Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.675
Filtrar
1.
J. bras. nefrol ; 46(3): e20240035, July-Sept. 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564717

RESUMO

Abstract Renal involvement is one of the most severe morbidities of Fabry disease (FD), a multisystemic lysosomal storage disease with an X-linked inheritance pattern. It results from pathogenic variants in the GLA gene (Xq22.2), which encodes the production of alpha-galactosidase A (α-Gal), responsible for glycosphingolipid metabolism. Insufficient activity of this lysosomal enzyme generates deposits of unprocessed intermediate substrates, especially globotriaosylceramide (Gb3) and derivatives, triggering cellular injury and subsequently, multiple organ dysfunction, including chronic nephropathy. Kidney injury in FD is classically attributed to Gb3 deposits in renal cells, with podocytes being the main target of the pathological process, in which structural and functional alterations are established early and severely. This configures a typical hereditary metabolic podocytopathy, whose clinical manifestations are proteinuria and progressive renal failure. Although late clinical outcomes and morphological changes are well established in this nephropathy, the molecular mechanisms that trigger and accelerate podocyte injury have not yet been fully elucidated. Podocytes are highly specialized and differentiated cells that cover the outer surface of glomerular capillaries, playing a crucial role in preserving the structure and function of the glomerular filtration barrier. They are frequent targets of injury in many nephropathies. Furthermore, dysfunction and depletion of glomerular podocytes are essential events implicated in the pathogenesis of chronic kidney disease progression. We will review the biology of podocytes and their crucial role in regulating the glomerular filtration barrier, analyzing the main pathogenic pathways involved in podocyte injury, especially related to FD nephropathy.


Resumo O acometimento renal é uma das mais severas morbidades da doença de Fabry (DF), enfermidade multissistêmica de depósito lisossômico com padrão de herança ligada ao cromossomo X, decorrente de variantes patogênicas do gene GLA (Xq22.2), que codifica a produção de alfa-galactosidase A (α-Gal), responsável pelo metabolismo de glicoesfingolipídeos. A atividade insuficiente dessa enzima lisossômica gera depósitos de substratos intermediários não processados, especialmente do globotriaosilceramida (Gb3) e derivados, desencadeando injúria celular e, posteriormente, disfunção de múltiplos órgãos, incluindo a nefropatia crônica. A lesão renal na DF é classicamente atribuída aos depósitos de Gb3 nas células renais, sendo os podócitos o alvo principal do processo patológico, nos quais as alterações estruturais e funcionais são instaladas de forma precoce e severa, configurando uma podocitopatia metabólica hereditária típica, cujas manifestações clínicas são proteinúria e falência renal progressiva. Embora os desfechos clínicos tardios e as alterações morfológicas estejam bem estabelecidos nessa nefropatia, os mecanismos moleculares que deflagram e aceleram a injúria podocitária ainda não estão completamente elucidados. Podócitos são células altamente especializadas e diferenciadas que revestem a superfície externa dos capilares glomerulares, desempenhando papel essencial na preservação da estrutura e função da barreira de filtração glomerular, sendo alvos frequentes de injúria em muitas nefropatias. A disfunção e depleção dos podócitos glomerulares são, além disso, eventos cruciais implicados na patogênese da progressão da doença renal crônica. Revisaremos a biologia dos podócitos e seu papel na regulação da barreira de filtração glomerular, analisando as principais vias patogênicas envolvidas na lesão podocitária, especialmente relacionadas à nefropatia da DF.

2.
Acta Ophthalmol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087629

RESUMO

Age-related macular degeneration (AMD) is an emerging cause of blindness in aged people worldwide. One of the key signs of AMD is the degeneration of the retinal pigment epithelium (RPE), which is indispensable for the maintenance of the adjacent photoreceptors. Because of impaired energy metabolism resulting from constant light exposure, hypoxia, and oxidative stress, accumulation of drusen in AMD-affected eyes is observed. Drusen contain damaged cellular proteins, lipoprotein particles, lipids and carbohydrates and they are related to impaired protein clearance, inflammation, and extracellular matrix modification. When autophagy, a major cellular proteostasis pathway, is impaired, the accumulations of intracellular lipofuscin and extracellular drusen are detected. As these aggregates grow over time, they finally cause the disorganisation and destruction of the RPE and photoreceptors leading to visual loss. In this review, the role of autophagy in drusen biogenesis is discussed since impairment in removing cellular waste in RPE cells plays a key role in AMD progression. In the future, means which improve intracellular clearance might be of use in AMD therapy to slow the progression of drusen formation.

3.
J Mol Histol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088116

RESUMO

SARS-CoV-2 infection is considered as a multi-organ disease, and several studies highlighted the relevance of the virus infection in the induction of vascular injury and tissue morphological alterations, including placenta. In this study, immunohistochemical analyses were carried out on placenta samples derived from women with COVID-19 infection at delivery (SARS-CoV-2 PCR+) or women healed from a COVID-19 infection (SARS-CoV-2 negative at delivery, SARS-CoV-2 PCR-) or women who gave birth before 2019 (Control). Angiotensin Converting Enzyme 2 (ACE2) receptor, Cluster of differentiation 147 (CD147), endothelial CD34 marker, Vascular Endothelial Growth Factor (VEGF) and total Microtubule-associated protein 1 Light Chain 3B marker (LC3B) were investigated in parallel with SPIKE protein by standard IHC. Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS) was used to examine antigen co-expression in the same specimen. SPIKE protein was detected in villi and decidua from women with ongoing infection, with no significant differences in SPIKE staining between both biopsy sites. VEGF was significantly increased in SARS-CoV-2 PCR + biopsies compared to control and SARS-CoV-2 PCR- samples, and MICSSS method showed the co-localization of SPIKE with VEGF and CD34. The induction of autophagy, as suggested by the LC3B increase in SARS-CoV-2 PCR + biopsies and the co-expression of LC3B with SPIKE protein, may explain one of the different mechanisms by which placenta may react to infection. These data could provide important information on the impact that SARS-CoV-2 may have on the placenta and mother-to-fetus transmission.

4.
Front Cell Dev Biol ; 12: 1372573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086659

RESUMO

Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 ß light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.

5.
World J Gastroenterol ; 30(27): 3273-3277, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39086749

RESUMO

In this editorial, we comment on three articles published in a recent issue of World Journal of Gastroenterology. There is a pressing need for new research on autophagy's role in gastrointestinal (GI) disorders, and also novel insights into some liver conditions, such as metabolic dysfunction-associated fatty liver disease (MAFLD) and acute liver failure (ALF). Despite advancements, understanding autophagy's intricate mechanisms and implications in these diseases remains incomplete. Moreover, MAFLD's pathogenesis, encompassing hepatic steatosis and metabolic dysregulation, require further elucidation. Similarly, the mechanisms underlying ALF, a severe hepatic dysfunction, are poorly understood. Innovative studies exploring the interplay between autophagy and GI disorders, as well as defined mechanisms of MAFLD and ALF, are crucial for identifying therapeutic targets and enhancing diagnostic and treatment strategies to mitigate the global burden of these diseases.


Assuntos
Autofagia , Falência Hepática Aguda , Humanos , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Falência Hepática Aguda/etiologia , Fígado/patologia , Fígado/metabolismo , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Gastroenteropatias/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia
6.
World J Gastroenterol ; 30(27): 3356-3360, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39086745

RESUMO

The concept of inflammatory bowel disease (IBD), which encompasses Crohn's disease and ulcerative colitis, represents a complex and growing global health concern resulting from a multifactorial etiology. Both dysfunctional autophagy and dysbiosis contribute to IBD, with their combined effects exacerbating the related inflammatory condition. As a result, the existing interconnection between gut microbiota, autophagy, and the host's immune system is a decisive factor in the occurrence of IBD. The factors that influence the gut microbiota and their impact are another important point in this regard. Based on this initial perspective, this manuscript briefly highlighted the intricate interplay between the gut microbiota, autophagy, and IBD pathogenesis. In addition, it also addressed the potential targeting of the microbiota and modulating autophagic pathways for IBD therapy and proposed suggestions for future research within a more specific and expanded context. Further studies are warranted to explore restoring microbial balance and regulating autophagy mechanisms, which may offer new therapeutic avenues for IBD management and to delve into personalized treatment to alleviate the related burden.


Assuntos
Autofagia , Disbiose , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/imunologia , Disbiose/imunologia , Doença de Crohn/microbiologia , Doença de Crohn/imunologia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/imunologia , Animais , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/imunologia
7.
Acta Pharmacol Sin ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090393

RESUMO

Non-communicable diseases (NCDs) are defined as a kind of diseases closely related to bad behaviors and lifestyles, e.g., cardiovascular diseases, cancer, and diabetes. Driven by population growth and aging, NCDs have become the biggest disease burden in the world, and it is urgent to prevent and control these chronic diseases. Autophagy is an evolutionarily conserved process that degrade cellular senescent or malfunctioning organelles in lysosomes. Mounting evidence has demonstrated a major role of autophagy in the pathogenesis of cardiovascular diseases, cancer, and other major human diseases, suggesting that autophagy could be a candidate therapeutic target for NCDs. Natural products/phytochemicals are important resources for drugs against a wide variety of diseases. Recently, compounds from natural plants, such as resveratrol, curcumin, and ursolic acid, have been recognized as promising autophagy modulators. In this review, we address recent advances and the current status of the development of natural autophagy modulators in NCDs and provide an update of the latest in vitro and in vivo experiments that pave the way to clinical studies. Specifically, we focus on the relationship between natural autophagy modulators and NCDs, with an intent to identify natural autophagy modulators with therapeutic potential.

8.
Open Life Sci ; 19(1): 20220914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091624

RESUMO

Hepatocellular carcinoma (HCC) is a highly vascularized carcinoma, and targeting its neovascularization represents an effective therapeutic approach. Our previous study demonstrated that the baculovirus-mediated endostatin and angiostatin fusion protein (BDS-hEA) effectively inhibits the angiogenesis of vascular endothelial cells and the growth of HCC tumors. However, the mechanism underlying its anti-angiogenic effect remains unclear. Increasing evidence suggests that autophagy has a significant impact on the function of vascular endothelial cells and response to cancer therapy. Hence, the objective of this research was to investigate the correlation between BDS-hEA-induced angiogenesis inhibition and autophagy, along with potential regulatory mechanisms. Our results demonstrated that BDS-hEA induced autophagy in EA.hy926 cells, as evidenced by the increasing number of autophagosomes and reactive oxygen species, accompanied by an upregulation of Beclin-1, LC3-II/LC3-I, and p62 protein expression. Suppression of autophagy using 3-methyladenine attenuated the functions of BDS-hEA-induced EA.hy926 cells, including the viability, proliferation, invasion, migration, and angiogenesis. Moreover, BDS-hEA induced autophagy by downregulating the expression of CD31, VEGF, and VEGFR2, as well as phosphorylated protein kinase B (p-AKT) and phosphorylated mammalian target of rapamycin (p-mTOR), while concurrently upregulating phosphorylated AMP-activated protein kinase (p-AMPK). The in vivo results further indicated that inhibition of autophagy by chloroquine significantly impeded the ability of BDS-hEA to suppress HCC tumor growth in mice. Mechanistically, BDS-hEA prominently facilitated autophagic apoptosis in tumor tissues and decreased the levels of ki67, CD31, VEGF, MMP-9, p-AKT, and p-mTOR while simultaneously enhancing the p-AMPK expression. In conclusion, our findings suggest that BDS-hEA induces autophagy as a cytotoxic response by modulating the AMPK/AKT/mTOR signaling pathway, thereby exerting anti-angiogenic effects against HCC.

9.
Open Life Sci ; 19(1): 20220922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091625

RESUMO

Osteoarthritis (OA) is a chronic degenerative disease characterized by overall joint tissue damage. Metformin (Met) has been shown to inhibit inflammatory reactions, though its potential protective mechanism on cartilage remains unclear. This study investigated Met's potential to protect cartilage in an OA rat model. Various morphological experiments were conducted to assess changes in cartilage tissue morphology before and after Met treatment. Protein and mRNA levels of cartilage-specific genes were measured using western blot, immunohistochemical staining, and RT-qPCR. Additionally, protein levels of autophagy-related and mTOR pathway-related proteins were measured. The results indicate an imbalance in the synthesis and degradation metabolism of chondrocytes, downregulation of cellular autophagy, and activation of the PI3K/Akt/mTOR pathway after surgery. However, treatment with Met could upregulate the expression of synthetic metabolic factors, indicating its contribution to cartilage repair. Furthermore, analysis of autophagy and pathway protein levels indicated that Met effectively attenuated autophagic damage to osteoarthritic cartilage cells and abnormal activation of the PI3K/Akt/mTOR pathway. In conclusion, Met can inhibit the abnormal activation of the PI3K/AKT/mTOR signaling pathway in cartilage tissue, promote the restoration of cartilage cell autophagic function, improve the balance of cartilage cell synthesis and degradation metabolism, and thus exert a protective effect on rat joint cartilage.

10.
World J Gastroenterol ; 30(28): 3428-3446, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39091710

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality, but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis. Peroxisome proliferator activated receptor (PPAR) α and δ play a key role in lipid metabolism and intestinal barrier homeostasis, which are major contributors to the pathological progression of ALD. Meanwhile, elafibranor (EFN), which is a dual PPARα and PPARδ agonist, has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease and primary biliary cholangitis. However, the benefits of EFN for ALD treatment is unknown. AIM: To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model. METHODS: ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol (EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly (1 mL/kg) for 8 weeks. EFN (3 and 10 mg/kg/day) was orally administered during the experimental period. Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis, fibrosis, and intestinal barrier integrity. The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays. RESULTS: The hepatic steatosis, apoptosis, and fibrosis in the ALD mice model were significantly attenuated by EFN treatment. EFN promoted lipolysis and ß-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells, primarily through PPARα activation. Moreover, EFN inhibited the Kupffer cell-mediated inflammatory response, with blunted hepatic exposure to lipopolysaccharide (LPS) and toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling. EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses. The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation. CONCLUSION: EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis, enhancing hepatocyte autophagic and antioxidant capacities, and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.


Assuntos
Chalconas , Modelos Animais de Doenças , Mucosa Intestinal , Cirrose Hepática , Hepatopatias Alcoólicas , Camundongos Endogâmicos C57BL , PPAR alfa , Animais , Camundongos , Humanos , Feminino , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/tratamento farmacológico , PPAR alfa/metabolismo , PPAR alfa/agonistas , Chalconas/farmacologia , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Células CACO-2 , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Etanol/toxicidade , Apoptose/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR delta/agonistas , PPAR delta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Propionatos
11.
Phytomedicine ; 133: 155900, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094441

RESUMO

BACKGROUND: Although blood flow is restored after treatment of myocardial infarction (MI), myocardial ischemia and reperfusion (I/R) can cause cardiac injury, which is a leading cause of heart failure. Gastrodin (GAS) exerts protective effects against brain, heart, and kidney I/R. However, its pharmacological mechanism in myocardial I/R injury (MIRI) remains unclear. PURPOSE: GAS regulates autophagy in various diseases, such as acute hepatitis, vascular dementia, and stroke. We hypothesized that GAS could repair mitochondrial damage and regulate autophagy to protect against MIRI. STUDY DESIGN: Male C57BL/6 mice and H9C2 cells were subjected to I/R and hypoxia-reoxygenation (H/R) injury after GAS administration, respectively, to assess the impact of GAS on cardiomyocyte phenotypes, heart, and mitochondrial structure and function. The effect of GAS on cardiac function and mitochondrial structure in patients undergoing cardiac surgery has been observed in clinical practice. METHODS: The effects of GAS on cardiac structure and function, mitochondrial structure, and expression of related molecules in an animal model of MIRI were evaluated using immunohistochemical staining, enzyme-linked immunosorbent assay (ELISA), transmission electron microscopy, western blotting, and gene sequencing. Its effects on the morphological, molecular, and functional phenotypes of cardiomyocytes undergoing H/R were observed using immunohistochemical staining, real-time quantitative PCR, and western blotting. RESULTS: GAS significantly reduces myocardial infarct size and improves cardiac function in MIRI mice in animal models and increases cardiomyocyte viability and reduces cardiomyocyte damage in cellular models. In clinical practice, myocardial injury was alleviated with better cardiac function in patients undergoing cardiac surgery after the application of GAS; improvements in mitochondria and autophagy activation were also observed. GAS primarily exerts cardioprotective effects through activation of the PINK1/Parkin pathway, which promotes mitochondrial autophagy to clear damaged mitochondria. CONCLUSION: GAS can promote mitophagy and preserve mitochondria through PINK1/Parkin, thus indicating its tremendous potential as an effective perioperative myocardial protective agent.

12.
Ecotoxicol Environ Saf ; 283: 116799, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094450

RESUMO

Acrolein is a ubiquitous gaseous air pollutant and endogenous toxicant, which poses strong risk for oxidative stress-related diseases such as cardiovascular disease. Adenosine has been identified as potential therapeutic agent for age-related cardiovascular disease, while the molecular mechanisms underlying its cardioprotection remain elusive. In the present study, we investigated the myocardial protective effects and the mechanism of adenosine on acrolein-induced toxicity in H9c2 cells and primary neonatal rat cardiomyocytes. We found that acrolein caused apoptosis of cardiomyocytes resulting from oxidative damage, autophagy defect, and mitochondrial dysfunction, as evidenced by loss of mitochondrial membrane potential, impairment of mitochondrial biogenesis, dynamics, and oxidative phosphorylation, decrease of mitochondrial deoxyribonucleic acid (mtDNA) copy number and adenosine 5'-triphosphate (ATP) production. Adenosine pretreatment protected against acrolein-induced cardiotoxicity by maintaining mitochondrial homeostasis, activating the phase II detoxifying enzyme system, promoting autophagic flux, and alleviating mitochondrial-dependent apoptosis. We further demonstrated that the up-regulation of forkhead box protein O1 (FoxO1) mediated by extracellular regulated protein kinases (ERK) activation contributes to the cardioprotection of adenosine. These results expand the application of adenosine in cardioprotection to preventing myocardial damages induced by environmental pollutant acrolein exposure, and uncover the adenosine-ERK-FoxO1 axis as the underlying mechanism mediating the protection of mitochondrial homeostasis, Nrf2-mediated antioxidant defense and autophagic flux, shedding light on the better understanding about the pathological mechanism of cardiovascular disease caused by environmental pollutants and applications of adenosine in cardioprotection.

13.
J Tissue Viability ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39095251

RESUMO

Pressure injuries (PIs) are a common healthcare problem worldwide and are considered to be the most expensive chronic wounds after arterial ulcers. Although the gross factors including ischemia-reperfusion (I/R) have been identified in the etiology of PIs, the precise cellular and molecular mechanisms contributing to PIs development remain unclear. Various forms of programmed cell death including apoptosis, autophagy, pyroptosis, necroptosis and ferroptosis have been identified in PIs. In this paper, we present a detailed overview on various forms of cell death; discuss the recent advances in the roles of cell death in the occurrence and development of PIs and found much of the evidence is novel and based on animal experiments. Herein, we also state critical evaluation of the existing data and future perspective in the field. A better understanding of the programmed cell death mechanism in PIs may have important implications in driving the development of new preventive and therapeutic strategies.

14.
J Nanobiotechnology ; 22(1): 460, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090717

RESUMO

BACKGROUND: Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS: We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17ß-estradiol. CONCLUSIONS: This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.


Assuntos
Células da Granulosa , Nanopartículas , Oócitos , Poliestirenos , Transdução de Sinais , Animais , Feminino , Camundongos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Nanopartículas/toxicidade , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poliestirenos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Autophagy ; : 1-15, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39099167

RESUMO

Atg9, the only transmembrane protein among many autophagy-related proteins, was first identified in the year 2000 in yeast. Two homologs of Atg9, ATG9A and ATG9B, have been found in mammals. While ATG9B shows a tissue-specific expression pattern, such as in the placenta and pituitary gland, ATG9A is ubiquitously expressed. Additionally, ATG9A deficiency leads to severe defects not only at the molecular and cellular levels but also at the organismal level, suggesting key and fundamental roles for ATG9A. The subcellular localization of ATG9A on small vesicles and its functional relevance to autophagy have suggested a potential role for ATG9A in the lipid supply during autophagosome biogenesis. Nevertheless, the precise role of ATG9A in the autophagic process has remained a long-standing mystery, especially in neurons. Recent findings, however, including structural, proteomic, and biochemical analyses, have provided new insights into its function in the expansion of the phagophore membrane. In this review, we aim to understand various aspects of ATG9 (in invertebrates and plants)/ATG9A (in mammals), including its localization, trafficking, and other functions, in nonneuronal cells and neurons by comparing recent discoveries related to ATG9/ATG9A and proposing directions for future research.Abbreviation: AP-4: adaptor protein complex 4; ATG: autophagy related; cKO: conditional knockout; CLA-1: CLArinet (functional homolog of cytomatrix at the active zone proteins piccolo and fife); cryo-EM: cryogenic electron microscopy; ER: endoplasmic reticulum; KO: knockout; PAS: phagophore assembly site; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SV: synaptic vesicle; TGN: trans-Golgi network; ULK: unc-51 like autophagy activating kinase; WIPI2: WD repeat domain, phosphoinositide interacting 2.

16.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3714-3724, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099346

RESUMO

Diabetic cardiomyopathy(DCM) is a chronic complication of diabetes mellitus that leads to cardiac damage in the later stages of the disease, and its pathogenesis is complex, involving metabolic disorders brought about by a variety of aberrant alterations such as endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis, defects in cardiomyocyte Ca~(2+) transporter, and myocardial fibrosis. Currently, there is a lack of specific diagnosis and treatment in the clinic. Autophagy is a highly conserved scavenging mechanism that removes proteins, damaged organelles or foreign contaminants and converts them into energy and amino acids to maintain the stability of the intracellular environment. Inhibition of autophagy can cause harmful metabolites to accumulate in the cell, while over-activation of autophagy can disrupt normal cellular structures and cause cell death. Prolonged high glucose levels disrupt cardiomyocyte autophagy levels and exacerbate the development of DCM. The protective or detrimental effects of autophagy on cells ring true with the traditional Chinese medicine theory of healthy Qi and pathogenic Qi. Autophagy in the physiological state of the removal of intracellular substances and the generation of substances beneficial to the survival of cells is the inhibition of pathogenic Qi to help the performance of healthy Qi, so the organism is healthy. In the early stages of the disease, when autophagy is impaired and incapable of removing waste substances, pathogenic Qi is prevalent; In the later stages of the disease, excessive activation of autophagy can destroy normal cells, leading to a weakening of healthy Qi. Traditional Chinese medicine has the advantage of targeting multiple sites and pathways. Studies in recent years have confirmed that traditional Chinese medicine monomers or formulas can target autophagy, promote the restoration of autophagy levels, maintain mitochondrial and endoplasmic reticulum homeostasis, and reduce oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis in order to prevent and control DCM. This study provides a review of the relationship between autophagy and DCM and the intervention of traditional Chinese medicine in autophagy for the treatment of DCM, with a view to providing new clinical ideas and methods for the treatment of DCM with traditional Chinese medicine.


Assuntos
Autofagia , Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Autofagia/efeitos dos fármacos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/fisiopatologia , Humanos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos
17.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3894-3900, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099363

RESUMO

This study explored the effect of Tianma Gouteng Decoction on oxidative stress induced by angiotensin Ⅱ(AngⅡ) in vascular smooth muscle cell(VSMC) and its molecular mechanism. Primary rat VSMC were cultured using tissue block method, and VSMC were identified by α-actin immunofluorescence staining. AngⅡ at a concentration of 1×10~(-6) mol·L~(-1) was used as the stimulating factor, and Sprague Dawley(SD) rats were orally administered with Tianma Gouteng Decoction to prepare drug serum. Rat VSMC were divided into normal group, model group, Chinese medicine group, and inhibitor(3-methyladenine, 3-MA) group. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation activity. Bromodeoxyuridine(BrdU) flow cytometry was used to detect cell cycle. Transwell assay was used to detect cell migration ability. Enzyme-linked immunosorbent assay(ELISA) was used to detect the activity of superoxide dismutase(SOD), catalase(CAT), and malondialdehyde(MDA) in VSMC. The intracellular reactive oxygen species(ROS) fluorescence intensity was detected using DCFH-DA fluorescent probe. Western blot was used to detect the expression of PTEN-induced putative kinase 1(PINK1), Parkin, p62, and microtubule-associated protein 1A/1B-light chain 3(LC3-Ⅱ) proteins in VSMC. The results showed that Tianma Gouteng Decoction-containing serum at a concentration of 8% could significantly inhibit VSMC growth after 48 hours of intervention. Compared with the normal group, the model group showed significantly increased cell proliferation activity and migration, significantly decreased levels of SOD and CAT, significantly increased levels of MDA, significantly enhanced ROS fluorescence intensity, significantly decreased expression of PINK1, Parkin, and LC3-Ⅱ proteins, and significantly increased expression of p62 protein. Compared with the model group, the Chinese medicine group showed significantly reduced cell proliferation activity and migration, significantly increased levels of SOD and CAT, significantly decreased levels of MDA, significantly weakened ROS fluorescence intensity, significantly increased expression of PINK1, Parkin, and LC3-Ⅱ proteins, and significantly decreased expression of p62 protein. Compared with the Chinese medicine group, the addition of the mitochondrial autophagy inhibitor 3-MA could block the intervention of Tianma Gouteng Decoction-containing serum on VSMC proliferation, migration, mitochondrial autophagy, and oxidative stress levels, with statistically significant differences. In summary, Tianma Gouteng Decoction has good antioxidant activity and can inhibit cell proliferation and migration. Its mechanism of action may be related to the activation of the mitochondrial autophagy PINK1/Parkin signaling pathway.


Assuntos
Angiotensina II , Proliferação de Células , Medicamentos de Ervas Chinesas , Músculo Liso Vascular , Estresse Oxidativo , Proteínas Quinases , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases , Animais , Medicamentos de Ervas Chinesas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Masculino , Proliferação de Células/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Superóxido Dismutase/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3848-3856, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099358

RESUMO

This paper investigated the effect of total saponins from Rhizoma Panacis Majoris on the proliferation, apoptosis, and autophagy of human cervical carcinoma HeLa cells. The saponin content was detected by ultraviolet-visible spectrophotometry. Cell coun-ting kit-8(CCK-8) assay, 4,6-diamidino-2-phenylindole(DAPI) staining, and flow cytometry were used to detect the effects of total saponins of Panacis Majoris Rhizoma on cell viability, morphology, cell cycle and apoptosis of HeLa cells. Western blot was used to detect the expression of apoptosis-related proteins B cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved caspase-9, and cleaved caspase-3, autophagy-related proteins Beclin-1 and SQSTM1(p62), and the proteins related to the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) and mitogen-activated protein kinase(MAPK) signaling pathways. It was found that the yield and saponin content of total saponins from Rhizoma Panacis Majoris were 6.3% and 78.3%, respectively. Total saponins from Rhizoma Panacis Majoris could significantly inhibit the proliferation(P<0.001), effect the nuclear morphology, block the G_0/G_1 cycle, and induce cell apoptosis in HeLa cells with a concentration-dependent manner. In addition, total saponins from Rhizoma Panacis Majoris up-regulated the expression of pro-apoptotic proteins Bax, cleaved caspase-9, and cleaved caspase-3, and autophagy-related protein p62(P<0.05), while down-regulated the expression of anti-apoptotic protein Bcl-2 and autophagy-related protein Beclin-1(P<0.01). Total saponins from Rhizoma Panacis Majoris could promote the expression of p-p38/p38, p-Jun N-terminal kinase(JNK)/JNK, p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR proteins in PI3K/Akt/mTOR and MAPK signaling pathways(P<0.05). In contrast, the effect on p-ERK/ERK expression was not obvious. Therefore, total saponins from Rhizoma Panacis Majoris may inhibit autophagy and promote apoptosis of HeLa cells through the activation of the PI3K/Akt/mTOR, c-JNK, and p38 MAPK signaling pathways, which indicates that total saponins from Rhizoma Panacis Majoris may have a potential role in cervical cancer treatment.


Assuntos
Apoptose , Autofagia , Proliferação de Células , Rizoma , Saponinas , Neoplasias do Colo do Útero , Humanos , Saponinas/farmacologia , Saponinas/química , Células HeLa , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Rizoma/química , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Sobrevivência Celular/efeitos dos fármacos
19.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3878-3886, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099361

RESUMO

To investigate the mechanism by which Peitu Yifei Granules inhibit idiopathic pulmonary fibrosis(IPF) in rats, fifty specific-pathogen-free(SPF) grade male Wistar rats were randomly divided into blank group and modeling group. IPF was induced in the modeling group rats by tracheal infusion of 5 mg·kg~(-1) bleomycin(BLM) and then randomly divided into model group, pirfenidone group, and high-dose, medium-dose, and low-dose groups treated with Peitu Yifei Granules. After 24 hours of modeling, the treatment groups received intragastric administration of either Peitu Yifei Granules or pirfenidone as a positive control drug; meanwhile, the model group received an equal volume of normal saline. After 21 days of treatment administration, lung tissue samples were collected for analysis. Pathological changes in lung tissues were assessed using hematoxylin-eosin(HE) staining and Masson's trichrome staining. The expression levels of protein kinase B(Akt), mammalian target of rapamycin(mTOR), their phosphorylated forms, and sequestosome 1(p62) were determined through Western blot(WB). Fluorescent quantitative real-time polymerase chain reaction(RT-qPCR) was used to measure messenger ribonucleic acid(mRNA) expression levels of Beclin-1, microtubule-associated proteins 1A/1B light chain 3B(LC3B), and p62. Immunohistochemistry was performed to assess protein expression levels of Beclin-1 and LC3B in lung tissue samples. RESULTS:: demonstrated that lung tissue structure appeared normal without significant collagen deposition in the blank group rats. In contrast, rats from the model group exhibited thickened alveolar septa along with evident inflammatory changes and collagen deposition. Compared to the model group rats, those treated with Peitu Yifei Granules or pirfenidone showed significantly improved lung tissue structure with reduced inflammation and collagen deposition observed histologically. Furthermore, compared with those of the blank group, the expressions of p62 and its mRNA, p-Akt and p-mTOR protein in lung tissues of the model group were significantly increased, while Beclin-1, LC3B and their mRNA levels were significantly decreased. Compared with those of the model group, the expressions of p62 and its mRNA, p-Akt and p-mTOR in lung tissues of the pirfenidone group and Peitu Yifei Granules high-dose and medium-dose groups were significantly decreased, while Beclin-1, LC3B and their mRNA expressions were significantly increased. The above results indicate that Peitu Yifei Granules can improve autophagy levels in lung tissues by inhibiting the phosphoinositide 3-kinase(PI3K)/Akt/mTOR signaling pathway and delay the development of IPF disease.


Assuntos
Autofagia , Medicamentos de Ervas Chinesas , Fibrose Pulmonar Idiopática , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Humanos
20.
Autophagy Rep ; 3(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091992

RESUMO

Glycogen is an important reserve polysaccharide from bacteria to human. It is organized in glycogen granules that also contain several proteins involved in their metabolism. Glycogen granules can be mobilized in mammalian lysosomes and yeast vacuoles. They are delivered to these organelles by macroautophagy (hereafter autophagy). However, whether this is a selective or a non-selective process remains a matter of debate. It was proposed to be selective and called "glycophagy" (for selective autophagy of glycogen) in the mouse liver. However, the evidence of this selectivity is lacking in other glycogen-rich organs, such as the heart and skeletal muscle, which both are heavily impacted by the aberrant lysosomal accumulation of glycogen in Pompe disease. We recently developed the Komagataella phaffii yeast as a simple model to study the relationship of glycogen and autophagy. Using this model, we showed that cytosolic glycogen granules are delivered to the vacuole by non-selective autophagy, at least during nitrogen starvation. We speculate that this type of autophagy might be responsible for the lysosomal glycogen turnover in non-hepatic mammalian tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA