Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202417362, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278829

RESUMO

Imide functionalization has been widely proved to be an effective approach to enrich optoelectronic properties of polycyclic aromatic hydrocarbons (PAHs). However, appending multiple imide groups onto linear acenes is still a synthetic challenge. Herein, we demonstrate that by taking advantage of a "breaking and mending" strategy, a linear pentacene tetraimides (PeTI) was synthesized through a three-step sequence started from the naphthalene diimides (NDI). Compared with the parent pentacene, PeTI shows a deeper-lying lowest unoccupied molecular orbital (LUMO) energy level, narrower bandgap and better stability. The redox behavior of PeTI was firstly evaluated by generating a stable radical anion specie with the assistance of cobaltocene (CoCp2), and the structure of the electron transfer (ET) complex was confirmed by the X-ray crystallography. Moreover, due to the presence of multiple redox-active sites, we are able to show that the state-of-the-art energy storage performance of the dealkylated PeTI (designated as PeTCTI) in organic potassium ion batteries (OPIBs) as an anode. Our results shed light on the application of multiple imides functionalized linear acenes, and the reported synthetic strategy provides an effective way to get access to longer nanoribbon imides with fascinating electronic properties.

2.
Chem Biodivers ; : e202401420, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287370

RESUMO

We designed and synthesized 27 new amide and dipeptide derivatives containing a substituted phenylalanine as negative allosteric modulators (NAMs) for the beta-2 adrenergic receptor (ß2AR). These analogs aimed to improve the activity of our lead compound, Cmpd-15, by introducing variations in three key regions: the meta-bromobenzyl methylbenzamide (S1), para-formamidophenylalanine (S2), and 1-cyclohexyl-1-phenylacetyl (S3) groups. The synthesis involved the Pd-catalyzed ß-C(sp3)-H arylation of N-acetylglycine with 1-iodo-4-substituent-benzenes as the key step. GloSensor cAMP accumulation assay revealed that six analogs (A1, C5, C6, C13, C15 and C17) surpass Cmpd-15 in ß2AR allosteric function. This highlights the crucial role of the S1 region (meta-bromobenzyl methylbenzamide) in ß2AR allostery while suggesting potential replaceability of the S2 region (para-formamidophenylalanine). These findings serve as a valuable springboard for further optimizing Cmpd-15, potentially leading to smaller, more active, and more stable ß2AR-targeting NAMs.

3.
Adv Sci (Weinh) ; : e2405926, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264302

RESUMO

Herein, the study reports the first electrochemical nickel-catalyzed enantioselective hydro-arylation/alkenylation of enones in an undivided cell with low-cost electrodes in the absence of external reductants and supporting electrolytes. Aryl bromides/iodides/triflates or alkenyl bromides are employed as electrophiles for the efficient preparation of more than 56 valuable ß-arylated/alkenylated ketones in a simple manner (up to 97% yield, 97% ee). With the advantages of electrochemistry, excellent functional group tolerance and late-stage modification of complex natural products and pharmaceuticals made the established protocol greener and more economic. Mechanism investigation suggests that a NiI/NiIII cycle may be involved in this electro-reductive reaction rather than metal reductant driven Ni0/NiII cycle. Overall, the efficient electrochemical activation and turnover of the nickel catalyst avoid the drawbacks posed by the employment of stoichiometric amount of sensitive metal powder reductants.

4.
Chemistry ; : e202402662, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166710

RESUMO

The photo-induced deoxygenative C2 arylation of quinoline N-oxides to 2-arylquinolines is achieved over a heterogeneous porous tubular graphitic carbon nitride (PTCN) catalyst with phenylhydrazines as arylation reagent. A wide range of quinoline N-oxides can be efficiently transformed into their corresponding 2-arylquinolines under visible light irradiation. Moreover, PTCN catalyst is easily separated and could be reused several times without loss to its original activity.

5.
ACS Catal ; 14(12): 9469-9475, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39157726

RESUMO

Two conflicting mechanisms have emerged for the direct arylation of allylic C-H bonds enabled by the combined use of thiol and photoredox catalysis. In the original report (Nature, 2015, 519, 74-77), a radical coupling step-between a radical anion of an arene and an allylic radical-is proposed to be the key C-C bond-forming step. A recent mechanistic study (J. Org. Chem. 2022, 87, 223-230) has suggested that the C-C bond formation occurs via radical anion capture by the olefin followed by an H atom transfer (HAT) event to deliver the allylic C-H arylation product. Utilizing cyclohexene-4,4,5,5-d 4 as a mechanistic probe to distinguish between otherwise indistinguishable regioisomeric allylic C-H arylation products in the reaction of cyclohexene and dicyanobenzene, we establish that the radical anion capture-HAT mechanism is not operative. Furthermore, experimental k H/k D studies and DFT calculations lend strong support to the radical coupling mechanism proceeding via irreversible HAT to form the allylic radical of cyclohexene, followed by regioselectivity-determining radical coupling (for unsymmetrical olefins) and facile decyanation.

6.
Angew Chem Int Ed Engl ; 63(40): e202408603, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980976

RESUMO

Pd(II)-catalyzed enantioselective C-H activation has emerged as a versatile platform for constructing point, axial, and planar chirality. Herein, we present an unexpected discovery of a Pd-catalyzed enantioselective cascade ß,γ-methylene C(sp3)-H diarylation of free carboxylic acids using bidentate chiral mono-protected amino thioether ligands (MPAThio), enabling one-step synthesis of a complex chiral 9,10-dihydrophenanthrene scaffolds with high enantioselectivity. In this process, two methylene C(sp3)-H bonds and three C(sp2)-H bonds were activated, leading to the formation of four C-C bonds and three chiral centers in one pot. A plausible catalytic pathway starts with enantioselective ß,γ-dehydrogenation to form chiral ß,γ-cyclohexene. Intriguingly, this olefin serves as a norbornene-type reagent (presumably assisted by the carboxyl directing effect), relaying two successive Catellani arylation reactions and a C-H arylation reaction to furnish chiral 9,10-dihydrophenanthrenes along with meta-selective homocoupling products of iodoarene.

7.
Chemistry ; : e202402634, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078075

RESUMO

BODIPYs have a well-established role in biological sciences as chemosensors and versatile biological markers due to their chemical reactivity, which allows for fine-tuning of their photophysical characteristics. In this work, we combined the unique reactivity of arylazo sulfones with the advantages of a "sunflow" reactor to develop a fast, efficient, and versatile method for the photochemical arylation of BODIPYs and other chromophores. This approach resulted in red-shifted emitting fluorophores due to extended electronic delocalization at the 3- and 5-positions of the BODIPY core. This method represents an advantageous approach for BODIPY functionalization compared to existing strategies.

8.
Angew Chem Int Ed Engl ; : e202409388, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977417

RESUMO

Isomerisation reactions provide streamlined routes to organic compounds which are otherwise hard to directly synthesise. The most common forms are positional, geometrical or stereochemical isomerisations which involve the relocation of a double bond or a change in relative location of groups in space. In contrast, far fewer examples of structural (or constitutional) isomerisation exist where the connectivity between atoms is altered. The development of platforms capable of such rearrangement poses a unique set of challenges because chemical bonds must be selectively cleaved, and new ones formed without overall addition or removal of atoms. Here, we show that a dual catalytic system can enable the structural isomerisation of readily available allylic alcohols into more challenging-to-synthesise α-arylated ketones via a H-atom transfer initiated semi-pinacol rearrangement. Key to our strategy is the combination of a cobalt catalyst and photocatalyst under reductive, protic conditions which allows intermediates to propagate catalytic turnover. By providing an unusual disconnection to structural motifs which are difficult to access through direct arylation, we anticipate inspiring other advanced catalytic isomerisation strategies that will further retrosynthetic logic for complex molecule synthesis.

9.
Angew Chem Int Ed Engl ; 63(42): e202409987, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39008709

RESUMO

We report the development of a novel synthetic approach for the highly strained atrop-Tyr C-6-to-Trp N-1' linkage, which can be executed on a decagram scale using a modular strategy involving palladium-catalyzed C-H arylation followed by Larock macrocyclization. The first total synthesis of lapparbin (1) was achieved by applying this synthetic strategy. Furthermore, the modular synthesis utilizing C-H arylation and Larock macrocyclization, discovered in the total synthesis of lapparbin (1), was demonstrated to be applicable to various arbitrary biaryl linkages, including non-natural types.

10.
Mol Divers ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048884

RESUMO

The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.

11.
ChemistryOpen ; : e202400180, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051713

RESUMO

A selective direct arylation of the different Csp2-H bonds of imidazo[2,1-b]thiazole with (hetero) aryl halides can be achieved simply by switching from a palladium catalyst system to the use of stoichiometric amounts of copper. The observed selectivity, also rationalized by DFT calculations, can be explained by a change in the mechanistic pathways between electrophilic palladation and base-promoted C-H metalation.

12.
Angew Chem Int Ed Engl ; : e202411469, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39073195

RESUMO

Radical-involved arylative cross-coupling reactions have recently emerged as an attractive strategy to access valuable aryl-substituted motifs. However, there still exist several challenges such as limited scope of radical precursors/acceptors, and lack of general asymmetric catalytic systems, especially regarding the multicomponent variants. Herein, we reported a general copper-Box system for asymmetric three-component arylative radical cross-coupling of vinylarenes and 1,3-enynes, with oxime carbonates and aryl boronic acids. The reactions proceed under practical conditions in the absence or presence of visible-light irradiation, affording chiral 1,1-diarylalkanes, benzylic alkynes and allenes with good enantioselectivities. Mechanistic studies imply that the copper/Box complexes play a dual role in both radical generation and ensuing asymmetric cross-coupling. In the cases of 1,3-enynes, visible-light irradiation could improve the activity of copper/Box complex toward the initial radical generation, enabling better efficiency match between radical formation and cross-coupling.

13.
Nanomaterials (Basel) ; 14(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998707

RESUMO

The design of metal-organic frameworks (MOFs) allows the definition of properties for their final application in small-scale heterogeneous catalysis. Incorporating various catalytic centers within a single structure can produce a synergistic effect, which is particularly intriguing for cross-coupling reactions. The URJC-1 material exhibits catalytic duality: the metal centers act as Lewis acid centers, while the nitrogen atoms of the organic ligand must behave as basic centers. The impact of reaction temperature, catalyst concentration, and basic agent concentration was evaluated. Several copper-based catalysts, including homogeneous and heterogeneous MOF catalysts with and without the presence of nitrogen atoms in the organic ligand, were assessed for their catalytic effect under optimal conditions. Among the catalysts tested, URJC-1 exhibited the highest catalytic activity, achieving complete conversion of 4-nitrobenzaldehyde with only 3% mol copper concentration in one hour. Furthermore, URJC-1 maintained its crystalline structure even after five reaction cycles, demonstrating remarkable stability in the reaction medium. The study also examined the impact of various substituents of the substrate alcohol on the reaction using URJC-1. The results showed that the reaction had high activity when activating substituents were present and for most cyclic alcohols rather than linear ones.

14.
Chemistry ; 30(46): e202401623, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38825798

RESUMO

Photoredox catalysis provides a green and sustainable alternative for C-H activation of organic molecules that eludes harsh conditions and use of transition metals. The photocatalytic C-N borylation and C-H arylation mostly depend on the ruthenium and iridium complexes or eosin Y and the use of porphyrin catalysts is still in infancy. A series of novel 21-thiaporphyrins (A2B2 and A3B type) were synthesized having carbazole/phenothiazine moieties at their meso-positions and screened as catalysts for C-N borylation and C-H arylation. This paper demonstrates the 21-thiaporphyrin catalyzed C-N borylation and het-arylation of anilines under visible light. The method utilizes only 0.1 mol % of 21-thiaporphyrin catalyst under blue light for the direct C-N borylation and het-arylation reactions. A variety of substituted anilines were used as source for expensive and unstable aryl diazonium salts in the reactions. The heterobiaryls and aryl boronic esters were obtained in decent yields (up to 88 %). Versatility of the 21-thiaporphyrin catalyst was tested by thiolation and selenylation of anilines under similar conditions. Mechanistic insight was obtained from DFT studies, suggesting that 21-thiaporphyrin undergo an oxidative quenching pathway. The photoredox process catalyzed by 21-thiaporphyrins offers a mild, efficient and metal-free alternative for the formation of C-C, C-S, and C-Se bonds in aryl compounds; it can also be extended to borylation reaction.

15.
Chemistry ; 30(44): e202401371, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38825569

RESUMO

Herein, we describe a visible light-induced C(sp2)-H arylation method for quinoxalin-2(1H)-ones and coumarins using iodonium ylides without the need for external photocatalysts. The protocol demonstrates a broad substrate scope, enabling the arylation of diverse heterocycles through a simple and mild procedure. Furthermore, the photochemical reaction showcases its applicability in the efficient synthesis of biologically active molecules. Computational investigations at the CASPT2//CASSCF/PCM level of theory revealed that the excited state of quinoxalin-2(1H)-one facilitates electron transfer from its π bond to the antibonding orbital of the C-I bond in the iodonium ylide, ultimately leading to the formation of an aryl radical, which subsequently participates in the C-H arylation process. In addition, our calculations reveal that during the single-electron transfer (SET) process, the C-I bond cleavage in iodonium ylide and new C-C bond formation between resultant aryl radical and cationic quinoxaline species take place in a concerned manner. This enables the arylation reaction to efficiently proceed along an energy-efficient route.

16.
Chemistry ; 30(45): e202401929, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38818768

RESUMO

Direct structural modification of small-molecule fluorophores represents a straightforward and appealing strategy for accessing new fluorescent dyes with desired functionalities. We report herein a general and efficient visible-light-mediated method for the direct C-H functionalization of BODIPY, an important fluorescent chromophore, using readily accessible and bench-stable aryl and alkenylthianthrenium salts. This practical approach operates at room temperature with extraordinary site-selectivity, providing a step-economical means to construct various valuable aryl- and alkenyl-substituted BODIPY dyes. Remarkably, this protocol encompasses a broad substrate scope and excellent functional-group tolerance, and allows for the modular synthesis of sophisticated symmetrical and asymmetrical disubstituted BODIPYs by simply employing different combinations of thianthrenium salts. Moreover, the late-stage BODIPY modification of complex drug molecules further highlights the potential of this novel methodology in the synthesis of fluorophore-drug conjugates.

17.
Angew Chem Int Ed Engl ; 63(28): e202405780, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38693673

RESUMO

Precious metal complexes remain ubiquitous in photoredox catalysis (PRC) despite concerted efforts to find more earth-abundant catalysts and replacements based on 3d metals in particular. Most otherwise plausible 3d metal complexes are assumed to be unsuitable due to short-lived excited states, which has led researchers to prioritize the pursuit of longer excited-state lifetimes through careful molecular design. However, we report herein that the C-H arylation of pyrroles and related substrates (which are benchmark reactions for assessing the efficacy of photoredox catalysts) can be achieved using a simple and readily accessible octahedral bis(diiminopyridine) cobalt complex, [1-Co](PF6)2. Notably, [1-Co]2+ efficiently functionalizes both chloro- and bromoarene substrates despite the short excited-state lifetime of the key photoexcited intermediate *[1-Co]2+ (8 ps). We present herein the scope of this C-H arylation protocol and provide mechanistic insights derived from detailed spectroscopic and computational studies. These indicate that, despite its transient existence, reduction of *[1-Co]2+ is facilitated via pre-assembly with the NEt3 reductant, highlighting an alternative strategy for the future development of 3d metal-catalyzed PRC.

18.
Chemistry ; 30(44): e202401617, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788130

RESUMO

A magnetically isolable iron oxide nanoparticles is introduced as an efficient heterogeneous photocatalyst for non-directed C-H arylation employing aryl diazonium salts as the aryl precursors. This first-row transition metal-based photocatalyst revealed versatile activities and is applicable to a wide range of substrates, demonstrating brilliant efficacy and superior recyclability. Detailed catalytic characterization describes the physical properties and redox behavior of the Fe-catalyst. Adequate control experiments helped to establish the radical-based mechanism for the C-H arylation.

19.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792091

RESUMO

Methyl 4-(1,3a,6a-triazapentalen-3-yl)benzoate (TAP1) shows interesting properties as a small molecule fluorophore. In the search for post-functionalization methods, palladium-catalyzed arylation reactions were demonstrated. Direct CH arylation reactions of TAP1 with various aryl halides resulted in 3,6-diaryltriazapentalenes TAP4, although mostly in poor yields. Bromination of TAP1 followed by Suzuki coupling, on the other hand, requires a more delicate procedure, but gave arylated products with the same regiochemistry (TAP4) in moderate to good yields. The structure of 6-phenyltriazapentalene TAP4a was confirmed by crystallographic analysis. In addition, the effect of the C6 arylation on the fluorescent properties of 3-aryl-1,3a,6a-triazapentalenes was studied in dichloromethane at room temperature and in 2-methyltetrahydrofuran at 77 K, while the photophysical properties of two saponified derivatives were measured in acetonitrile.

20.
ACS Appl Mater Interfaces ; 16(20): 26348-26359, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728664

RESUMO

Organic solar cells (OSCs) could benefit from the ternary bulk heterojunction (BHJ), a method that allows for fine-tuning of light capture, cascade energy levels, and film shape, in order to increase their power conversion efficiency (PCE). In this work, the third components of PM6:Y6 and PM6:BTP-eC9 BHJs are a set of four star-shaped unfused ring electron acceptors (SSUFREAs), i.e., BD-IC, BFD-IC, BD-2FIC, and BFD-2FIC, that are facilely synthesized by direct C-H arylation. The four SSUFREAs all show complete complementary absorption with PM6, Y6, and BTP-eC9, which facilitates light harvesting and exciton collection. When BFD-2FIC is added as a third component, the PCEs of PM6:Y6 and PM6:BTP-eC9 binary BHJs are able to be improved from 15.31% to 16.85%, and from 16.23% to 17.23%, respectively, showing that BFD-2FIC is useful for most effective ternary OSCs in general, and increasing short circuit current (JSC) and better film morphology are two additional benefits. The ternary PM6:Y6:BFD-2FIC exhibits a 9.7% percentage of increase in PCE compared to the PM6:Y6 binary BHJ, which is one of the highest percentage increases among the reported ternary BHJs, showing the huge potential of BFD-2FIC for ternary BHJ OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA