as evidenced by decreased M2 type acetone kinase, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 and hexokinase 2 expression. Taken together, the findings in the present study revealed a novel function of ARNT in ccRCC and indicated that ARNT promotes the proliferation and invasion of ccRCC, possibly through changes to the glycolytic pathway.

17.
Biol Open ; 9(7)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554484

RESUMO

The bone marrow mesenchymal stem cells (BMSCs)-mediated abnormal bone metabolism can delay and impair the bone remodeling process in type 2 diabetes mellitus (T2DM). Our previous study demonstrated that the downregulation of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1), a circadian clock protein, inhibited the Wnt/ß-catenin pathway via enhanced GSK-3ß in diabetic BMSCs. In this article, we confirmed that the downregulated BMAL1 in T2DM played an inhibitory role in osteogenic differentiation of BMSCs. Upregulation of BMAL1 in the diabetic BMSCs significantly recovered the expression pattern of osteogenic marker genes and alkaline phosphatase (Alp) activity. We also observed an activation of the p53 signaling pathways, exhibited by increased p53 and p21 in diabetic BMSCs. Downregulation of p53 resulting from overexpression of BMAL1 was detected, and when we applied p53 gene silencing (shRNA) and the p53 inhibitor, pifithrin-α (PFT-α), the impaired osteogenic differentiation ability of diabetic BMSCs was greatly restored. However, there was no change in the level of expression of BMAL1. Taken together, our results first revealed that BMAL1 regulated osteogenesis of BMSCs through p53 in T2DM, providing a novel direction for further exploration of the mechanism underlying osteoporosis in diabetes.


Assuntos
Fatores de Transcrição ARNTL/genética , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Músculos/metabolismo , Osteogênese/genética , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inativação Gênica , Imuno-Histoquímica , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Ratos , Proteína Supressora de Tumor p53/metabolismo
18.
Ecotoxicol Environ Saf ; 201: 110835, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32563159

RESUMO

The activation of the aryl hydrocarbon receptor (AHR) occurs through the binding of dioxin-like compounds (DLCs) or natural ligands. In this pathway, the AHR-ARNT (AHR nuclear translocator) heterodimer serves to regulate critical physiological functions, such as immune responses and the metabolism of xenobiotics. Birds have three AHR isoforms (AHR1, AHR1ß, and AHR2) and two ARNT isoforms (ARNT1 and ARNT2). However, how AHR and ARNT dimerization pair in birds regulates the AHR signaling pathway in an isoform-specific manner remains unknown. In this study, we initially sought to clarify the major chicken AHR-ARNT (ckAHR-ckARNT) pairs by estimating the mRNA tissue distributions of various ckAHR and ckARNT isoforms. Our results indicated that the ckAHR1-ckARNT1 represented the major dimerization pair in most tissues except the brain. We then measured the transactivation potencies of various ckAHR-ckARNT pairs by natural ligands and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in in vitro reporter gene assays using COS-7 and LMH cell lines. Our results from the in vitro assays demonstrated that the ckAHR1-ckARNT1 pair was strongly activated by the five natural ligands, namely, 6-formylindolo [3,2-b]carbazole, L-kynurenin, kynurenic acid, indoxyl-3-sulfate, and 1,3,7-tribromodibenzo-p-dioxin, but not by TCDD. In in silico ligand docking simulations with ckAHR1 homology models, all the natural ligands showed a interaction pattern that was distinct from that observed with anthropogenic DLCs, including TCDD. In conclusion, our findings indicate that the ckAHR1-ckARNT1 may be the most important dimerization pair in most tissues for regulating the physiological functions driven by natural ligands, although it was less reactive to TCDD.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Galinhas/metabolismo , Dibenzodioxinas Policloradas/metabolismo , Multimerização Proteica , Receptores de Hidrocarboneto Arílico/metabolismo , Xenobióticos/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Simulação por Computador , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Isoformas de Proteínas , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Especificidade da Espécie , Transfecção
19.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252465

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxicological effects of an AhR lacking the entire PASB structurally diverse chemicals, including halogenated aromatic hydrocarbons. Ligand-dependent transformation of the AhR into its DNA binding form involves a ligand-dependent conformational change, heat shock protein 90 (hsp90), dissociation from the AhR complex and AhR dimerization with the AhR nuclear translocator (ARNT) protein. The mechanism of AhR transformation was examined using mutational approaches and stabilization of the AhR:hsp90 complex with sodium molybdate. Insertion of a single mutation (F281A) in the hsp90-binding region of the AhR resulted in its constitutive (ligand-independent) transformation/DNA binding in vitro. Mutations of AhR residues within the Arg-Cys-rich region (R212A, R217A, R219A) and Asp371 (D371A) impaired AhR transformation without a significant effect on ligand binding. Stabilization of AhR:hsp90 binding with sodium molybdate decreased transformation/DNA binding of the wild type AhR but had no effect on constitutively active AhR mutants. Interestingly, transformation of the AhR in the presence of molybdate allowed detection of an intermediate transformation ternary complex containing hsp90, AhR, and ARNT. These results are consistent with a stepwise transformation mechanism in which binding of ARNT to the liganded AhR:hsp90 complex results in a progressive displacement of hsp90 and conversion of the AhR into its high affinity DNA binding form. The available molecular insights into the signaling mechanism of other Per-ARNT-Sim (PAS) domains and structural information on hsp90 association with other client proteins are consistent with the proposed transformation mechanism of the AhR.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transformação Celular Neoplásica/metabolismo , DNA/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Transformação Celular Neoplásica/genética , DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligantes , Modelos Moleculares , Molibdênio/farmacologia , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Hidrocarboneto Arílico/química , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683543

RESUMO

The aryl hydrocarbon receptor (AHR)/AHR-nuclear translocator (ARNT) system is a sensitive sensor for small molecular, xenobiotic chemicals of exogenous and endogenous origin, including dioxins, phytochemicals, microbial bioproducts, and tryptophan photoproducts. AHR/ARNT are abundantly expressed in the skin. Once activated, the AHR/ARNT axis strengthens skin barrier functions and accelerates epidermal terminal differentiation by upregulating filaggrin expression. In addition, AHR activation induces oxidative stress. However, some AHR ligands simultaneously activate the nuclear factor-erythroid 2-related factor-2 (NRF2) transcription factor, which is a master switch of antioxidative enzymes that neutralizes oxidative stress. The immunoregulatory system governing T-helper 17/22 (Th17/22) and T regulatory cells (Treg) is also regulated by the AHR system. Notably, AHR agonists, such as tapinarof, are currently used as therapeutic agents in psoriasis and atopic dermatitis. In this review, we summarize recent topics on AHR related to atopic dermatitis and psoriasis.


Assuntos
Dermatite Atópica/genética , Polimorfismo de Nucleotídeo Único , Psoríase/genética , Receptores de Hidrocarboneto Arílico/genética , Animais , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Proteínas Filagrinas , Humanos , Estresse Oxidativo/imunologia , Psoríase/imunologia , Psoríase/metabolismo , Receptores de Hidrocarboneto Arílico/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA